(完整版)整式的乘法测试题
整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式乘法练习题及答案

整式乘法练习题及答案一、选择题:1. 计算下列表达式的结果:A. (3x^2 - 2x + 1)(2x - 1)B. (4x^2 - 1)(2x + 1)C. (x + 3)(x - 3)D. (2x + 5)^22. 以下哪个表达式不能通过整式乘法简化?A. (x + 2)(x + 3)B. (x - 1)(x + 1)C. (2x - 1)(3x + 2)D. (3x + 1)(3x - 1)3. 计算下列表达式的结果:A. (2x - 3)(2x + 3)B. (x + 1)^2C. (3x - 2)^2D. (2x + 3)(3x - 2)二、填空题:1. 计算 (x - 2)(x + 2) 的结果为 ________。
2. 计算 (2x + 1)(3x - 1) 的结果为 ________。
3. 计算 (x + 4)(x - 4) 的结果为 ________。
三、计算题:1. 计算下列表达式并简化:- (3x - 1)(3x + 1)- (2x + 5)(2x - 5)2. 求下列表达式的值,其中 x = 2:- (x + 3)(x - 3)- (x - 2)^2四、应用题:1. 已知一个长方形的长为 3x + 2,宽为 2x - 1,求长方形的面积。
2. 一个数的平方加上两倍的这个数再减去 1 等于 10,求这个数。
五、证明题:1. 证明:(a + b)(a - b) = a^2 - b^2。
2. 证明:(a + b)^2 = a^2 + 2ab + b^2。
六、解答题:1. 已知一个多项式 P(x) = ax^2 + bx + c,求 P(x) 的展开式。
2. 已知一个多项式 Q(x) = (x + a)(x + b),求 Q(x) 的展开式,并证明 Q(x) = ax^2 + (a + b)x + ab。
答案:一、1. A. 6x^3 - x^2 - 4x + 1B. 8x^3 + 7x^2 - 1C. x^2 - 9D. 4x^2 + 20x + 252. C3. A. 4x^2 - 12x + 9B. 4x^2 + 4x + 1C. 9x^2 - 12x + 4D. 6x^2 + x - 6二、1. x^2 - 42. 6x^2 - 5x - 33. x^2 - 16三、1. (3x - 1)(3x + 1) = 9x^2 - 1(2x + 5)(2x - 5) = 4x^2 - 252. 当 x = 2 时:- (2 + 3)(2 - 3) = -5- (2 - 2)^2 = 0四、1. 面积 = (3x + 2)(2x - 1) = 6x^2 + x - 22. 设这个数为 x,根据题意有 x^2 + 2x - 1 = 10,解得 x = 3 或 x = -4。
整式的乘法测试题(附答案)

整式的乘法测试题班级 姓名 学号 得分一、填空题(每格2分,共28分)1、()()=--52a a ;()()=-⋅2772-m m ; 4774)()(a a -+-= ;()()=--x y y x 2332-_______()[]⋅+323-y x ()[]432-y x += ;()=⨯⎪⎭⎫ ⎝⎛200320025.1-32 . 2、已知:a m =2,b n =32,则n m 1032+=________3、若2134825125255=n n ,则=n ________4、已知,32=n m ()=-n n m m 22234)3(_______5、已知互为相反数,和b a 且满足()()2233+-+b a =18,则=⋅32b a6、已知:,52a n =b n =4,则=n 610_______7、()()122++=++ax x n x m x ,则a 的取值有_______二、选择题(每题3分,共24分)1、 下列计算中正确的是( )A 、()6623333-y x y x = B 、20210a a a =⋅ C 、()()162352m m m=-⋅- D 、1263428121y x y x -=⎪⎭⎫ ⎝⎛- 2、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-83、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 4 4、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( )A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<5、若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、16、()()1666---+n n 的值为( )A 、0B 、1或- 1C 、()16-+nD 、不能确定7、若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是( )A 、直角三角形B 、等边三角形C 、锐角三角形D 、等腰三角形二、解答题(共48分)1、 计算(每题6分,共12分)(1)()322635-a ab a - (2) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a3、(6分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=4、(6分)已知099052=-+x x ,求1019985623+-+x x x 的值.5.解方程(8分)(1) (x -3)(x -2)+18 = (x+9)(x+1)6.解不等式(8分) (3x+4)(3x -4) <9(x -2)(x+3)7、(8分)已知一个长方形的长增加3cm,宽减少1cm,面积保持不变,若长减少2cm,宽增加4cm,面积也保持不变,求原长方形的面积。
整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。
(完整版)《整式的乘法》测试题含答案

1.6 整式的乘法(总分100分 时间40分钟)一、填空题:(每题3分,共27分)1.(-3xy)·(-x 2z)·6xy 2z=_________.2. 2(a+b)2·5(a+b)3·3(a+b)5=____________.3.(2x 2-3xy+4y 2)·(-xy)=_________.4.3a(a 2-2a+1)-2a 2(a-3)=________.5.已知有理数a 、b 、c 满足│a-1│+│a+b │+│a+b+c-2│=0,则代数式(-•3ab).(-a 2c).6ab2的值为________.6.(a+2)(a-2)(a 2+4)=________.7.已知(3x+1)(x-1)-(x+3)(5x-6)=x 2-10x+m,则m=_____.8.已知ax 2+bx+1与2x 2-3x+1的积不含x 3的项,也不含x 的项,那么a=•_______,b=_____.9.123221123221()()n n n n n n n a a a b a b ab b b a a b a b ab b ----------+++++-+++++L L =____________.二、选择题:(每题4分,共32分)10.若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )A.M=8,a=8B.M=2,a=9C.M=8,a=10D.M=5,a=1011.三个连续奇数,若中间一个为n,则它们的积为( )A.6n 2-6nB.4n 3-nC.n 3-4nD.n 3-n12.下列计算中正确的个数为( )①(2a-b)(4a 2+4ab+b 2)=8a 3-b 3 ②(-a-b)2=a 2-2ab+b 2③(a+b)(b-a)=a 2-b 2 ④(2a+12b)2=4a 2+2ab+14b 2 A.1 B.2 C.3 D.413.设多项式A 是个三项式,B 是个四项式,则A ×B 的结果的多项式的项数一定是( )A.多于7项B.不多于7项C.多于12项D.不多于12项14.当n 为偶数时,()()m n a b b a -⋅-与()m n b a +-的关系是( )A.相等B.互为相反数C.当m 为偶数时互为相反数,当m 为奇数时相等D.当m 为偶数时相等,当m 为奇数时为互为相反数15.若234560a b c d e <,则下列等式正确的是( )A.abcde>0B.abcde<0C.bd>0D.bd<016.已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A.奇数B.偶数C.正整数D.整数17.M=(a+b)(a-2b),N=-b(a+3b)(其中a ≠0),则M,N 的大小关系为( )A.M>NB.M=NC.M<ND.无法确定三、解答题:(共41分)18.(1)解方程4(x-2)(x+5)-(2x-3)(2x+1)=5.(3分)(2)化简求值:x(x 2-4)-(x+3)(x 2-3x+2)-2x(x-2),其中x=1.5.(3分)19.已知3n m x x x x ⋅⋅=,且m 是n 的2倍,求m 、n(5分)20.已知x+3y=0,求32326x x y x y +--的值.(6分)21.在多项式533ax bx cx ++-中,当x=3时,多项式的值为5,求当x=-3时,多项式的值.(6分)22.求证:多项式(a-2)(a 2+2a+4)-[3a(a+1)2-2a(a-1)2-(3a+1)(3a-1)]+•a(1+a)的值与a 的取值无关.23.求证:N=2212532336n n n n n ++⋅⋅--⋅ 能被13整除.(6分)24.求N=171225⨯是几位正整数.(6分)答案:1.18x 4y 3z 22.30(a+b)103.-2x 3y+3x 2y 2-4xy 34.a 3+3a5.-36 •6.•a 4-167.-3x 3-x+178.2,3 9.n n a b -10.C 11.C 12.C 13.D 14.D 15.D 16.B 17.A 18.(1)x=218(2)0 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=021.由题意得35a+33b+3c-3=5∴35a+33b+3c=8∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-1122.原式=-9,原式的值与a 的取值无关23.∵21222532332n n n n n +++⨯⨯-⋅⋅=212125321232n n n n ++⨯⨯-⋅⋅ =211332n n +⋅⋅∴能被13整除24.∵N=171251212213252253210 3.210⨯=⨯⨯=⨯=⨯∴N 是位数为14的正整数.。
(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式的乘法练习题(含答案)

整式的乘法练习题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.计算20200的结果是()A.2020B.1C.0D.2.下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a63.多项式2m+4与多项式m2+4m+4的公因式是()A.m+2B.m﹣2C.m+4D.m﹣44.下列四个等式从左到右的变形是因式分解的是()A.(a+b)(a﹣b)=a2﹣b2 B.ab﹣a2=a(b﹣a)C.x2+x﹣5=x(x+1)﹣5D.x2+1=x(x+)5.下列式子不能用平方差公式计算的是()A.(a﹣b)(a+b)B.(a﹣1)(﹣a+1)C.(﹣x﹣y)(x﹣y)D.(﹣x+1)(﹣1﹣x)6.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+17.(2x+p)(x﹣2)的展开式中,不含x的一次项,则p值是()A.﹣1B.﹣4C.1D.48.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定9.如图,在边长为a+b的正方形的四个角上,分别剪去直角边长分别为a,b的四个直角三角形,则剩余部分面积,即图中的阴影部分的面积是()A.a2﹣b2B.2ab C.a2+b2D.4ab10.设a,b是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0②a*b=b*a③a*(b+c)=a*b+a*c④a*b=(﹣a)*(﹣b)正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.分解因式:axy﹣ay2=.12.若x2+4x+m能用完全平方公式因式分解,则m的值为.13.若a m=9,a n=3,则a m﹣n=.14.计算:0.1252020×(﹣8)2021=.15.已知a﹣b=﹣5,ab=﹣2,则(a+b)(a2﹣b2)的值为.16.如图,利用图①和图②的阴影面积相等,写出一个正确的等式.三.解答题(共7小题,满分46分)17.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.18.(6分)已知有理数x,y满足x+y=,xy=﹣3.(1)求(x+1)(y+1)的值;(2)求x2+y2的值.19.(6分)我们约定a☆b=10a×10b,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.20.(6分)下面是一个正确的因式分解,但是其中部分一次式被墨水污染看不清了.2x2+3x﹣6+=(x﹣2)(2x+5).(1)求被墨水污染的一次式;(2)若被墨水污染的一次式的值不小于2,求x的取值范围.21.(6分)对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.22.(8分)请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(8分)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1,图2,图3.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=﹣10时,求x﹣y的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:20200=1,故选:B.2.解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.解:2m+4=2(m+2),m2+4m+4=(m+2)2,∴多项式2m+4与多项式m2+4m+4的公因式是(m+2),故选:A.4.解:A、是整式的乘法,故此选项不符合题意;B、把一个多项式化为几个整式的积的形式,故此选项符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为整式与分式的积的形式,不是把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:B.5.解:A、能用平方差公式进行计算,故本选项不符合题意;B、结果是﹣(a﹣1)2,不能用平方差公式进行计算,故本选项符合题意;C、能用平方差公式进行计算,故本选项不符合题意;D、能用平方差公式进行计算,故本选项不符合题意;故选:B.6.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.7.解:根据题意得:(2x+p)(x﹣2)=2x2﹣4x+px﹣2p=2x2+(﹣4+p)x﹣2p,∵(2x+p)与(x﹣2)的乘积中不含x的一次项,∴﹣4+p=0,∴p=4;故选:D.8.解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.9.解:由题意得,S阴影部分=S正方形﹣4S三角形=(a+b)2﹣ab×4=a2+2ab+b2﹣2ab═a2+b2,故选:C.10.解:∵a*b=0,a*b=(a+b)2,∴(a+b)2=0,即:a+b=0,∴a、b互为相反数,因此①不符合题意,a*b=(a+b)2,b*a=(b+a)2,因此②符合题意,a*(b+c)=(a+b+c)2,a*b+a*c=(a+b)2+(a+c)2,故③不符合题意,∵a*b=(a+b)2,(﹣a)*(﹣b)=(﹣a﹣b)2,∵(a+b)2=(﹣a﹣b)2,∴a*b=(﹣a)*(﹣b)故④符合题意,因此正确的个数有2个,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:axy﹣ay2=ay(x﹣y).故答案为:ay(x﹣y).12.解:x2+4x+4=(x+2)2,故答案为:4.13.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.14.解:0.1252020×(﹣8)2021=0.1252020×82020×(﹣8)=(0.125×8)2020×(﹣8)=12020×(﹣8)=1×(﹣8)=﹣8.15.解:∵(a+b)2=(a﹣b)2+4ab,a﹣b=﹣5,ab=﹣2,∴(a+b)2=25﹣8=17,∴(a+b)(a2﹣b2)=(a+b)(a+b)(a﹣b)=(a+b)2(a﹣b)=17×(﹣5)=﹣85.16.解:①阴影部分的面积=(a+2)(a﹣2);②阴影部分的面积=a2﹣22=a2﹣4;∴(a+2)(a﹣2)=a2﹣4,故答案为(a+2)(a﹣2)=a2﹣4;三.解答题(共7小题,满分46分)17.解:(1)原式=m(m2﹣16)=m(m+4)(m﹣4);(2)原式=xy(y2﹣10y+25)=xy(y﹣5)2.18.解:(1)(x+1)(y+1)=xy+(x+y)+1=﹣3++1=﹣1;(2)x2+y2=(x+y)2﹣2xy=﹣6=﹣5.19.解:(1)12☆3=1012×103=1015;4☆8=104×108=1012;(2)相等,理由如下:∵(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,∴(a+b)☆c=a☆(b+c).20.解:(1)被墨水污染的一次式为(x﹣2)(2x+5)﹣(2x2+3x﹣6)=2x2+5x﹣4x﹣10﹣2x2﹣3x+6=﹣2x﹣4;(2)根据题意得:﹣2x﹣4≥2,解得:x≤﹣3,即x的取值范围是x≤﹣3.21.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).22.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.23.解:(1)图1、;图2、;图3、.(2)由题意可知,阴影部分的面积=大正方形面积﹣4×小长方形面积,大正方边长为(a+b),面积为(a+b)2,小长方形长为a,宽为b,面积为ab,则=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.(3)由(x﹣y)2=(x+y)2﹣4xy,∴(x﹣y)2=32﹣4×(﹣10)=49,∴x﹣y=±7.。
整式的乘法测试试题

鸡西市第十九中学初三学年月考试题(2013年12月3日)《整式的乘法》测试试题(试题总分:120分 答题时间:60分钟)一1. 计算下列各式结果等于45x 的是( )A 、225x x ⋅B 、225x x +C 、x x +35D 、x x 354+ 2. 下列说法中正确的是﹙ ﹚A.()523a a = B.()63293a a =-C.()()54a a a -=--D.633a a a =+3.下列式子可用平方差公式计算的式子是( ) A 、()()a b b a -- B 、()()11-+-x x C 、()()b a b a +--- D 、()()11+--x x 4. 下列各式从左到右的变形,正确的是﹙ ﹚ A.()y x y x --=-- B.()b a b a +-=+- C.()()33a b b a -=- D.()()22y x x y -=- 5. ()=-5m a ﹙ ﹚A.m a 5- B. m a 5 C.m a +5 D.m a +-56. 化简()()222a a a ---的结果是﹙ ﹚A.0B.22aC.26a -D.24a -7. 已知41=+a a 则=+221aa ( ) A 、12 B 、 14 C 、 8 D 、168. 若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、19. 计算()20102011212-⎪⎭⎫ ⎝⎛⨯等于﹙ ﹚A.-2B.2C. -21 D. 21 10. 1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( ) A 、c b a <<B 、ca b <<C 、b a c <<D 、a b c <<二、认真填一填(每题3分,共30分)11. 32x x ⋅=_________; ()()3x x --=___________. 12. ()43b =_______________; ()23b -=_____________.13. ()32ab =______________; ()23ab -=_______________. 14. ()23+x x =__________;()b a a 532-=______________. 15. ()()y x x -+1 =_____________________________. 16. 如果2=x a ,3=y a ,则=+y x a ___________________. 17. 已知:a m =2,b n =32,则n m 1032+=_______.18.若()12,492==+xy y x ,则=+22y x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘法测试题
班别: 姓名: 座号:
一、选择题(每题3分,共15分)
1、下列说中正确的是( )
A 、(a 3)2=a 5
B 、(-3a 2)3=-9a 6
C 、(-a )(-a )4=-a 5
D 、a 3+a 3=2a 6 2、计算(x -3y )(x +3y )的结果是( )
A 、x2-3y2
B 、x2-6y2
C 、x2+ 9y2
D 、x2-9y2 3、下列变形是因式分解的是( )
A 、
a a a a 217)3(72-=- B 、
b a ab b ab b a 9)5(952+-=+- C 、 )2(363322+-=+-b a b a D 、 2222x y y x -=+-
4、分解因式1032--x x 的结果应为( )
A 、)5)(2(--x x
B 、)5)(2(-+x x
C 、)5)(2(+-x x
D 、)5)(2(++x x
5、下列多项中能用公式法来分解因式的是( )
A 、122++x x
B 、12++x x
C 、12-+x x
D 、122-+x x
二、填空题(每题4分,共20分)
6、如果2=x a ,3=y a
,则_______=+y x a 。
7、22)3)((a a --= ;_______872=⋅+⋅a a a a
8、_____________)(32=+y x xy x ;224)(_______)2(y x y x -=-
9、街心花园有一块边长为a 米的正方形草坪,经统一规划后,南北向要加长3米,而东西向要缩短3米,问改造后的长方形草坪的面积是 。
10、已知 92
++kx x 恰好可写成是一个整式的平方式,则 k = 。
三、计算(每题6分,共24分)
11、322)3()2(x x -⋅- 12、)32(1022xy y x xy -⋅-
13、2)32(y x - 14、22)3()3(--+x x
四、因式分解(每题6分,共24分)
15、a a a ++2
32 16、4x 2-y 2+2x -y
17、49)(14)(2
+---y x y x 18、x 2-6xy +9 y 2-1
五、解答题(18题8分,19题9分)
19、已知49)(,1)(22=-=+y x y x ,求22y x +与xy 的值
20、先化简再求值(a -2)(a +2)+3(a +2)2-6a (a +2),其中a =5.。