模拟乘法混频实验报告
模拟乘法混频实验报告

模拟乘法混频实验报告一、引言在电子通信领域,乘法混频是一种常见的信号处理技术,用于将不同频率的信号进行混频、放大和解调。
乘法混频器是乘法混频技术的核心组件,它可以将输入信号与局部振荡器的频率相乘,产生混频输出。
本实验旨在模拟乘法混频的原理和过程,通过实际操作验证乘法混频器的性能和效果。
二、实验设备与方法1. 实验设备:本实验使用的设备包括信号源、乘法混频器、示波器、频谱分析仪等。
2. 实验方法:(1)连接实验设备:将信号源的输出端与乘法混频器的输入端相连,将乘法混频器的输出端与示波器的输入端相连。
(2)设置实验参数:根据实验需要,设置信号源的频率和幅度,调整乘法混频器的局部振荡器频率。
(3)观察实验结果:通过示波器显示的波形和频谱,观察乘法混频的效果和输出信号的特点。
三、实验步骤与结果1. 设置实验参数:将信号源的频率设置为100 kHz,幅度为1 V;乘法混频器的局部振荡器频率设置为10 MHz。
2. 观察示波器波形:在示波器上观察到了输入信号和混频输出信号的波形。
输入信号为100 kHz的正弦波,混频输出信号为频率为10 MHz和100 kHz 的乘积信号。
3. 分析频谱:通过频谱分析仪对混频输出信号进行频谱分析。
观察到频谱图上出现了频率为10 MHz和100 kHz的峰值,验证了乘法混频的效果。
四、实验结果分析通过观察示波器的波形和频谱分析仪的频谱图,可以得出以下结论:1. 输入信号与局部振荡器的频率相乘,产生混频输出信号。
2. 混频输出信号的频率为输入信号频率与局部振荡器频率的乘积。
3. 混频输出信号的频谱中出现了频率为输入信号和局部振荡器频率的峰值。
五、实验总结通过本实验,我们模拟了乘法混频的原理和过程,并验证了乘法混频器的性能和效果。
乘法混频技术在电子通信中具有广泛的应用,可以实现频率变换、信号放大和解调等功能。
掌握乘法混频技术对于理解和应用现代通信系统至关重要。
通过实验,我们深入理解了乘法混频的原理,对乘法混频器的性能和输出信号特点有了更清晰的认识。
实验1 集成模拟乘法器混频及平衡调幅实验

集成模拟乘法器混频、平衡调幅实验一、实验目的掌握利用乘法器(MC1496)实现混频,平衡调幅的原理及方法。
二、实验仪器双踪示波器一台、高频电子实验箱一台、万用表一台三、实验原理(1)混频用模拟乘法器实现混频,只要x u 端和y u 端分别加上两个不同频率的信号,相差一中频如,再经过带通滤波器取出中频信号,其原理如图所示:若()cos x s s u t V w t = ()00cos y u t V w t =则()00cos cos c s s u t KVV w t w t = ()()0001cos cos 2s s s KV V w w t w w t =++-⎡⎤⎣⎦ 经带通滤波器后,取差频 ()()0001cos 2s s V t KV V w w t =- 0s i w w w -=为某中频频率。
(2)振幅调制 设载波信号的表达式为()c o s c c m c u t U t ω=,调制信号的表达式为()c o s m u t U t ΩΩ=Ω,调制信号叠加直流电源Q U ,则调幅信号的表达式为 ()()()()000cos 11cos cos cos 22o M Q cm c m c a m c a m c u t A U u t U tU t m U t m U t ωωωωΩ⎡⎤=+⎣⎦=++Ω+-Ω0m M Q cm U A U U =a m ——调幅系数,a m Q m U U Ω=;0cos m c U t ω——载波信号;()01cos 2a m c m U t ω+Ω——上边频分量; ()01cos 2a m c m U t ω-Ω——下边频分量 它们的波形及频谱如图所示。
由图可见,调幅波中载波分量占有很大比重,因此信息传输效率较低,称这种调制为有载波调制。
为提高信息传输效率,广泛采用抑制载波的双边带或单边带振幅调制。
双边带调幅波的表达式为()()()0cos cos 11cos cos 22M m cm c m c m c u t A U t U tU t U t ωωωΩ=Ω⋅=+Ω+-Ω 式中 m M m cm U A U U Ω=⋅⋅四、实验步骤1、混频器实验● 连接好跳线J12、J13、J15、J19、J110(此时J11、J14、J16、J17、J18应断开)。
【免费下载】模拟乘法混频实验报告

模拟乘法混频实验报告姓名:学号:班级:日期:模拟乘法混频一、实验目的1.进一步了解集成混频器的工作原理2.了解混频器中的寄生干扰二、实验原理及实验电路说明混频器的功能是将载波为vs(高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535~1605KHz的已调波信号变换为中心频率为465KHz的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。
混频器的电路模型如图1所示。
VsV图1 混频器电路模型混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号VL,并与输入信号VS经混频器后所产生的差频信号经带通滤波器滤出。
目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。
本实验采用集成模拟相乘器作混频电路实验。
图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
五、实验注意事项1、测量时应用双踪同时观察本振-载波,载波-中频,以便比较。
2、本实验用到晶振输出信号。
因此,在进行本实验前必须调整好晶振的输出,使之满足本实验的要求。
六、思考题1、除乘法器外,还有哪些器件可组成混频器?试举例说明。
混频器常用的非线性器件还有二极管、三极管、场效应管等。
2、分析寄生干涉的原因,并讨论预防措施。
原因:干扰频率通过寄生通道形成。
混频器件工作在非线性状态,不可避免地存在干扰和噪声作用在混频器上。
它们和输入信号电压VS、本振电压VL之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。
预防措施:减少非线性失真的各种组合频率干扰,选择器件特性接近平方律或近似理想相乘器。
乘法器混频的实验报告

乘法器混频的实验报告乘法器混频的实验报告引言在无线通信中,频率的转换是一项重要的技术。
而乘法器混频器作为一种常见的频率转换器,被广泛应用于各种通信系统中。
本实验旨在通过搭建一个乘法器混频器电路并进行实际测试,验证其在频率转换中的性能和效果。
实验原理乘法器混频器是一种通过将输入信号与一个本地振荡器的频率相乘,从而实现频率转换的器件。
其工作原理基于非线性特性,通过将两个信号进行乘法运算,产生新的频率组合。
具体而言,乘法器混频器的输入包括本地振荡器的信号和待转换的信号,输出则是两个信号频率的和与差。
这种频率转换的过程可以用以下公式表示:f_out = |n * f_lo - m * f_in|其中,f_out为输出频率,f_lo为本地振荡器的频率,f_in为待转换信号的频率,n和m为整数。
实验步骤1. 准备工作:收集所需材料和仪器,包括乘法器混频器芯片、示波器、信号源等。
2. 搭建电路:按照乘法器混频器的电路图,连接各个元件和仪器。
确保连接正确并稳定。
3. 设置参数:调整示波器和信号源的参数,使其适应实验需求。
例如,设置本地振荡器的频率和待转换信号的频率。
4. 测试输出:将示波器连接到乘法器混频器的输出端口,观察并记录输出信号的波形和频谱。
5. 改变参数:尝试改变本地振荡器的频率和待转换信号的频率,观察输出信号的变化。
6. 分析结果:根据实验数据,分析乘法器混频器的性能和效果。
比较不同参数下的输出信号特点。
实验结果与讨论通过实验,我们得到了一系列乘法器混频器在不同参数下的输出信号数据。
根据这些数据,我们可以进行以下分析和讨论:1. 输出频谱:通过观察示波器上的频谱图,我们可以看到输出信号中包含了本地振荡器频率和待转换信号频率的和与差。
这证实了乘法器混频器的频率转换原理。
2. 非线性失真:在实际应用中,乘法器混频器可能会引入非线性失真。
这是由于乘法运算本身的非线性特性导致的。
在实验中,我们可以通过观察输出信号的波形来判断是否存在非线性失真。
模拟乘法混频实验报告

模拟乘法混频实验报告姓名:学号:班级:日期:模拟乘法混频一、实验目的1. 进一步了解集成混频器的工作原理2. 了解混频器中的寄生干扰二、实验原理及实验电路说明混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。
混频器的电路模型如图1所示。
图1 混频器电路模型混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。
目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。
本实验采用集成模拟相乘器作混频电路实验。
图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
V sV图2 MC1496构成的混频电路MC1496可以采用单电源供电,也可采用双电源供电。
本实验电路中采用+12V,-8V供电。
R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz选频回路。
本实验中输入信号频率为fs=4.2MHz,本振频率fL=8.7MHz。
为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS和本振电压VL外,不可避免地还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。
干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。
实验七-集成电路模拟乘法器的应用

实验报告实验名称 集成电路模拟乘法器的应用成绩姓名 马晓恬 专业班级 电信081 实验日期 学号指导教师刘富强提交报告日期12.19一、实验目的1、了解模拟乘法器(MC1496)的工作原理,掌握其调整与特性参数的测量方法。
2、掌握利用乘法器实现混频,平衡调幅,同步检波,鉴频等几种频率变换电路的原理及方法。
二、实验内容1、 改变模拟乘法器外部电路,实现混频器电路,观察输出点波形,并测量输出频率。
2、 改变模拟乘法器外部电路,实现平衡调幅电路,观察输出点波形。
3、 改变模拟乘法器外部电路,实现同步检波电路,观察输出点波形。
4、 改变模拟乘法器外部电路,实现鉴频电路,观察输出点波形。
三、实验仪器1、双踪示波器一台2、频率特性扫频仪(选项)一台四、实验原理及电路1、集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496是双平衡四象限模拟乘法器。
其内部电路和引脚如图7-1(a)(b)所示。
其中1VT 、2VT 与3VT 、4VT 组成双差分放大器,5VT 、6VT 组成的单差分放大器用以激励1VT ~4VT 。
7VT 、8VT 及其偏置电路组成差分放大器5VT 、6VT 的恒流源。
引脚8与10接输入电压U X ,1与4接另一输入电压U y ,输出电压U 0从引脚6与12输出。
引脚2与3 外接电阻R E ,对差分放大器5VT 、6VT 产生串联电流负反馈,以扩展输入电压U y 的线性动态范围。
混频器仿真实验报告

混频器仿真实验报告一.实验目的(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力;(2)掌握multisim实现混频器混频的方法和步骤;(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。
二.实验原理以及实验电路原理图(一).晶体管混频器电路仿真本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。
电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。
(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。
(3)本振信号与基极偏压Eb共同构成时变工作点。
由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。
工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。
在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。
(二).模拟乘法器混频电路模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。
与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。
三.实验内容及记录(一).晶体管混频器电路仿真1、直流工作点分析使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。
注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。
因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。
模拟乘法混频实验报告心得与体会

模拟乘法混频实验报告心得与体会
首先,模拟乘法混频实验通常需要用到一些基本的电路元件,如放大器、信号发生器、滤波器和混频器等。
实验首先需要设计电路图和电路参数,然后进行电路实验,通过调整电路参数和观察信号波形来验证实验结果。
在实验过程中,有一些常见的心得和体会可以参考:
1. 实验前一定要认真阅读实验指导书,仔细观察电路图,理解电路的基本原理和参数设置要求。
2. 在进行实验时要注意安全,避免因误操作或电路设计不当而造成伤害或损坏。
3. 在实验过程中,要仔细观察信号波形、频率和幅值等参数的变化情况,及时记录数据,以便后续分析和比较。
4. 如果实验结果与预期不符,应及时排查问题,检查电路连接和元件设置是否正确,分析可能的原因,并尝试进行调整和改进。
5. 在实验结束后,应认真整理实验记录和数据,并撰写实验报告,总结实验过程中的心得和体会,反映实验结果和结论。
同时,也要充分发扬科学态度,虚心接受他人的批评和建议,不断完善实验方法和结果。
总之,模拟乘法混频实验是一项比较复杂和重要的实验,需要专业的知识和技能,也需要科学的态度和认真的实验精神。
只有通过认真的实验操作和不断的体验和总结,才能得到更好的实验结果和体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟乘法混频实验报告
姓名:
学号:
班级:
日期:
模拟乘法混频
一、实验目的
1.进一步了解集成混频器的工作原理
2.了解混频器中的寄生干扰
二、实验原理及实验电路说明
混频器的功能是将载波为vs(高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535~1605KHz的已调波信号变换为中心频率为465KHz的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。
混频器的电路模型如图1所示。
Vs
V L
图1 混频器电路模型
混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号VL,并与输入信号 VS经混频器后所产生的差频信号经带通滤波器滤出。
目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。
本实验采用集成模拟相乘器作混频电路实验。
图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
图2 MC1496构成的混频电路
MC1496可以采用单电源供电,也可采用双电源供电。
本实验电路中采用+12V,-8V供电。
R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz 选频回路。
本实验中输入信号频率为 fs=4.2MHz,本振频率fL=8.7MHz。
为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS和本振电压VL外,不可避免地还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。
干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。
三、实验仪器与设备
高频电子线路综合实验箱;
高频信号发生器;
双踪示波器;
频率计。
四、实验步骤
1.打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元件的作用。
f=8.7MHz(幅度V LP-P=300mV
2、用实验箱的信号源做本振信号,将频率
L
左右)的本振信号从J8处输入(本振输入处),用示波器观察J9处中频信号波形。
3、将频率fs=4.19MHz(幅度Vsp-p=300mv左右)的高频信号(由3号板提供)从相乘混频器的输入端J7输入,用示波器观察J9处中频信号波形的变化。
4、用示波器观察 TH8和TH9处波形。
5、改变高频信号电压幅度,用示波器观测,记录输出中频电压V i的幅
的幅值随着高频信号电压幅度的增大而增大。
输出中频电压V
i
6、改变本振信号电压幅度,用示波器观测,记录输出中频电压V i的幅值,
输出中频电压V
的幅值不随本振信号电压幅度的变化而变化。
i
7、用频率计测量混频前后波形的频率。
混频前:4.19MHz,混频后:4.5059MHz。
8、混频的综合观测(需外接信号源)
令高频信号发生器输出一个由1K音频信号调制的载波频率为 4.2MHz 的调幅波,作为本实验的载波输入,外接信号源输出8.7MHz的本振信号,用示波器对比观察J9处和调制信号的波形。
五、实验注意事项
1、测量时应用双踪同时观察本振-载波,载波-中频,以便比较。
2、本实验用到晶振输出信号。
因此,在进行本实验前必须调整好晶振的输出,使之满足本实验的要求。
六、思考题
1、除乘法器外,还有哪些器件可组成混频器?试举例说明。
混频器常用的非线性器件还有二极管、三极管、场效应管等。
2、分析寄生干涉的原因,并讨论预防措施。
原因:干扰频率通过寄生通道形成。
混频器件工作在非线性状态,不可避免地存在干扰和噪声作用在混频器上。
它们和输入信号电压VS、本振电压VL之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。
预防措施:减少非线性失真的各种组合频率干扰,选择器件特性接近平方律或近似理想相乘器。
七、实验总结
1、本振频率与载波频率和镜象干扰频率之间的关系
f镜象—f载波=2 f中频
本实验中, f中频=f本振— f载波
则有2 f本振 = f镜象+f载波
2、归纳信号混频的过程
所谓混频,就是利用非线性元件,把两个不同频率的电信号进行混合,通过选频回路得到第三个频率的信号的过程。