混频器仿真实验报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混频器仿真实验报告

一.实验目的

(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力;

(2)掌握multisim实现混频器混频的方法和步骤;

(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。

二.实验原理以及实验电路原理图

(一).晶体管混频器电路仿真

本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。

电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。

工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。

在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。

(二).模拟乘法器混频电路

模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。

三.实验内容及记录

(一).晶体管混频器电路仿真

1、直流工作点分析

使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。

注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。

2、混频器输出信号“傅里叶分析”

选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为:

基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。

注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

由图表可以看出,频率为465KHz的信号电压值最大,越靠近465KHz的谐波分量,电压越大。

(二).模拟乘法器混频电路

1、混频输入输出波形测试

在仿真软件中构建如图二所示模拟乘法器混频电路,启动仿真,观察示波器显示波形,分析实验结果。

在示波器上看,A通道为第一个乘法器的输出信号,B通道为第二个乘法器的输出信号,A通道的频率明显大于B通道,但其包络的变化规律不会发生变化。

2、混频器输出信号“傅里叶分析”

选取电路节点6作为输出端,“傅里叶分析”参数设置为:

基频10KHz,谐波数为60,采用终止时间为0.001S,线性纵坐标从输出频谱中找出最高频谱点500KHz中频信号成分,同时观察电路中较弱的其它谐波

成分。

压越大。

四.实验分析总结

(一).晶体管混频器电路

KHz MHz f f L S 465465.06.1065.2==-=-,与LC 选频回路的固有谐振频率相同,所以经过选频电路后,输出频率在465KHz 处的信号,由于谐振回路有一定的同频带,所以465KHz 附近的一些谐波分量也会输出,但是越远离465KHz,增益越低,有傅里叶分析的表格可以看出,它的电压值也越小。

(二).模拟乘法器混频电路

经过第一个乘法器,KHz f f L S 5.10995.01100=-=-;

经过第二个乘法器,KHz f f L S 5005.10991600≈-=-

所以明显的A 通道频率大于B 通道频率,而且通过选频电路后,在500KHz 时,电压值最大,500KHz 附近的一些谐波分量,越远离500KHz,增益越低,电压值也越小。

通过混频电路,输出信号只改变了频率大小,却不改变其变化规律,实现了频谱的搬移,有利于放大信号以及选频。

相关文档
最新文档