热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用_许小华
热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用Ξ

许小华

(江苏省盐城技师学院,江苏盐城 224002)

摘 要:温度的测量是保证工业生产正常进行、确保产品质量和安全生产的关键环节。热电偶温度计及热电阻温度计在工业生产中应用广泛。本文主要对这两种温度计的工作原理、特点、选择及安装故障排除等作比较,以便于人们熟悉两种温度计的使用。

关键词:热电偶温度计;基本原理;选择;安装;注意事项

温度是表示物体冷热程度的物理量,温度的测量是保证化工生产实现稳产、高产、安全、优质、低消耗的关键之一。温度不能直接测量,只能借助于冷热不同的物体之间的热变换,以及物体的某些物理性质随冷热程度不同而变化的特征间接测量。

利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计和热电偶温度计在化工产业中广泛应用,但它们有各自的使用特点,下面从几个方面进行比较。

1 基本原理比较

两种温度计都属于接触式温度测量仪表。

1.1 热电偶温度计

热电偶温度计是根据热电效应来测量温度的。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。

1.2 热电阻温度计

热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的。大家知道,金属导体的电阻值是随温度的变化而变化的。实际证明,大多数金属在温度每升高1℃时,其阻值要增加0.4%~0.6%,热电阻温度计就是把温度变化所引起的导体电阻的变化,通过测量电路(电桥)转换成电压(毫伏)信号,然后送至显示仪表以指示或记录被测温度的。

由上可知,两种温度计的测量原理是不同的。热电偶温度计是把温度的变化通过测温元件—热电偶转化为热电势的变化来测量温度的;而热电阻温度计则是把温度的变化通过测温元件—热电阻转换为电阻值的来测量温度的。

2 结构、特点比较

2.1 结构比较

热电偶温度计外形很多,但各种热电偶的基本结构通常均由热电极、绝缘套管、保护套管和接线盒等主要部分构成。热电偶温度计测量精度高,测量范围广,常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。需冷端温度补偿。在低温段测量精度较低,一般适用于测量500℃以上的温度。

2.2 使用特点比较

对于500℃以下的中、低温利用热电偶进行测量,有时就不一定适合。例如在100℃时,热电偶的热电势仅为0.645m v,如此小的热电势,对电位差计的放大器和抗干扰措施要求很高,仪表维修也困难。另外,在较低的温度范围内,由于冷端温度变化和环境温度所引起的相对误差就显得很突出,且不易得到全补偿。所以在中、低温区,采用热电阻温度计测量是很适宜的。目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻温度计的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精度最高。热电阻通常和显示仪表、记录仪和变送器配套使用。它可以直接测量各种生产过程中从-200至+600范围内的液体、蒸汽和气体及固体表面的温度。

这两种温度计的共同特点是都构造简单,使用方便。都便于远传、自动记录和集中控制,因而在化工生产中应用极为普遍。下面是我国已定型生产的几种温度计。

工业常用热电偶

热电阻类型测温范围℃分度号

铂铑30-铂铑6300~1600B

铂铑10-铂-20~1300S

镍铬-镍硅-50~1000K

镍铬-铜镍-40~800E

铁-铜镍-40~700J

铜-铜镍-40~300T

w zp型铂电阻-200~420P t100

w zc型铜电阻-150~100Cu50

65内蒙古石油化工 2009年第23期 Ξ收稿日期:2009-07-14

作者简介:许小华(1970-),女,江苏盐城人。讲师,学士,主要从事化学技术应用的研究。

3 安装比较3.1 热电偶温度计

热电偶的安装地点不受强磁场干扰,不受碰撞和震动,毫伏计安装要平稳、不倾斜、无震动;热电偶插入窑内的深度为5~7c m ,并要固定窑封好;应尽可能保持垂直,以防止保护套管在高温下产生变形,但在有流速的情况下,则必须迎着被测介质的流向插入,以保证测温元件与流体的充分接触以保证其测量精度。另外热电偶应尽量安装在有保护层的管道内,以防止热量散失。其次当热电偶和传感器安装在负压管道中时,必须保证测量处具有良好的密封性,以防止外界冷空气进入,使读数偏低。当热电偶和传感器安装在户外时,热电偶和传感器的接线盒面盖应向上,入线口应向下,以避免雨水或灰尘进入接线盒,而损坏热电偶接线盒内的接线影响其测量精度。热电偶温度计由于其补偿导线的材料硬度较高,非常容易从接线柱脱离造成断路故障,因此要接线良好不要过多碰动温度计的接线并经常检查,以获得正确的测量温度。3.2 热电阻温度计

热电阻安装时,其插入深度不小于热电阻保护管外径的8倍~10倍,尽可能使热电阻受热部分增长。热电阻尽可能垂直安装,以防在高温下弯曲变形。热电阻在使用中为了减小辐射热和热传导所产生的误差,应尽量使保护套管表面和被测介质温度接近,减小热电阻保护套管的黑色系数。当用与热电阻相配的二次仪表测量温度时,热电阻安置在被测温度的现场,而二次仪表则放置在操作室内。如果用不平衡电桥来测量,那么连接热电阻的导线都分布在桥路的一个臂上。为减小由同热电阻阻值的变化一起加在不平衡电桥的一个臂上引起的误差,一般在测温热电阻与仪表连接时,采用三线制接法。4 常见故障比较

热电偶的常见故障有:如果指针不移动。可能是线路断路或短路,毫伏计的锁紧装置没拨开,热电偶烧断;如果指针及反转。原因是线头接反;如果指示温度偏高。主要原因可能是热电偶和毫伏计的分度号不一致,外电阻过小,仪表零点不对,毫伏计有问题;如果指示温度偏低。这种故障的原因比较复杂,可能是热电偶装置的位置不能代表被测物温度,热电偶使用时间过长而被老化,补偿导线接反,线路接触不良,外电阻过大,仪表零点不对,热电偶冷端的温度有变化;如果指示不稳定,忽高忽低。主要原因是线路接触不良或仪表受震动。保护管破损,瓷保护管的炸裂主要由于激烈碰撞所造成。金属保护管一

般是被碰弯或烧化。

热电阻的常见故障有:在现场如果显示仪表指示低或者不稳,可能是保护管内有了金属屑、灰尘、接线柱有积灰,另外可以用万用表测量看是不是热阻出现了短路的现象。如果显示仪表指示无穷大、很大的情况,可能是热电阻出现断路,引出线断路。如果指示为负值,那接线出错,热阻短路就很有可能成为发生此种情况的原因所在。如果温度-电阻值函数关系有变,电阻丝有可能受到了腐蚀发生变质情况。通过以上思路我们可能很快就能找到其故障原因。

5 日常维护比较

热电偶在实际使用时特别要注意补偿导线的使用。通常接在仪表和接线盒之间的补偿导线,其热电性质与所用热电偶相同或相近,与热电偶连接后不会产生大的附加热电势,不会影响热电偶回路的总热电势。高温状态下,不宜插入和拔出陶瓷管热电偶,必要时也只能缓慢地插入或拔出,以免瓷管炸裂;使用前必须调整外电阻值,使其合乎毫伏计表面上规定的要求;使用时要测定热电偶的冷端温度,并修正热端测定的温度值。使用中必须定期检验,一般是半年一次。

热电阻在使用前必须检查它的好环,简易的检查方法是将热电阻从保护管中抽出,用万用表测量其电阻。若万用表读数为“0”或者万用表读数

[参考文献]

[1] 范玉伟.工业用热电阻温度计的使用注意事项

[J ].中国计量,2003,(2),39~44.

[2] 阚家巨,积极采用统一设计的热电偶和热电阻

[J ].化工自动化及仪表,2003,(4),21~26.

[3] 刘天敦.做好新、旧热电偶和热电阻的更换工

作[J ].石油化工自动化,2006,(2),15~18.

[4] 沈贵新.与热电偶、热电阻配套的二次仪表

[J ].工业仪表与自动化装置,1985,(1),48~52.

Co m par isi on Between Ca lor i c Resist ance Ther m o m eter and Ca lor i cd i pole Ther m o m eter

X U X iao -hua

(Yancheng T echn ician in stitu te Yancheng J iang su 224002)

Abstract :T e m p era tu re m eterage w h ich en su res the p roducti on ,qua lity and p roduceab le safty w a s very i m po rtan t .Ca l o ric resistance ther m om eter had been w idely u sed in indu stria l p roducti on and so had been ca l o ricd i po le ther m om eter .Com p a risi on bet w een t w o k ind s of ther m om eters w a s stud ied .Com p a risi on con ten t con sisted of ba sic p rinci p le ,tra it ,cho ice and setting .It w a s ea sy to be fam ilia r w ith u sing of thether m om ete .

Key words :Ca l o ricd i po le T her m om eter ;B a sic P rinci p le ;Cho ice ;Setting ;A dverted Po in ts

7

5 2009年第23期 许小华 热电阻温度计和热电偶温度计的比较与使用

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

热电偶测量误差分析(精)

热电偶测量误差分析 一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端,温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0),因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。 中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB (t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。 二、各种误差引起的原因及解决方式 2.1 热电偶热电特性不稳定的影响

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

热电偶温度计和热电阻温度计的比较及应用

热电偶温度计和热电阻温度计的比较及应用 【摘要】 温度不能直接测量,只能借助于冷热不同物体之间的热交换,以及物体的某些物理性质随冷热程度不同而变化的特性来加以间接测量。温度测量范围很广,有的处于接近绝对零度的低温, 有的在几千度的高温下进行,所以需要各种不同的测温方法和测温仪器。 关键词:热电偶温度计,热电阻温度计,选型,特点,区别,应用 一引言 热电偶是一种感温元件,是一次仪表。它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 二两种温度计的工作原理 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的

热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 三热电偶温度计 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 特点 ◆装配简单,更换方便 ◆压簧式感温元件,抗震性能好 ◆测量范围大

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定 律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位: 学号学生姓名专业(班级)设计题目基于热电偶的温度测量电路设计 设 计技术参数 设计基于运算放大器的热电偶传感器输出信号调理电路以及冷端补偿电路。自选一款热电偶,对其在500到1200度测温范围内的输出信号进行放大。输出信号为直流0到2.5V 设计要求1:完成题目的理论设计模型;2完成电路的multisim仿真; 工 作 量1:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 2:提交一份电路原理图;

工作计划周一,查阅资料; 周二到周四,理论设计及计算机仿真;周五,撰写设计说明书; 参考资料1:基于运算放大器和模拟集成电路的设计;2:模拟电子技术; 3:电路理论; 4:数字电子技术; 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

指导教师评语: 成绩: 指导教师: 年月日答辩小组评语:

成绩: 组长: 年月日课程设计总成绩: 答辩小组成员签字: 年月日

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

热电偶测温不准解决方案总结

热电偶测温不准解决方案 总结 Prepared on 22 November 2020

热电偶测温不准解决方案总结 热电偶作为工业测温中最广泛使用的温度传感器之一,在水泥厂和钢铁厂使用的很多,主要用在链篦机和回转窑上等设备上。这次在现场就用到了三种型号的热电阻,分别是K,N和S型的。经过一段时间的使用,发现并不是很理想。经检测,链篦机的一些风箱现场实际温度比中控显示低50℃左右,由此可见热电偶出现测温不准问题还是很常见的。 造成热电偶失准的常见原因: ◆的补偿导线接反。这主要是安装时出现的问题,负责接线的人员一 时的粗心造成,属人为因数。当出现热电偶的接反情况时,中控画 面的显示通常比实际值偏大或偏小。 ◆补偿电阻故障。此类故障表现为热电偶接上后温度显示值缓慢上升 或下降。 ◆的补偿导线绝缘层被磨破,造成信号回路接地。这主要是因为补偿 导线较硬,而且在接线盒内又未被安放平整,处理故障时多次旋拧 接线盒盖碰到补偿导线而将其磨破。此类故障反映在中控画面上其 温度示值一般偏小。 ◆接线盒内接线端子接触不良。因补偿导线和热电偶的导线都比较 硬,所以现场检修时紧固接线比较困难,有时候开始把导线拧紧了 但过段时间随着导线的变形又松了。此类故障反映在操作员控制站 上的温度示值为无显示或显示值超量程。

◆热电偶的头部严重磨损。由于链篦机和回转窑内的粉尘和烟气对热 电偶的头部包括护套管冲刷后严重磨损,将护套管改由耐磨钢材料 制成后,才消除了此类故障隐患。 ◆信号屏蔽系统DCS柜内接地不良。由于热电偶出来的信号时mv级信 号,因此很容易在传到中控时受到干扰,此类故障极容易造成电荷在 信号线上积累,引起信号漂移或晃动。 这次这边的问题主要出现在补偿导线上。 下面对热电偶补偿导线作一个详细的解释: 要了解热电偶的温度补偿问题,就要从热电偶的原理作手,对于已选定的热电偶,当参比端温度恒定时,则总的热电动势就成测量端温度的单值函数。即一定的热电势对应着一定的温度,而热电偶的分度表中,参比端温度均为0度。但在应用现场,参比端温度千差万别,不可能都恒定在0度,这就会产生测量误差,这就是热电偶要进行温度补偿的原因。由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。 热电偶测温使用补偿线时,必须注意以下几点: 1.补偿导线必须与相应型号的热电偶配用;

大学物理实验 热电偶温度计设计

热电偶温度计的设计探讨 吉林建筑大学城建学院 土木工程系 交通工程12级-1班 1205000123 屈少伟 【内容摘要】 用温差电偶测温就是把非电学量转化为电学量测量,即把温度转化为温差电动势来测量温度。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生(温差效应)。这种温度计测温范围很大。本次实验选用铜-康铜两种金属形成闭合回路作为温差电偶装置,设计热电偶温度计。并通过恒温水浴锅、数字电压表、电热杯等设备为所设计的热电偶温度计定标。 【关键词】 温差效应铜-康铜温差电偶温差固定点法定标 一、引言 传统温度计测量范围相对较小,而热电偶温度计测量范围很大,本实验探究热电偶温度计的实验原理,并尝试制作热电偶温度计。 二、实验目的: (1)了解热电偶温度计的测温原理 (2)学会热电偶温度计的设计方法 (3)学会数字电压表(或电位差计)的原理和使用方 三、实验仪器: 铜-康铜温差电偶数字电压表(或电位差计)保温杯电热杯恒温水浴锅(含温度显示)等。 四、实验原理: 1、热电效应:两种不同成份的导体(本实验中选用铜-康铜)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。 2、测温原理:热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 【注意问题】 1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 2 、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 五、测量方法: 理论和实验均表明,接触电势差的大小和相接处的两种金属的性质及接触处的温度有关。

基于单片机和K型热电偶的温度测量仪表设计

1.概述 1.1题目名 基于单片机和K 型热电偶的温度测量仪表设计 1.2功能和技术指标要求 (1)温度测量范围:室温~200℃; (2)温度检测元件:K 型分度号热电偶; (3)具有热电偶冷端温度自动补偿功能; (4)温度测量精度:1℃±FS*2%; (5)温度显示:LED 或LCD 数字显示,显示分辨率0.1℃ (6)具有温度上限、下线设置功能,当温度测量值越限时,进行声光报警; (7)电源:电网AC220V , 要求在电网电压变化±15%范围内能够正常工作。 1.3国内外相关情况概述 温度的测量的历史:第一个温度传感器是伽利略做出来的。而温度测量的里程碑是由法勒海 特设计的水银温度计。1740年瑞典人摄氏提出在标准大气压下,把冰水混合物的温度规定 为0度,而水的沸腾度为100度。温度测量在保证产品的质量,节约能源,安全生产起到至 关重要的作用。技术现状有点到线,线到面温度分布的测温技术;由表面到内部的测温技术。 发展趋势是由于环境的多样化,复杂化,测温对象的多样化,智能检测成为现在温度测试的 趋势。所以要加强新工艺的开发;向着智能化发展。 2.技术方案 2.1温度测量的基本方法与原理 常见的温度测量方法和测温原理有:接触式,原理是热胀冷缩,这种方法测温方便。液体式 (如毛细管,水银温度计),原理是受热,液体膨胀系数变大,从而液体上升。这种方法测 温比较准确。 2.2总技术方案 温度测量仪表功能结构 热电偶 放大器 ADC 单 片 机 环境温度测量 直流稳压电源 数字显示 声光报警 上下限设置

先读取环境温度,热电偶测得温度经过ADC转换器变成数字,测得冷端温度,用补偿法再计算出温度值,送到显示器显示。如果温度超过上限设置,下限设置则蜂鸣器报警,且LED 灯变红。 3.硬件设计 3.1热电偶放大器设计 冷端补偿专用芯片MAX6675的温度读取 芯片MAX6675采用标准SPI串行外设总线与MCU接口,MAX6675只能作为从设备。 温度值与数字对应关系为:温度值=1023.75×转换后的数字量/4095 3.2热电偶冷端温度补偿方法及电路 冷端补偿法:测冷端温度补偿法再计算出温度值送到显示器 (循环) LCD显示(循环)ASC码 电路: 3.3ADC电路 由MAX6675完成AD转换。 3.4稳压电源电路 学生电源。 3.5微处理器 STC52单片机,芯片MAX7765;按键;显示系统采用四位共阳极数码管7SEG-MPX4-CA,报警电路由PNP型三极管Q1和蜂鸣器构成。 3.6总体电路原理图

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用Ξ 许小华 (江苏省盐城技师学院,江苏盐城 224002) 摘 要:温度的测量是保证工业生产正常进行、确保产品质量和安全生产的关键环节。热电偶温度计及热电阻温度计在工业生产中应用广泛。本文主要对这两种温度计的工作原理、特点、选择及安装故障排除等作比较,以便于人们熟悉两种温度计的使用。 关键词:热电偶温度计;基本原理;选择;安装;注意事项 温度是表示物体冷热程度的物理量,温度的测量是保证化工生产实现稳产、高产、安全、优质、低消耗的关键之一。温度不能直接测量,只能借助于冷热不同的物体之间的热变换,以及物体的某些物理性质随冷热程度不同而变化的特征间接测量。 利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计和热电偶温度计在化工产业中广泛应用,但它们有各自的使用特点,下面从几个方面进行比较。 1 基本原理比较 两种温度计都属于接触式温度测量仪表。 1.1 热电偶温度计 热电偶温度计是根据热电效应来测量温度的。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。 1.2 热电阻温度计 热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的。大家知道,金属导体的电阻值是随温度的变化而变化的。实际证明,大多数金属在温度每升高1℃时,其阻值要增加0.4%~0.6%,热电阻温度计就是把温度变化所引起的导体电阻的变化,通过测量电路(电桥)转换成电压(毫伏)信号,然后送至显示仪表以指示或记录被测温度的。 由上可知,两种温度计的测量原理是不同的。热电偶温度计是把温度的变化通过测温元件—热电偶转化为热电势的变化来测量温度的;而热电阻温度计则是把温度的变化通过测温元件—热电阻转换为电阻值的来测量温度的。 2 结构、特点比较 2.1 结构比较 热电偶温度计外形很多,但各种热电偶的基本结构通常均由热电极、绝缘套管、保护套管和接线盒等主要部分构成。热电偶温度计测量精度高,测量范围广,常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。需冷端温度补偿。在低温段测量精度较低,一般适用于测量500℃以上的温度。 2.2 使用特点比较 对于500℃以下的中、低温利用热电偶进行测量,有时就不一定适合。例如在100℃时,热电偶的热电势仅为0.645m v,如此小的热电势,对电位差计的放大器和抗干扰措施要求很高,仪表维修也困难。另外,在较低的温度范围内,由于冷端温度变化和环境温度所引起的相对误差就显得很突出,且不易得到全补偿。所以在中、低温区,采用热电阻温度计测量是很适宜的。目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻温度计的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精度最高。热电阻通常和显示仪表、记录仪和变送器配套使用。它可以直接测量各种生产过程中从-200至+600范围内的液体、蒸汽和气体及固体表面的温度。 这两种温度计的共同特点是都构造简单,使用方便。都便于远传、自动记录和集中控制,因而在化工生产中应用极为普遍。下面是我国已定型生产的几种温度计。 工业常用热电偶 热电阻类型测温范围℃分度号 铂铑30-铂铑6300~1600B 铂铑10-铂-20~1300S 镍铬-镍硅-50~1000K 镍铬-铜镍-40~800E 铁-铜镍-40~700J 铜-铜镍-40~300T w zp型铂电阻-200~420P t100 w zc型铜电阻-150~100Cu50 65内蒙古石油化工 2009年第23期 Ξ收稿日期:2009-07-14 作者简介:许小华(1970-),女,江苏盐城人。讲师,学士,主要从事化学技术应用的研究。

基于单片机的数码管显示的K型热电偶温度计的设计与仿真

武汉理工大学毕业设计(论文) 基于单片机的数码管显示的K型热电偶温度 计的设计与仿真 学院(系): 信息工程学院 专业班级: 信息工程xxxx班 学生姓名: xx 指导教师: xx

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 本文主要介绍了基于热电偶温度传感器的测温系统的设计。利用转换芯片MAX6675和k型热电偶,将温度信号转换成数字信号,通过模拟SPI的串行通信方式输送数据,在通过单片机处理数据,最后由数码管显示数据。 本文采用了带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件设计了相应温度采集电路、温度转换电路、温度数码管显示电路。结合硬件电路给出了相应的软件设计,测温精度可达到0.25℃。本系统的工作流程是:首先热电偶采集温度,数据经过MAX6675内部电路的处理后送给单片机进行算法处理,最后通过数码管电路显示出测量温度。本设计最后对系统进行了proteus的调试和仿真,实现了设计的要求。 关键词温度传感器热电偶热时间常数冷端补偿

温度测量方法

温度测量方法 温度是度量物体热平衡条件下冷热程度的物理量,它反映了物体内部微粒无规则运动的平均动能,是国际单位制中的7个基本物理量之一。由于在很多情况下,不能直接测量,故是种特殊量。自然界中,很多物质的物理属性以及众多的物理效应均与温度有关,因此人们利用他们随温度的变化规律来间接测量温度。 根据感温元件与被测介质接触与否,温度测量方法可分为:接触式和非接触式。接触式测温方法是通过传导、对流和辐射等传热方式感受被测介质的温度。此方法虽然简单、方便,但其间的热阻及感温元件的热惯性都会影响测温的迅速、准确。非接触式测温法的感温元件不与被测物体相接处,目前最常用的是辐射法,它直接利用被测对象的辐射能与温度的对应关系来测量其温度。与接触式测温方法相比,非接触式测温法具有如下优点:1、动态响应快。2、适合特殊场合。3、测温范围理论上无上限,其下线也随技术发展在向中低温扩展。由于非接触式测温法必须获得被测量对象的热辐射强度,因此存在以下缺点:1、受中间介质影响大。2、接收到的辐射能常常不能直接得出被测对象的实际温度,需要进行修正。 对应于两种测温方法,测温仪器亦分为接触式和非接触式两大类: 接触式仪器又可分为:膨胀式温度计(包括液体和固体膨胀式温度计、压力式温度计)、电阻式温度计(包括金属热电阻温度计和半导体热敏电阻温度计)、热电式温度计(包括热电偶和P-N结温度计)以及其它原理的温度计。 非接触式温度计又可分为辐射温度计、亮度温度计和比色温度计,由于它们都是以光辐射为基础,故也按统称为辐射温度计。 热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1、热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2、热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。

热电偶的测温原理

热电偶的测温原理 摘要:通过对金属的接触电动势和温差电动势来进行简化的数学推导,从根源来阐述热电偶的工作原理,并通过实验来简化。从而系统地解释了热电偶的输入量(温度)和输出量(电流,电压)的线性关系。以及热电偶的选型要求,和材料性能。 关键词:热电效应、电动势、选型、材料; 0 引言 温度测量是通过某些测温物质的各种物理性能变化,例如固体的尺寸,密度,硬度 粘度,电导率,热辐射等的变化来判断被测物体的温度。在许多测量方法中,热电偶测温的应用为最广泛之一。主要优点:①接触式测温,准确度较高;②结构简单,体积小,安装方便;③测量范围广:-150oC----1600oC,采用特殊材料时可达2800oC。④热容量小,响应速度快,热电极不受形状限制 1热电偶传感器的工作原理 1.1 热电效应 如图1所示,由两种导体A,B 构成一个闭合回路,使两端结点处于不同温度下。回路中便产生热电势和电流。这种物理现象称为热电效应。 图 1 定义:导体A,B为热电极;测温结点处在T温度场下为测量端,或工作端,热端。结点处在To温度场下为参考端,或自由端,冷端。 1.2 热电偶中的电势 1.2.1接触电势(伯尔帖电势) 互相接触的两种金属导体内部因自由电子密度不同,当接触时两种导体在接触界面上会发生电子扩散。电子扩散的速率与自由电子的密度及金属所

处的温度呈正比。假定,金属A 的自由电子的密度为NA,金属B 的自由电子的密度为NB. 自由电子的密度大的向自由电子的密度小的方向扩散。 失去电子一方带正电,得到电子一方带负电。 这种扩散运动逐渐在界面上建立电势,类似于势垒,它又阻碍自由电子进一步扩散,产生了一个动态平衡。 图 2 接触电势的关系式: 图 3 K:波尔兹曼常数 J/K T:接触界面处的温度 e:电子电荷量 C NA,NB 分别为金属A,B 的自由电子密度. 对于To 结点有: 回路总接触电势: B A AB N N e kT T e ln )( =

热电偶传感器习题及答案

第九章热电偶传感器 一、单项选择题 1)正常人的体温为37C,则此时的华氏温度约为______,热力学温度约为______。 A. 32F,100K B. 99F,236K C .99F,310K D. 37F,310K 2)_____的数值越大,热电偶的输出热电势就越大。 A. 热端直径 B. 热端和冷端的温度 C. 热端和冷端的温差 D. 热电极的电导率 3)测量钢水的温度,最好选择______热电偶;测量钢退火炉的温度,最好选择_____热电偶;测量汽轮机高压蒸气(200C左右)的温度,且希望灵敏度高一些,选择______热电偶为宜。 A. R B. B C. S D. K E .E 4)测量CPU散热片的温度应选用______型的热电偶;测量锅炉烟道中的烟气温度,应选用______型的热电偶;测量100m深的岩石钻孔中的温度,应选用______型的热电偶。 A. 普通 B.铠装 C. 薄膜 D. 热电堆 5)在热电偶测温回路中经常使用补偿导线的最主要的目的是______。 A. 补偿热电偶冷端热电势的损失 B. 起冷端温度补偿作用 C. 将热电偶冷端延长到远离高温区的地方 D. 提高灵敏度 二、分析与问答 1、简述热电偶与热电阻的测量原理的异同。 2、设一热电偶工作时产生的热电动势可表示为E AB (t , t ),其中A、B、t、t 各代表什么意义? t 在实际应用时常应为多少? 3、用热电偶测温时,为什么要进行冷端补偿?冷端补偿的方法有哪几种? 三、计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时 的热电动势为,求被测的温度大小? 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料 制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作? 2)A、B开路是否影响装置正常工作?原因? 3)采用A`、B`的好处? 4)若已知t 01=t 02 =40℃,电压表示数为,则钢水温度为多少? 5)此种测温方法的理论依据是什么? 3、试说明下面各图中分别是测量哪些被测温度量? 习题答案:

热电偶温度计的设计

热电偶温度计的设计 Xxx xxxxxxxx 计算机科学与工程学院 计算机科学与技术xxxxx 班 学号:xxxxxx 邮编:xxxxx 摘要 热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。 在本实验中利用点热偶测量温度,其基本原理就是热电效应。将两种不同的金属两端分别连接起来,构成一个闭合回路,一端加热一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计测量温度。 关键字 热电偶,温度差,电动势,水浴锅 前言 在做热电偶温度计设计这一实验中时,了解了热电偶和温度差现象, 引发了我对它的兴趣,经过自己的查阅资料成功设计出该实验的设计 方案。 实验仪器介绍 铜- 康铜温差电偶、数字电压表、水浴锅、保温杯 实验原理 1)温度差现象 把两种不同的导体(称为热电偶丝材或热电极)两端接合连接成回路,并使两接点处于不同温度,则回路中就产生电动势。这种现象称为塞贝克效应(热电效应)。这种电动势与两接点的温度及两材料性质有关,所以称为热电动势温差电现是由温差而引起电动势以及由电流而引起吸热和放热的现象,又称热电现象。它包括塞贝克、珀耳帖及汤姆孙等三个效

应。 塞贝克效应将两个不同导体(或半导体)两端相连,组成一回路,当两个接头处在不同温度时,在回路中有电动势产生的现象。1821 年由德国物理学家T. 塞贝克发现。这电动势称为温差电动势。金属的塞贝克效应常被应用于测量温度,而半导体的塞贝克效应常可被用来将热能直接转化成电能,即制成半导体温差发电器。 珀耳帖效应当有电流通过由两种不同材料组成的回路时,在两种材料的接头处会发生吸热或放热的现象。1834年由法国物理学家J. 珀耳帖发现。汤姆孙效应当有电流流过存在温度梯度的导体(或半导体)时,除焦耳热外,还会产生附加的吸热或放热的现象。1856 年由英国物理学家W.汤姆孙发现,称为汤姆孙效应。 热电偶 是利用温差电现象制成的一种元件。利用两种能产生显著温差电现象的金属丝(如铜和康铜)焊接而成。温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求准确度不太高时,可以取一级近似,写为 E=a+bt,式中,a 取决于参考点温度,b 称为温差系数,其大小决定了组成电偶材料的性质。热电偶就是由两种不同的金属材料焊接而成。其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为参考端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电动势。 使用时通常将一端(参考端)保持在一定的恒定温度(如0℃或

相关文档
最新文档