《整式的乘法》典型例题
整式的乘法100题专项训练(精心整理)

..整式的乘法 100 题专项训练同底数幂的乘法:底数不变,指(次)数相加。
公式:a m· a n =a m+n 1、填空:(1)x3x5; a a2 a3;x n x 2;(2)( a2) ( a)3; b2 b3 b x 2= x 6;(3)(x)2 x3;10410; 33233;(4)a a 4a 3=;2 2 3 2 5=;(5) a 2 a 5a3=;2a3=___________;(1)aa2( a) ( a)6;3452;(6)m m m m =(7)(b a) 3 (b a) 4; x n x2;1)216(8)(;10 610 4332、简单计算:(1)a4a6(2)b b5(3)m m2m3( 4)c c3c5c93. 计算:(1)b 3b2()( a)a32(3)( y)2( y)3(4)( a)3( a)4(5)3432(6)( 5)7( 5)6(7)( q)2n( q)3(8)( m)4( m)2(9) 23(10)( 2)4( 2)5 4.下面的计算对不对?如果不对,应怎样改正?(1)233265;(2)a3a3a6;(3)y n y n 2 y 2n;( 4)m m2m2;(5)(a)22)a4;()a3a4a12 ;( a6二、幂的乘方:幂的乘方,底数不变,指数相乘.即: ( a m )n =a mn 1、填空:(1)( 22) 4=___________ (2)( 33)2=___________(3)(22) 2=___________( 4)(22)2=___________753( 5)(m 7)= ___________( 6)m (m 3) = ___________2、计算 :(1)(22)2;(2)(y 2) 5(3)(x 4)3(4)3( b m)3 2 2 3 54 2 7(4)(y ) ? (y )(5)a ( a) ( a)(6)2 ( x 3) x x三、积的乘方:等于把积的每一个因式分别乘方, 再把所得的幂相乘. (ab) n =a n b n1、填空:( 1)( 2x )2=___________( ab )3 =_________(ac) 4. =__________2a 2) 22(2)(- 2x ) 3=___________(=_________ (a4) =_________32( 3)( 2a 2b ) =_______ ( 2a 2b 4) =_________(4)( xy 3) 2=_________( 5)(ab)n__________n21 a 2 b 3)3(6) (abc)__________ (n 为正整数 ) ( 7)(__________3332(8)( ab) a b__________ ( 9)( 3x 2y)__________3(9)(a nb 3n )3(10)( x 2y 3)________ (a2n 3=___________b )________( x 3y 2 2 ___________)2、计算:(1)( 3a )2 (2)(- 3a ) 3 (3)( ab 2)2 ( 4)(- 2× 103) 3(5)( 103) 3 (6)( a 3) 7( 7)( x 2) 4; (8)( a 2)? 3 ? a 53、选择题:(1)下列计算中,错误的是()A 2 3 2 4 6B2 2244(a b )a b(3x y ) 9x yC33D3 2 26 4( xy)x y(m nm n )(2)下面的计算正确的是()A235B235m m mm m m3 252mnmn(m n)2Cm nD22四、整式的乘法1、单项式乘单项式 1、 ( 3x 2 ) · 2x 32、3a 3 · 4a 43、 4m 5 ·3m 24、(5a 2b)3 ( 3a)25、 x 2 · x · x 56、 ( 3x) · 2xy7、 4a 2 · 3a 28、 ( 5a 2 b) · ( 3a)9、 3x · 3x510、 4b 3c · 1abc 11、 2x 3 · ( 3x) 212、 4 y · ( 2xy 2 )213、 ( 3x 2y) · ( 1xy 2 )14、 (2 104)· ( 4 105)15 、 7 x 4 · 2 x 3316、 3a 4 b 3 · ( 4a 2b 3c 2 )17、 19、 x 2 · y 2 ( xy 3 )2. .18、 (5a 2b)3 · ( ab 2c)319、 ( 2a)3 · ( 3a) 220 、5m · ( 10m 4 )221、 3m nm n22、(3x2323、 4ab21 2 c)x· 4xy) · ( 4x)· ( 8 a24、 ( 5ax) ·222 4 2252 3(3 x y)、( m a b ) ·( mab ) 26、4x y ·2x ( y) z2527、 ( 3a 3bc)3 · ( 2ab 2 ) 2 28 、(4 ab) · ( 3ab)2 29、 (2 x)3· ( 5xy 2 )330、 ( 2x 3 y 4 )3 ( x 2 yc)231 、 4xy 2· ( 3x 2 yz 3 )32、 ( 2ab 3c)2 · (2 x) 2833、( 3a 2b 3 ) 2 ·( 2ab 3 c)334、( 3a 3b 2)( 2 1a 3b 3c)35、( 4x 2 y) ·( x 2 y 2) ·( 1y 3 )7 3 236、 4xy 2 · ( 5x 3 y 2 ) · ( 2x 2 y)37、 ( 2x 2 y) 2 · (1 xyz) · 3 x 3 z 32 538、 ( 1 xyz) ·2x 2 y 2· (3yz 3 )39、 6m 2 n · ( x y)3 · ( y x) 22 3 540、 ( 1 ab 2c)2 · ( 1 a bc 2 )3· ( 1 a 3 )41、、 2xy · ( 1 x 2 y 2 z) · ( 3x 3 y 3)2 3 2242、 ( 1 ab 3 )3 · ( 1 ab) · ( 8a 2b 2 ) 243、 6a 2b · ( x y)3 · 1 ab 2 · ( y x)22 432221344、 ( 4x y) · ( x y ) · y二、单项式乘多项式: (利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、 2m(3 x 4 y)2 、 1 ab(ab1) 3 、 x(x 2x 1)4 、 2a(3a 22b 1)2 25、 3x( x 2 2x 1) 6 、 4x(3xy) 7 、 ab (a b)8、 6x(2 x 1)9、 x(x 1)10、 3a(5a 2b)11 、 3x(2 x 5)12、 2x 2 ( x1 )213、 3a 2 (a 3b 2 2a) 14 、 (x3y)( 6 x) 15、 x( x 2 y 2 xy) 16 、 (4 a b 2 )( 2b)17、 ( 3x 1)( 2x 2)18 、 ( 2a) · ( 1a 31)19 、 ( 3x 2 )(2 x 3 x 2 1)4 220、(2ab 22ab) ·1ab 21、 4m( 3m2 n 5mn2 )22 、( 3ab )(2a2b ab 2)3223、5ab·(2 a b 0.2)24 、(2 a22a4) · ( 9a) 25、 3x(2 x25x 1) 3926、2x( x2x 1)27、2x·(1x21)28、 3x(1x22)23329、4a(2 a23a 1)30、(3x2 )( x22x 1)31、xy( x2y51) 32、2x2y(13xy y)33 、3xy(3 x2y24xy2 )34、 3ab( a2 b ab2ab)235、ab2(2a23ab 2a)36 、1a2b ·(6 a23ab 9b2 ) 37、 (2 x 4 x38)(1 x2) 3238、2x3(3 x25x 6) 39、 (3a33b2c6ac2 ) ·1ab43 40、x( x1) 2x( x 1) 3x(2 x5)..41、a(b c) b(c a) c(a b)42 、(3x21y2y2 )(1xy)3 23243、(1x2 y 2xy y2 ) · ( 4xy)43 、(5a2b10a3b21)(1a b)233512244、、(x y 2xy y )( 4xy)三、多项式乘多项式:(转化为单项式乘多项式, 然后在转化为单项式乘单项式)1、(3x1)(x 2)2、( x8 y)( x y)3、(x1)(x 5)4、(2 x1)(x3)5、(m2n)(m 3n)6、 (a 3b)(a 3b)7、 (2 x21)(x 4)8 、(x23)(2 x5) 9、( x2)( x 3)10、( x4)( x 1)11、( y4)( y 2)12、( y5)( y3)13、(x p)( x q)14 、( x 6)( x 3)15 、(x 1)( x1) 16、 (3 x 2)( x 2) 2317、(4 y1)( y 5)18、( x2)( x24)19、(x4)( x 8)20、( x4)( x9)21、( x2)( x 18)22、( x3)( x p)23、( x6)( x p)24、( x7)( x5)25、( x 1)(x5)26 、1127、28 、3229、(4 x25xy)(2 x y)30、( y3)(3 y 4)31、(x3)( x 2) 32、(2 a b)(a 2b)33、(2 x3)( x 3)34、( x3)( x a)35、( x1)(x 3)36、(a2)(b2)37、(3 x 2 y)(2 x 3 y) 38、( x 6)( x 1)39、( x3y)(3 x 4 y) 40、( x 2)( x1)41、(2 x3y)(3 x 2 y)42 、(1x x2 )( x 1)43、(a b)(a2ab b2 )44、(3x22x 1)(2 x23x 1) 45、 (a b)( a2ab b2 ) 46、 ( x2xy y2 )( x y)47、(x a)( x2ax a 2 )48、(x y)( x2xy y2 ) 49、 (3x43x21)( x4x22)50、(x y)( x2xy y2 )四、平方差公式和完全平方公式1、( x1)( x 1)2、 (2 x1)(2 x1) 3 、( x5y)( x5y) 4 、(3 x2)(3 x2)5、(b2a)(2 a b) 6 、(x 2 y)( x 2 y)7、(a b)( b a) 8、( a b)(a b)9、(3a2b)(3a2b)10 、52)(a 5b2)11、(2 a5)(2 a5) 12、(1m)( 1m)(a b13、(1a b)(1a b) 14、 ( ab 2)(2ab) 15、10298 16、 97 103 2217、 4753 18 、 (a b)(a b)( a 2 b 2 ) 19 、 (3a 2b)(3a 2b)20、 ( 7m 11n)(11n 7m) 21 、 (2 y x)( x 2 y)22、 (4 a)( 4 a)23、 (2a 5)(2 a 5) 24 、 (3a b)(3 a b)25、 (2 x y)(2 x y)完全平方: 1、 ( p 1)2 2、 ( p1)2 3 、(a b)2 4、 (ab)2 5、( m2)26、 (m 2)27 、 (4 mn) 2 8 、 ( y1 )2 9 、 ( x 3y)2 10 、 ( a 2b)2211、 (a1 )2 12 、 (5 x 2 y)213 、 (2 ab)214 、 ( 1x y) 2 15 、 (2 a 3b)2a216、 (3 x 2 y)217 、 ( 2m n)218 、 (2a2c)219、(23a)220 、 (1x 3 y)2321、(3a 2b)2 22 、( a 2 b 2 )2 23 、( 2x 2 3 y) 224、(1 xy) 2 25 、(1 x 2 y 2 )2..五、同底数幂的除法:底数不变,指数相减。
(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式的乘法创新题举例

整式的乘法创新题举例一、 求值题例1、若(x 2+nx+3)(x 2-3x+m )的展开式中不含x 2和x 3的项,求m 和n 的值。
分析:没有必要把多项式全部相乘,两个二次三项式相乘,二次项x 2只能是x 2项与常数项的积或x 项与x 项的积,x 3项只能是x 2项与x 项相乘而得,只要把有关的项得到,再合并同类项,即可由题意得到方程或方程组。
解:含x 2的项是mx 2+3x 2-3nx 2=(m+3-3n )x 2含x 3的项是-3x 3+nx 3=(n-3)x 3,由题意可知33030m n n +-=⎧⎨-=⎩解得63m n =⎧⎨=⎩点评:对于整式的乘法含项、不含项问题不必要把多项式全部相乘。
题中要哪项计算哪项。
二、 新定义运算题例2 若 表示ab-c ,||acb d 表示ad-bc ,试求分析:理解新定义,按新定义计算。
解:由题意得[2(x+2)-(3x-6)][x (2x-1)-3·4x]=(-x+10)(-10x 2-x )=10x 3-99x 2-10x点评:新定义题是近几年中考中常出现的题目,考查同学们理解新定义综合运用知识的能力。
三、 阅读题例3 阅读下列解答过程,并回答问题在x 2+ax+b 与2x 2-3x-1积中,x 3项的系数为-5,x 2项的系数为-6,求a 、b 的值。
解:(x 2+ax+b )(2x 2-3x-1)=2x 4-3x 3+2ax 3-3ax 2+2bx 2-3bx ① a b c 2 x+2 3x-6 × x 4x 3 2x-1 ==2x 4-(3-2a )x 3-(3a-2b )x 2-3bx ②根据对应项系数相等,有⎩⎨⎧-=--=-623523b a a ③ 解得⎩⎨⎧==94b a 回答:(1)上述解答是否正确 。
(2)若不正确,从第 步开始出错。
(3)写出正确过程:分析:认真读题,判断解答过程是否正确。
答:(1)不正确;(2)第①步(3)解:(x 2+ax+b )(2x 2-3x-1)的展开式中含x 3的项为(2a-3)x 3,含x 2的项为(-3a+2b-1)x 2依题意有⎩⎨⎧-=-+--=-6123532b a a ,解得⎩⎨⎧-=-=41b a 点评:解答阅读题关键是阅读懂题中的意思。
整式的乘法练习题(含解析答案)

北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题1.(-5a2b)·(-3a)等于()A.15a3b B.-15a2b C.-15a3b D.-8a2b答案:A解析:解答:(-5a2b)·(-3a)=15a3b,故A项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.2.(2a)3·(-5b2)等于()A.10a3b B.-40a3b2C.-40a3b D.-40a2b答案:B解析:解答:(2a)3·(-5b2)=-40a3b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式乘单项式法则可完成此题.3.(2a3b)2·(-5ab2c)等于()A.-20a6b4c B.10a7b4c C.-20a7b4c D.20a7b4c答案:C解析:解答:(2a3b)2·(-5ab2c)=-20a7b4c,故C项正确.分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式乘单项式法则与同底数幂的乘法可完成此题.4.(2x3y)2·(5xy2)·x7 等于()A.-20x6y4B.10x y y4C.-20x7y4D.20x14y4答案:D解析:解答:(2x3y)2·(5xy2)·x7 =-20x14y4,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式乘单项式法则与同底数幂的乘法法则可完成此题.5.2a3·(b2-5ac)等于()A.-20a6b2c B.10a5b2c C.2a3b2-10a4c D.a7b4c-10a4c答案:C解析:解答:2a3·(b2-5ac)=2a3b2-10a4c,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.6.x3y·(xy2+z)等于()A.x4y3+xyz B.xy3+x3yz C.z x14y4 D.x4y3+x3yz答案:D解析:解答:x3y·(xy2+z)=x4y3+x3yz,故D项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.7.(-x7)2·(x3y+z)等于()A.x17y+x14z B.-xy3+x3yz C.-x17y+x14z D.x17y+x3yz答案:A解析:解答:(-x7)2·(x3y+z)=x17y+x14z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.8.[(-6)3]4 .(b2-ac)等于()A.-612b2-b2c B.10a5-b2c C.612b2-612ac D.b4c-a4c答案:C解析:解答:[(-6)3]4 .(b2-ac)=612b2-612ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.9.(2x)3.(x3y+z)等于()A.8x6y+x14z B.-8x6y+x3yz C.8x6y+8x3z D.8x6y+x3yz答案:C解析:解答:(2x)3.(x3y+z)=8x6y+8x3z,故C项正确.分析:先由积的乘方法则得(2x)3=8x3,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.10.(2x)2.[(-y2)2+z]等于()A.4xy4+xz B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:D解析:解答:(2x)2.[(-y2)2+z]=4x2y4+4x2z,故D项正确.分析:先由积的乘方法则得(2x)2=4x2,由幂的乘方法则得(-y2)2=y4再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.11.x2.x5.(y4+z)等于()A.x7y4+x7z B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:A解析:解答:x2.x5.(y4+z)=x7y4+x7z,故A项正确.分析:先由同底数幂的乘法法则得x2.x5=x7,再由单项式乘多项式法则可完成此题. 12.x2·(x y2+z)等于()A.xy+xz B.-x2y4+x2z C.x3y2+x2z D.x2y4+x2z答案:C解析:解答:x2.(x y2+z)=x3y2+x2z,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.13.(a3+b2)·(-5ac)等于()A.-5a6b2-c B.5a5-b2c C.5a3b2-10a4c D.-5a4c-5ab2c答案:D解析:解答:(a3+b2)·(-5ac)=-5a4c-5ab2c,故D项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.14.(x2+y5)·(y2+z)等于()A.x2y2+x2z+y7+y5z B.2x2y2+x2z+y5z C.x2y2+x2z+y5z D.x2y2+y7+y5z 答案:A解析:解答:(x2+y5).(y2+z)=x2y2+x2z+y7+y5z,故A项正确.分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.15.2(a2+b5)·a2等于()A.a2c+b5c B.2a4+2b5a2C.a4+2b5a2D.2a4+ba2答案:B解析:解答:2(a2+b5)·a2=2a4+2b5a2,故B项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题16.5x2·(xy2+z)等于;答案:5x3y2+5x2z解析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题17.2a2·(ab2+4c)等于;答案:2a3b2+8a2c解析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题18.2a2·(3ab2+7c)等于;答案:6a3b2+14a2c解析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题19.(-2a2)·(3a+c)等于;答案:-6a3-2a2c解析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题20.(-4x2)·(3x+1)等于;答案:-12x3-4x2解析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题21.(-10x2y)·(2xy4z)答案:-20 x3 y5 z解析:解答:解:(-10x2y)·(2xy4z)= -20 x2+1·y4+1·z=-20 x3 y5 z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22.(-2 x y2)·(-3 x2y4)·(- x y)答案:-6 x4 y7解析:解答:解:(-2 x y2)·(-3 x2y4)·(- x y)= -6 x1+2+1·y2+4+1=-6 x4 y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题23.2a·(a+1)- a(3a-2)+2a2 (a2-1)答案:2a4 -3a2+4a解析:解答:解:2a·(a+1)- a(3a-2)+2a2(a2-1) =2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a 分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题. 24.3ab·(a2b+ ab2-ab)答案:3a3b2+3 a2b3- 3 a2b2解析:解答:解:3ab·(a2b+ ab2-ab)=3ab·a2b+3ab·ab2- 3ab·ab=3a3b2+3 a2b3- 3 a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)答案:x2-9xy +8y2解析:解答:解:(x-8y)·(x-y)= x1+1-xy-8xy+8y1+1= x2-9xy +8y2分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.。
《整式的乘法》典型例题

典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2 计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3 化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4 求值:,其中.
解:原式
当时,
说明:求值问题,应先化简,再代入求值.
例5 设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.
如有侵权请联系告知删除,感谢你们的配合!。
整式的乘法典型例题

《整式的乘法》典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4求值:,其中.
解:原式
当时,
说明:求值问题,应先化简,再代入求值.
例5设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.。
整式的乘法的习题及答案

整式的乘法的习题及答案整式的乘法是数学中的一个重要概念,它在代数学习中起着至关重要的作用。
在这篇文章中,我们将探讨一些整式乘法的习题及其答案,帮助读者更好地理解和掌握这个概念。
一、单项式的乘法单项式是指只包含一个字母和一个常数的代数式,例如3x、4y²等。
单项式的乘法是指将两个单项式相乘的操作。
1. 习题:计算下列单项式的乘法:a) 5x × 2yb) -3a² × 4b³c) 7m²n × (-2mn³)2. 答案:a) 5x × 2y = 10xyb) -3a² × 4b³ = -12a²b³c) 7m²n × (-2mn³) = -14m³n⁴通过以上习题,我们可以看到单项式的乘法实际上就是将两个单项式的系数相乘,字母部分则按照字母指数相加的规则进行运算。
二、多项式的乘法多项式是指由多个单项式相加或相减而成的代数式,例如3x² + 4xy - 2y²。
多项式的乘法是指将两个多项式相乘的操作。
1. 习题:计算下列多项式的乘法:a) (3x + 2y)(4x - 5y)b) (2a - 3b)(a + b)c) (5m + 7n)(m - n)2. 答案:a) (3x + 2y)(4x - 5y) = 12x² - 15xy + 8xy - 10y² = 12x² - 7xy - 10y²b) (2a - 3b)(a + b) = 2a² + 2ab - 3ab - 3b² = 2a² - ab - 3b²c) (5m + 7n)(m - n) = 5m² - 5mn + 7mn - 7n² = 5m² + 2mn - 7n²通过以上习题,我们可以看到多项式的乘法实际上就是将两个多项式中的每一项进行乘法运算,然后将结果相加。
整式的乘法练习题(含答案)

整式的乘法练习题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.计算20200的结果是()A.2020B.1C.0D.2.下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a63.多项式2m+4与多项式m2+4m+4的公因式是()A.m+2B.m﹣2C.m+4D.m﹣44.下列四个等式从左到右的变形是因式分解的是()A.(a+b)(a﹣b)=a2﹣b2 B.ab﹣a2=a(b﹣a)C.x2+x﹣5=x(x+1)﹣5D.x2+1=x(x+)5.下列式子不能用平方差公式计算的是()A.(a﹣b)(a+b)B.(a﹣1)(﹣a+1)C.(﹣x﹣y)(x﹣y)D.(﹣x+1)(﹣1﹣x)6.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+17.(2x+p)(x﹣2)的展开式中,不含x的一次项,则p值是()A.﹣1B.﹣4C.1D.48.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定9.如图,在边长为a+b的正方形的四个角上,分别剪去直角边长分别为a,b的四个直角三角形,则剩余部分面积,即图中的阴影部分的面积是()A.a2﹣b2B.2ab C.a2+b2D.4ab10.设a,b是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0②a*b=b*a③a*(b+c)=a*b+a*c④a*b=(﹣a)*(﹣b)正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.分解因式:axy﹣ay2=.12.若x2+4x+m能用完全平方公式因式分解,则m的值为.13.若a m=9,a n=3,则a m﹣n=.14.计算:0.1252020×(﹣8)2021=.15.已知a﹣b=﹣5,ab=﹣2,则(a+b)(a2﹣b2)的值为.16.如图,利用图①和图②的阴影面积相等,写出一个正确的等式.三.解答题(共7小题,满分46分)17.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.18.(6分)已知有理数x,y满足x+y=,xy=﹣3.(1)求(x+1)(y+1)的值;(2)求x2+y2的值.19.(6分)我们约定a☆b=10a×10b,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.20.(6分)下面是一个正确的因式分解,但是其中部分一次式被墨水污染看不清了.2x2+3x﹣6+=(x﹣2)(2x+5).(1)求被墨水污染的一次式;(2)若被墨水污染的一次式的值不小于2,求x的取值范围.21.(6分)对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.22.(8分)请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(8分)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1,图2,图3.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=﹣10时,求x﹣y的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:20200=1,故选:B.2.解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.解:2m+4=2(m+2),m2+4m+4=(m+2)2,∴多项式2m+4与多项式m2+4m+4的公因式是(m+2),故选:A.4.解:A、是整式的乘法,故此选项不符合题意;B、把一个多项式化为几个整式的积的形式,故此选项符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为整式与分式的积的形式,不是把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:B.5.解:A、能用平方差公式进行计算,故本选项不符合题意;B、结果是﹣(a﹣1)2,不能用平方差公式进行计算,故本选项符合题意;C、能用平方差公式进行计算,故本选项不符合题意;D、能用平方差公式进行计算,故本选项不符合题意;故选:B.6.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.7.解:根据题意得:(2x+p)(x﹣2)=2x2﹣4x+px﹣2p=2x2+(﹣4+p)x﹣2p,∵(2x+p)与(x﹣2)的乘积中不含x的一次项,∴﹣4+p=0,∴p=4;故选:D.8.解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.9.解:由题意得,S阴影部分=S正方形﹣4S三角形=(a+b)2﹣ab×4=a2+2ab+b2﹣2ab═a2+b2,故选:C.10.解:∵a*b=0,a*b=(a+b)2,∴(a+b)2=0,即:a+b=0,∴a、b互为相反数,因此①不符合题意,a*b=(a+b)2,b*a=(b+a)2,因此②符合题意,a*(b+c)=(a+b+c)2,a*b+a*c=(a+b)2+(a+c)2,故③不符合题意,∵a*b=(a+b)2,(﹣a)*(﹣b)=(﹣a﹣b)2,∵(a+b)2=(﹣a﹣b)2,∴a*b=(﹣a)*(﹣b)故④符合题意,因此正确的个数有2个,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:axy﹣ay2=ay(x﹣y).故答案为:ay(x﹣y).12.解:x2+4x+4=(x+2)2,故答案为:4.13.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.14.解:0.1252020×(﹣8)2021=0.1252020×82020×(﹣8)=(0.125×8)2020×(﹣8)=12020×(﹣8)=1×(﹣8)=﹣8.15.解:∵(a+b)2=(a﹣b)2+4ab,a﹣b=﹣5,ab=﹣2,∴(a+b)2=25﹣8=17,∴(a+b)(a2﹣b2)=(a+b)(a+b)(a﹣b)=(a+b)2(a﹣b)=17×(﹣5)=﹣85.16.解:①阴影部分的面积=(a+2)(a﹣2);②阴影部分的面积=a2﹣22=a2﹣4;∴(a+2)(a﹣2)=a2﹣4,故答案为(a+2)(a﹣2)=a2﹣4;三.解答题(共7小题,满分46分)17.解:(1)原式=m(m2﹣16)=m(m+4)(m﹣4);(2)原式=xy(y2﹣10y+25)=xy(y﹣5)2.18.解:(1)(x+1)(y+1)=xy+(x+y)+1=﹣3++1=﹣1;(2)x2+y2=(x+y)2﹣2xy=﹣6=﹣5.19.解:(1)12☆3=1012×103=1015;4☆8=104×108=1012;(2)相等,理由如下:∵(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,∴(a+b)☆c=a☆(b+c).20.解:(1)被墨水污染的一次式为(x﹣2)(2x+5)﹣(2x2+3x﹣6)=2x2+5x﹣4x﹣10﹣2x2﹣3x+6=﹣2x﹣4;(2)根据题意得:﹣2x﹣4≥2,解得:x≤﹣3,即x的取值范围是x≤﹣3.21.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).22.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.23.解:(1)图1、;图2、;图3、.(2)由题意可知,阴影部分的面积=大正方形面积﹣4×小长方形面积,大正方边长为(a+b),面积为(a+b)2,小长方形长为a,宽为b,面积为ab,则=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.(3)由(x﹣y)2=(x+y)2﹣4xy,∴(x﹣y)2=32﹣4×(﹣10)=49,∴x﹣y=±7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题例1 计算:
(1)
(2)
(3
)
解:(1)原式
(2)原式
(3)原式
~
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2 计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特
别是
1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3 化简
(1);
~
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4 求值:,其中.
解:原式
时,
当
说明:求值问题,应先化简,再代入求值.
例5 设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入
求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.。