整式的乘法习题(含详细解析答案)

合集下载

整式乘法计算40道(含答案)

整式乘法计算40道(含答案)

整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。

通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。

本文将提供一些整式乘法的练习题,以及它们的详细解答。

1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。

2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。

整式的乘法 (含答案)

整式的乘法 (含答案)

第八章 整式的乘法一、选择题(本大题共8小题,每小题3分,共24分)1.计算a 6÷a 2的结果正确的是( )A .a 12B .a 8C .a 4D .a 32.计算⎝ ⎛⎭⎪⎫-12a 2b 3的结果正确的是( ) A.14a 4b 2 B.18a 6b 3 C .-18a 6b 3 D .-18a 5b 3 3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350000000用科学记数法表示为( )A .3.5×107B .3.5×108C .3.5×109D .3.5×10104.下列计算正确的是( )A .a 3+a 3=a 6B .a 3·a 3=a 6C .a 3÷a 3=0D .(a 3)3=a 65.下列计算正确的是( )A .(x +y )2=x 2+y 2B .(x -y )2=x 2-2xy -y 2C .(x +1)(x -1)=x 2-1D .(x -1)2=x 2-16.已知x -y =-3,xy =2,则(x +3)(y -3)的值是( )A .-6B .6C .2D .-27.将代数式x 2+6x +2化成(x +p )2+q 的形式为( )A .(x -3)2+11B .(x +3)2-7C .(x +3)2-11D .(x +2)2+48.已知4m +n =90,2m -3n =10,则(m +2n )2-(3m -n )2的值为( )A .900B .-900C .8000D .-8000二、填空题(本大题共6小题,每小题4分,共24分)9.计算:(2a 2)3·a 4=________.10.蜜蜂建造的蜂巢既坚固又省料,蜂巢的厚度约为0.000073米,将0.000073用科学记数法表示为________.11.计算:(13)0+(-13)-2+(-23)-1=________. 12.已知x 2n =2,则(x 3n )2-(x 2)2n 的值为________.13.若(mx -6y )与(x +3y )的积中不含xy 项,则m 的值是________.14.图1①是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示拼成一个正方形,则阴影部分的面积是________.三、解答题(本大题共5小题,共52分)15.(10分)计算:(1)23x 3y 2·⎝ ⎛⎭⎪⎫-32xy 22·⎝ ⎛⎭⎪⎫-23x 2;(2)a (1-a )+(a +1)2-1.16.(8分)2018·邢台期末请你参考图2(1)1022. (2)98×102×10004;17.(14分)(1)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3;(2)已知x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.18.(10分)某市有一块长方形地块,尺寸如图3所示(单位:米),规划部门计划将阴影部分进行绿化,中间修建一座雕像.(1)求绿化面积是多少平方米;(2)求当a=3,b=2时的绿化面积.图319.(10分)甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2-9x+10.请你计算出a,b的值各是多少,并写出这道整式乘法的正确结果.1.C2.C [解析] ⎝ ⎛⎭⎪⎫-12a 2b 3=⎝ ⎛⎭⎪⎫-123·(a 2)3·b 3=-18a 6b 3. 3.B4.B [解析] A 项,合并同类项,系数相加,字母部分不变,故A 错误;B 项,同底数幂相乘,底数不变,指数相加,故B 正确;C 项,同底数幂相除,底数不变,指数相减,故C 错误;D 项,幂的乘方,底数不变,指数相乘,故D 错误.故选B.5.C [解析] A 项,(x +y )2=x 2+y 2+2xy ,故此选项错误;B 项,(x -y )2=x 2-2xy +y 2,故此选项错误;C 项,(x +1)(x -1)=x 2-1,正确;D 项,(x -1)2=x 2-2x +1,故此选项错误.故选C.6.C [解析] 因为x -y =-3,xy =2,所以(x +3)(y -3)=xy -3x +3y -9=xy -3(x -y )-9=2-3×(-3)-9=2.故选C.7.B 8.B9.8a 10 [解析] (2a 2)3·a 4=23·a 2×3·a 4=8a 10.[点评] 此题考查了积的乘方、幂的乘方和同底数幂的乘法.10.7.3×10-511.8.5 [解析] 原式=1+1(-13)2+1-23=1+9-1.5=8.5. 12.4 [解析] 因为x 2n =2,所以(x 3n )2-(x 2)2n=(x 2n )3-(x 2n )2=8-4=4.13.2 [解析] 因为(mx -6y )(x +3y )=mx 2+(3m -6)xy -18y 2,且积中不含xy 项,所以3m-6=0,解得m =2.14.(m -n )2 [解析] 由图①,得每个小长方形的长为m ,宽为n ,所以图②中阴影部分为正方形,且边长为m -n ,故它的面积是(m -n )2.15.解:(1)23x 3y 2·⎝ ⎛⎭⎪⎫-32xy 22·⎝ ⎛⎭⎪⎫-23x 2=23x 3y 2·94x 2y 4·49x 2=23x 7y 6. (2)原式=a -a 2+a 2+2a +1-1=3a .16.解:(1)1022=(100+2)2=1002+2×100×2+22=10404.(2)原式=(100-2)×(100+2)×10004=(10000-4)(10000+4)=100002-42=99999984.17.[解析] 先利用公式将多项式展开,然后合并同类项,再代入求值.解:(1)原式=4a 2-4ab +b 2-b 2=4a 2-4ab .将a =-2,b =3代入上式,得原式=4×(-2)2-4×(-2)×3=16+24=40.(2)原式=2x 2-3x +1-(x 2+2x +1)+1=x 2-5x +1.将x 2-5x =3代入,得原式=3+1=4.18.解:(1)(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-(a 2+2ab +b 2)=5a 2+3ab .即绿化面积为(5a 2+3ab )平方米.(2)当a =3,b =2时,5a 2+3ab =5×32+3×3×2=45+18=63.即当a =3,b =2时,绿化面积为63平方米.19.[解析] 先按甲、乙错误的做法得出的结果求出a ,b 的值,再把a ,b 的值代入原式求出正确结果.解:甲得到的算式为(2x -a )(3x +b )=6x 2+(2b -3a )x -ab =6x 2+11x -10,对应的系数相等,则2b -3a =11,ab =10;乙得到的算式为(2x +a )(x +b )=2x 2+(2b +a )x +ab =2x 2-9x +10,对应的系数相等,则2b +a =-9,ab =10,所以⎩⎪⎨⎪⎧2b -3a =11,2b +a =-9,解得⎩⎪⎨⎪⎧a =-5,b =-2. 正确结果为(2x -5)(3x -2)=6x 2-19x +10.。

整式乘法计算50题(含解析)

整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。

(完整版)整式的乘法习题(含详细解析答案)

(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
16.解:A、应为 2x3•3x4=6x7,故本选项错误; B、应为 3x3•4x3=12x6,故本选项错误; C、应为 2a3+3a3=5a3,故本选项错误; D、4a3•2a2=4×2×a3•a2=8a5,正确. 故选 D.
17.解:A、(a5)2=a10,故正确; B、2a2•(-3a3)=2×(-3)a2•a3=-6a5,正确; C、b•b3=b4,故正确;
39.解:(-2a)3•b4÷12a3b2=-8a3b4÷12a3b2=- b2.
40.解:(9ab5)÷(3ab2)=3b3;(4a2b)÷(-12a3bc)=-3ac; (4x2y-8x3)÷4x2=y-2x.
整式乘法与因式分解 500 题--基础篇解析
41.解:(am+1bn+2)•(a2n-1b2m),
5.解:①根据零指数幂的性质,得(-3)0=1,故正确; ②根据同底数的幂运算法则,得 a3+a3=2a3,故错误; ③根据负指数幂的运算法则,得 4m-4= ,故错误;
④根据幂的乘方法则,得(xy2)3=x3y6,故正确. 故选 C.
6.解:A、应为 a2•a3=a2+3=a5,故 A 错误 B、应为(2a)•(3a)=6a2,故 B 错误
23.解:2x2•(-3x3)=2×(-3)•(x2•x3)=-6x5.
24.解:(-2x2)•3x4=-2×3x2•x4=-6x6.
整式乘法与因式分解 500 题--基础篇解析
25.解:(3x2y)(- x4y)=3×(- )x2+4y2=-4x6y2.
26.解:2a3•(3a)3=2a3•(27a3)=54a3+3=54a6. 27.解:(-3x2y)•( xy2)=(-3)× ×x2•x•y•y2=-x2+1•y1+2=-x3y3.

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)

整式的乘法练习题(含解析答案)北师大版数学七年级下册第一章1.4整式的乘法课时练一、选择题1.(-5a^2b)·(-3a)等于()A。

15a^3bB。

-15a^2bC。

-15a^3bD。

-8a^2b解析:解答:(-5a^2b)·(-3a)=15a^3b,故A项正确。

分析:根据单项式乘单项式法则与同底数幂的乘法法则可完成此题。

2.(2a)^3·(-5b^2)等于()A。

10a^3bB。

-4a^3b^2C。

-40a^3bD。

-40a^2b解析:解答:(2a)^3·(-5b^2)=-4a^3b^2,故B项正确。

分析:先根据积的乘方法得到(2a)^3=8a^3,再根据单项式乘单项式法则可完成此题。

3.(2a^3b)^2·(-5ab^2c)等于()A。

-20a^6b^4cB。

10a^7b^4cC。

-20a^7b^4cD。

20a^7b^4c解析:解答:(2a^3b)^2·(-5ab^2c)=-20a^7b^4c,故C项正确。

分析:先根据积的乘方法得到(2a^3b)^2=-4a^6b^2,再根据单项式乘单项式法则与同底数幂的乘法可完成此题。

4.(2x^3y)^2·(5xy^2)·x^7等于()A。

-20x^6y^4B。

10xyy^4C。

-20x^7y^4D。

20x^14y^4解析:解答:(2x^3y)^2·(5xy^2)·x^7=-20x^14y^4,故D项正确。

分析:先根据积的乘方法得到(2x^3y)^2=-4x^6y^2,再根据单项式乘单项式法则与同底数幂的乘法法则可完成此题。

5.2a^3·(b^2-5ac)等于()A。

-20a^6b^2cB。

10a^5b^2cC。

2a^3b^2-10a^4cD。

a^7b^4c-1a^4c解析:解答:2a^3·(b^2-5ac)=2a^3b^2-10a^4c,故C项正确。

整式的乘法专题训练

整式的乘法专题训练

整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。

题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。

题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。

题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。

题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。

题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。

题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。

题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法测试
1.列各式中计算结果是x2-6x+5 的是
(
A.(x-2) ( x-3 )
B.(x-6) ( x+1)
C.(x-1) ( x-5 )
D.(x+6) (x-1)
2.下列各式计算正确的是
( )
+3x=5
3x=6
C.(2x)3=8
÷x3=5x2
3.下列各式计算正确的是( )
(3x-2) =5x2-4x
B. (2y+3x)( 3x-2y)=9x2-4y2
C. ( x+2) 2 =x2+2x+4
D.(x+2)( 2x-1) =2x2+5x-2
4.要使多项式(x2+px+2)(x-q)展开后不含x 的一次项,则p 与q 的关系是( )
=q +q=0 C.pq =1 =2
5.若(y+3)(y-2)=y2+my+n,则m、n 的值分别为( )
=5,n=6
=1,n=-6
=1,n=6
=5,n=-6
6.计算:(x-3)(x+4)= ___ .
7.若x2+px+6=(x+q)(x-3),则pq= ___ .
8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;
(1) 乘积式中的一次项系数、常数项与两因式中的常数项有何关系
(2) 根据以上各式呈现的规律,用公式表示出来;
(3) 试用你写的公式,直接写出下列两式的结果;
①(a+99)(a-100)= ___ ;② (y-500)(y-81)= _____ .
9.(x-y)(x2+xy+y2)= ___ ;(x-y)(x3+x2y+xy2+y3)= _____
根据以上等式进行猜想,当n 是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+⋯+x2y n-2+xy n-1+y n)= ____ .10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是 _____ .
11.若(x+4)(x-3)=x2+mx-n,则m= ___ ,n= ____ .
12.整式的乘法运算(x+4)(x+m),m 为何值时,乘积中不含x项m 为何值时,乘积中x 项的系数为 6 你能提出哪些问题并求出你提出问题的结论.
13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.
14.计算:
(1) (5mn2-4m2n)(-2mn)
(2) (x+7)(x-6)-(x-2)(x+1)
15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x 无关.
参考答案
1.答案:C
解析:【解答】A、(x-2 )(x-3)=x2-6x+6,故本选项
错误;
B、
(x-6) (x+1)=x2-5x-6,故本选项错误;
C、
(x-1) (x-5 )=x2-6x+5,故本选项正确;
D、
(x+6) (x-1)=x2+5x-6,故本选项错误;
故选C.
【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.
2.答案:A
解析:【解答】A、2x+3x=5x,故 A 选项正确;
B、2x3x=6x2,故 B 选项错误;
C、(2x)3=8x3,故C选项错误;
D、5x6÷x3=5x3,故 D 选项错误;
故选A.
【分析】根据整式乘法和幂的运算法则.
3.答案:B
解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;
B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;
C、(x+2)2=x2+4x+4,故本选项错误;
D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.
故选B.
【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.
4.答案:D
解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,
∴pq -2=0,即pq=2.
故选D
【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x 的一
次项,令一次项系数为0 即可列出p 与q 的关系.
5.答案:B
解析:【解答】∵(y+3)(y-2)=y2 -2y+3y-6=y2+y-6,
∵(y+3)(y-2)=y2+my+n,
22
∴y2+my+n=y2+y-6,
∴m=1,n=-6.
故选B.
【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即
可求出m、n 的值.
6.答案:x2+x-12
解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12
【分析】根据(a+b)(m+n)=am+an+bm+bn 展开,再合并同类项即可.
7.答案:10
解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,
∴x2+px+6=x2+(-3+q)x-3q,
∴p=-3+q,6=-3q ,
∴p=-5,q=-2,
∴pq =10.
故答案是10 .
【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)
=am+an+bm+bn
进行计算,再根据等式的性质可得关于p、q 的方程组,求解即可.
8.答案:① a2-a-9900;② y2-581y+40500.
解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;
(2)(x+a)(x+b)=x2+(a+b)x+ab.
(3)①(a+99)(a-100)=a2-a-9900;
②(y-500)(y-81)=y2-581y+40500.
【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;
(3)根据(2)中的公式代入计算.
9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式
=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;
原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-⋯-x2y n-1-xy n-y n+1=x n+1-y n+1,
【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一乘另外一个多项式的每一项,再把所得的积相加.
10.答案:-3a2+2b2-ab .
解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,
∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.
【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.
11.答案:1,12.
解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.
【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出与n 的值,代入所求式子中计算,即可求出值.
12.答案:-4,2
解析:【解答】∵(x+4)(x+m )=x2+mx+4x+4m 若要使乘积中不含x 项,则
∴4+m=0
∴m=-4
若要使乘积中x 项的系数为6,则
∴4+m=6
∴m=2
提出问题为:m 为何值时,乘积中不含常数项若要使乘积中不含常数项,则
∴4m=0
∴m=0
【分析】把式子展开,若要使乘积中不含 x 项,则令含 x 项的系数为零;若要使乘积中 的系数为 6,则令含 x 项的系数为 6;根据展开的式子可以提出多个问题.
13.答案: 3 张. 解析:【解答】( a+2b )( a+b )=a 2+3ab+2b 2.
则需要 C 类卡片 3 张.
【分析】拼成的大长方形的面积是( a+2b )( a+b )=a 2+3ab+2b 2,即需要一个边长为 方形, 2 个边长为 b 的正方形和 3 个 C 类卡片的面积是 3ab .
14.答案:( 1)10m 2n 3+8m 3n 2;( 2)2x-40. 解析:【解答】( 1)原式 =-10m 2n 3+8m 3n 2; (2)原式 =x 2-6x+7x-42- x 2 -x+2x+2=2x-40. 【分析】( 1)原式利用单项式乘以多项式法则计算,合并即可得到结果; (2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.
15.答案:代数式的值与 x 无关
解析:【解答】原式 =2x-4x 2+8x 3+1-2x+4x 2-9x 3-x+x 3-1+x-3=-3,则代数式的值与 x 无关. 【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断. x 项
a 的正。

相关文档
最新文档