实训 5 混频器(高频书后实验报告)
高频实验报告_正弦振荡器和混频器

电容C(pf)
振荡频率f(MHZ)
输出电压VP-P(v) 输出幅度(v)
10
8.998
0.312 0.156
50
13.387
1.36 0.68
100
10.651
1.84 0.92
150
9.347
2.36 1.18
200
9.524
1.68 0.84
250
8.726
2.20 1.10
300
8.264
2.40 1.20
9 D01
LED
9 TP 0 3
音频输出
9 C 08
OUT12
9 L0 1
1
9 C 06
9 P0 3
9 C 05 9 C 09
VCC
GND
GND9
VCC
GND
+12 V
1 2V
+12 V
-1 2 V
9K1 +12 V
+12 V1
9 L0 2
9 C 13
9 R 13
9 C 11
9 TP 0 4
9 Q01
1
调幅输入
9 R 03
9 R 07
9 R 04 9 R 01
8
10
1
9 R 08
4
9 R 09
9 U01
GADJ
GADJ
CAR+
CAR-
OUT+ 6
SIG+
OUT- 12
SIG-
BIAS 5
VEE MC 1 49 6
9R9 9 R 05 9 R 10
9 R 06 OUT12
9 C 04
实验五 晶体三极管混频实验

实验五晶体三极管混频实验一、实验内容1、掌握了解三极管混频器的工作原理;2、了解混频器的寄生干扰。
二、实验原理1、混频器的工作原理混频器的功能是已调波信号(高频)不失真地变换为另一已调波信号,保持原调制规律不变。
为实现混频功能,混频器件必须工作在非线性状态,混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅高频信号UL ,与输入信号US经混频器后所产生的差频信号,经带通滤波器滤出。
除输入信号电压Us 和本振电压UL外,还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干扰,影响输入信号的接收。
干扰是由于混频不满足线性时变工作条件而形成的,不可避免,其中影响最大的是中频干扰和镜像干扰。
2、实验电路图中,本振电压为11.2MHZ从晶体管的发射极e输入,信号频率为8.2MHZ从晶体三极管的基极B输入,混频后的中频信号由晶体三管的集电极C输出。
输出端的带通滤波器必须调谐在中频Fi上,本实验中频为3MHZ。
三、实验内容1、用频率计测量混频器的输入输出频率,观察输入输出信号的波形;2、用示波器观察输入波形为调幅波时的输出波形。
四、实验步骤(一)模块上电将LC振荡器模块③晶体三极管混频器模块④接通电源。
(二)中频频率的观测1、将LC 振荡器调整到“串S”、1C09(150P)状态下,其产生的振荡频率为11.9MHZ 信号作为本实验的本振信号,接晶体三极管混频器本振输入2P01,高频信号发生器输出8.9MHz,VP-P =0.5V信号接晶体三极管混频器本振输入2P02。
用示波器观测2TP03波形,测量其中频值。
顺时针调整2W01,输观察2TP03的波形变化。
2、混频的综合观测。
将调制信号为1KHZ载波频率为8.9MHZ的调幅波,作为本实验的晶体三极管混频器射频输入,用双踪示波器的观察2TP01、2TP02、2TP03各点波形,特别注意观察2TP02和2TP03两点波形的包络是否一致。
高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。
2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。
3. 掌握丙类放大器的计算与设计方法。
二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。
功率放大器电流导通角越小.放大器的效率越高。
非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。
特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。
在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。
因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。
集成乘法器混频器实验报告

集成乘法器混频器试验汇报模拟乘法混频试验汇报模拟乘法混频试验汇报姓名: 学号: 班级: 日期:23模拟乘法混频一、试验目旳1. 深入理解集成混频器旳工作原理2. 理解混频器中旳寄生干扰二、试验原理及试验电路阐明混频器旳功能是将载波为vs(高频)旳已调波信号不失真地变换为另一载频(固定中频)旳已调波信号,而保持原调制规律不变。
例如在调幅广播接受机中,混频器将中心频率为535~1605KHz旳已调波信号变换为中心频率为465KHz旳中频已调波信号。
此外,混频器还广泛用于需要进行频率变换旳电子系统及仪器中,如频率合成器、外差频率计等。
混频器旳电路模型如图1所示。
VsV图1 混频器电路模型混频器常用旳非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一种等幅旳高频信号VL,并与输入信号 VS经混频器后所产生旳差频信号经带通滤波器滤出。
目前,高质量旳通信接受机广泛采用二极管环形混频器和由双差分对管平衡调制器构成旳混频器,而在一般接受机(例如广播收音机)中,为了简化电路,还是采用简朴旳三极管混频器。
本试验采用集成模拟相乘器作混频电路试验。
图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完毕。
24图2 MC1496构成旳混频电路MC1496可以采用单电源供电,也可采用双电源供电。
本试验电路中采用,12V,,8V供电。
R12(820Ω)、R13(820Ω)构成平衡电路,F2为4.5MHz选频回路。
本试验中输入信号频率为 fs,4.2MHz,本振频率fL,8.7MHz。
为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上旳除了输入信号电压VS和本振电压VL外,不可防止地还存在干扰和噪声。
它们之间任意两者均有也许产生组合频率,这些组合信号频率假如等于或靠近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号旳接受。
干扰是由于混频器不满足线性时变工作条件而形成旳,因此干扰不可防止,其中影响最大旳是中频干扰和镜象干扰。
实验五 晶体三极管混频实验

实验五晶体三极管混频实验一、实验内容1、掌握了解三极管混频器的工作原理;2、了解混频器的寄生干扰。
二、实验原理1、混频器的工作原理混频器的功能是已调波信号(高频)不失真地变换为另一已调波信号,保持原调制规律不变。
为实现混频功能,混频器件必须工作在非线性状态,混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅高频信号UL,与输入信号US经混频器后所产生的差频信号,经带通滤波器滤出。
除输入信号电压Us和本振电压UL外,还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干扰,影响输入信号的接收。
干扰是由于混频不满足线性时变工作条件而形成的,不可避免,其中影响最大的是中频干扰和镜像干扰。
2、实验电路图中,本振电压为11.2MHZ从晶体管的发射极e输入,信号频率为8.2MHZ 从晶体三极管的基极B输入,混频后的中频信号由晶体三管的集电极C输出。
输出端的带通滤波器必须调谐在中频Fi上,本实验中频为3MHZ。
三、实验内容1、用频率计测量混频器的输入输出频率,观察输入输出信号的波形;2、用示波器观察输入波形为调幅波时的输出波形。
四、实验步骤(一)模块上电将LC振荡器模块③晶体三极管混频器模块④接通电源。
(二)中频频率的观测1、将LC振荡器调整到“串S”、1C09(150P)状态下,其产生的振荡频率为11.9MHZ信号作为本实验的本振信号,接晶体三极管混频器本振输入2P01,高频信号发生器输出8.9MHz,VP-P=0.5V信号接晶体三极管混频器本振输入2P02。
用示波器观测2TP03波形,测量其中频值。
顺时针调整2W01,输观察2TP03的波形变化。
2、混频的综合观测。
将调制信号为1KHZ载波频率为8.9MHZ的调幅波,作为本实验的晶体三极管混频器射频输入,用双踪示波器的观察2TP01、2TP02、2TP03各点波形,特别注意观察2TP02和2TP03两点波形的包络是否一致。
混频器实验预习报告

混频器实验预习报告学号201300121126 姓名牛梦豪试验台号22(一)模拟乘法器的应用(混频)一、实验目的:1、掌握集成模拟乘法器的工作原理及其特点。
2、进一步掌握用集成模拟乘法器(MC1596/1496)实现混频的电路调整与测试方法。
二、实验仪器:低频信号发生器、高频信号发生器、频率计、稳压电源、万用表、示波器三、实验原理:1、集成模拟乘法器原理:集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。
可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB乘法检波器、AM调制/解调器、FM 解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开方等。
单片集成模拟乘法器MC1496/1596的内部电路及引脚排列如下图所示。
a)内部电路b )引脚排列图中晶体管VT1~VT4组成双差分放大器,VT5、VT6组成单差分放大器,用以激励VT1~VT4;VT7、VT8、VT9及相应的电阻等组成多路电流源电路、VT9、VT8分别给VT5、VT6、提供0I /2的恒流电流;R 为外接电阻,可用以调节0I /2的大小。
另外,由VT5、VT6两管的发射级引出接线端2和3,外接电阻Ry ,利用Ry 的负反馈作用可以扩大输入电压2u 的动态范围。
c R 为外接负载电阻。
MC1496型模拟乘法器只适用与频率比较低的场合,一般工作在1MHZ 以下的频率。
双差分对模拟乘法器MC1496/1495的差值输出电流为:22x yy T v v i t h R V ⎛⎫≈ ⎪⎝⎭MC1496/1596广泛用于调幅及解调、混频等电路中,但应用时VT1、VT2 、VT 3、VT4 、VT5、VT6晶体管的基极均需外加偏置电压(即在8与10端、1与4端间加直流电压),方能正常工作。
通常把8、10端称为X 端Y 端,输入参考电压1v ;4、1端称为Y 输入端,输入信号电压2v 。
混频器总结报告

混频器一、混频器1、简介变频,是将信号频率由一个量值变换为另一个量值的过程。
具有这种功能的电路称为变频器(或混频器)。
一般用混频器产生中频信号。
混频器将天线上接收到的信号与本振产生的信号混频,cosαcosβ=[cos(α+β)+cos(α-β)]/2。
可以这样理解,α为信号频率量,β为本振频率量,产生和差频。
当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。
检波后的信号被视频放大器进行放大,然后显示出来。
由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。
当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。
从频谱观点看,混频的作用就是将已调波的频谱不失真地从fc搬移到中频的位置上,因此,混频电路是一种典型的频谱搬移电路,可以用相乘器和带通滤波器来实现这种搬移。
2、分类从工作性质可分为二类,即加法混频器和减法混频器分别得到和频及差频。
从电路元件也可分为三极管混频器和二极管混频器。
从电路分有混频器(带有独立振荡器)和变频器(不带有独立振荡器)。
混频器和频率混合器是有区别的。
后者是把几个频率的信号线性的迭加在一起,不产生新的频率。
3、性能指标(1)噪声系数:混频器的噪声定义为:NF=Pno/Pso Pno是当输入端口噪声温度在所有频率上都是标准温度即T0=290K时,传输到输出端口的总噪声资用功率。
Pno主要包括信号源热噪声,内部损耗电阻热噪声,混频器件电流散弹噪声及本振相位噪声。
Pso为仅有有用信号输入在输出端产生的噪声资用功率。
(2)变频损耗:混频器的变频损耗定义为混频器射频输入端口的微波信号功率与中频输出端信号功率之比。
主要由电路失配损耗,二极管的固有结损耗及非线性电导净变频损耗等引起。
(3)1dB压缩点:在正常工作情况下,射频输入电平远低于本振电平,此时中频输出将随射频输入线性变化,当射频电平增加到一定程度时,中频输出随射频输入增加的速度减慢,混频器出现饱和。
实验五 混频器电路设计

实验五混频器电路设计一、实验目的1、加强对混频器概念的认识;2、掌握混频器电路工程设计方法;3、学会对电路性能进行研究。
二、预习要求1、复习混频器的有关课程内容;2、仔细阅读参考资料;3、设计电路图,并写明参数的设计过程;三、设计要求1、设计一个晶体管混频电路,包括LC带通滤波器;2、输入信号频率f0=16.455MHz,本振信号频率f1=14MHz左右(根据本组本振频率决定),中频频率f2=2.455MHz(f2=f0-f1);3、电源电压Vcc=9V(建议:工作电流Ieq=0.1-0.5mA);4、混频器工作点连续可调;5、混频输出波形目测无失真;四、电路调测与性能研究1、寻找混频器最佳工作点Ie(opt)在本振信号V1=500mV,输入单频正弦信号Vi=30mV时,调节混频器工作点,找出中频信号不失真输出幅度最大的Ie(opt),并测出LC带通的3dB宽带;2、在Ie=Ie(opt)、本振信号V1=500mV情况下,用示波器观察输出信号频率、波形。
(1)输入信号为Vi=30mV单频正弦波(f0=16.455MHz);(2)输入信号为Vi=30mV受1KHz信号调制的30%标准调幅波(载频f0=16.455MHz);3、本振信号幅度对混频器性能的影响在Ie=Ie(opt)情况下,输入信号为V1=30mV的单频正弦波,V1分别为100mV emf、1000mVemf时,并与2(1)的实验结果相比较;五、实验报告要求1、设计方案论证。
包括:电路形式的选取、参数的设计、估算、研究内容的完成情况;2、关于电路调测过程中方案修改的说明,并画出标有最终元件参数的实验电路;3、实验数据及研究内容的整理、分析;4、设计制作过程中遇到的主要问题及解决办法。
六、实验室可提供的元器件三极管:2N3904(NPN)七、参考资料1、董在望,陈雅琴等,《通信电路原理》(第二版),高等教育出版社,2002年,p231-244。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实训5 混频器
1、实训目的
(1)进一步熟悉EWB的使用;
(2)正确理解混频器的工作原理;
(3)观察混频器的输入、输出波形。
2、实训内容及步骤
(1)利用EWB仿真软件正确搭接由乘法器组成的混频器,如图A.21所示。
图A.21 乘法器混频电路
U、本振信号L U以及其他元件的参数,其中调幅(2)按图图A.21所示设置调幅信号源s
信号源的调幅度M设为0.8。
打开仿真电源开关,双击示波器,正确设置示波器的参数,即可看混频器输入的调幅波以及混频器的输出波形,如图A.22所示。
做好波形的记录,并说明混频器的作用。
图A.22 混频器输入的调幅波以及混频器的输出波形
(3)将电阻1R减小为100 ,观察示波器上混频器输出的波形变化,并进一步说明电阻
R的作用。
1
分析:
R减小后,中频的增益被放大了,当电阻1R减小到一定值后可以使混频变成固定的中1
频,因为中频是固定的,所以中频放大器是稳定的,在检波前可以得到足够的放大,使接收机的
灵敏度得到了很大的提高.。