液相微萃取技术与色谱 ppt课件
合集下载
中空纤维液相微萃取PPT精选文档

9
中空纤维液相微萃取的装置:
为实现液相微萃取的自动化, Andersen 和Jager等报道的一 种可与仪器自动进样器配套的微 萃取装置,即将棒状接口接于纤 维一端,使微量进样器可插入纤 维腔底部以注入或移出受体溶液。
Andersen S, Halvorsen T G., Pedersn-Bjergaard S, Rasmussen K E, Tanum L,
Zhu L, Lee H K. J Chromatogr A, 2001, 924: 407
12
中空纤维液相微萃取的装置:
前面介绍的萃取系统都是在静态模式下进行的, HF-LPME也可在动态模式下进行。例如,Zhao等 设计了一种程序控制的往复泵,用于操纵微量进样 器推杆来回运动,实现了微萃取在动态模式下进行。
高,以增大分析物在受体溶液中的溶解度萃取后的
Müller S, Moder M, Schrader S, J Chromatogr A, 2003, 985: 99 11
中空纤维液相微萃取的装置:
Zhu等则直接将中空纤维插接于进样 注射器的针头上进行液相微萃取,即 先将受体溶液吸入进样注射器,然后 插入中空纤维,再将受体溶液推入纤 维孔腔,然后再将纤维浸入样品溶液 中进行萃取,萃取完成后将溶液吸入 注射器,弃去纤维,将受体溶液直接 引入色谱系统分离分析。
基于中空纤维的液相微萃取 (Hollow fiber based liquid-phase microextraction, HF-LPME)
4
前言
以中空纤维为载体的液相微萃取技术是 1999年由瑞典科学家PedersenBjergaard等首次提出的。即以多孔的中空 纤维为微萃取溶剂(受体溶液)的载体,它 集采样、萃取和浓缩于一体,具有成本低、 装置简单、易与GC、HPLC、CE联用等优 Pe点de。rson-Bjergaard S, Rasmussen K E. Anal Chem, 1999, 71: 2650
中空纤维液相微萃取的装置:
为实现液相微萃取的自动化, Andersen 和Jager等报道的一 种可与仪器自动进样器配套的微 萃取装置,即将棒状接口接于纤 维一端,使微量进样器可插入纤 维腔底部以注入或移出受体溶液。
Andersen S, Halvorsen T G., Pedersn-Bjergaard S, Rasmussen K E, Tanum L,
Zhu L, Lee H K. J Chromatogr A, 2001, 924: 407
12
中空纤维液相微萃取的装置:
前面介绍的萃取系统都是在静态模式下进行的, HF-LPME也可在动态模式下进行。例如,Zhao等 设计了一种程序控制的往复泵,用于操纵微量进样 器推杆来回运动,实现了微萃取在动态模式下进行。
高,以增大分析物在受体溶液中的溶解度萃取后的
Müller S, Moder M, Schrader S, J Chromatogr A, 2003, 985: 99 11
中空纤维液相微萃取的装置:
Zhu等则直接将中空纤维插接于进样 注射器的针头上进行液相微萃取,即 先将受体溶液吸入进样注射器,然后 插入中空纤维,再将受体溶液推入纤 维孔腔,然后再将纤维浸入样品溶液 中进行萃取,萃取完成后将溶液吸入 注射器,弃去纤维,将受体溶液直接 引入色谱系统分离分析。
基于中空纤维的液相微萃取 (Hollow fiber based liquid-phase microextraction, HF-LPME)
4
前言
以中空纤维为载体的液相微萃取技术是 1999年由瑞典科学家PedersenBjergaard等首次提出的。即以多孔的中空 纤维为微萃取溶剂(受体溶液)的载体,它 集采样、萃取和浓缩于一体,具有成本低、 装置简单、易与GC、HPLC、CE联用等优 Pe点de。rson-Bjergaard S, Rasmussen K E. Anal Chem, 1999, 71: 2650
液相色谱PPT课件

11
溶剂等级
水的等级
纯化水 蒸馏水 去离子水
吸 光
去离子水
率 纯化水
波长 (nm) 因为不纯物的存在,去离子的吸光率较高
纯化水中去除了无机和有机的污染物
12
HPLC用水可以通过以下几个方面来得到:
• 1 专门的纯水机或超纯水机; • 2 去离子水重蒸; • 3 二次或三次重蒸水; • 4 采用类似家用的纯水机; • 5 市场上瓶装的纯净水或蒸馏水; • 6 其它途径;
Modified Si
9
反相HPLC 色谱柱
C18 (ODS) type
C8 (octyl) type Non-polar property
C4 (butyl) type Phenyl type
-Si-C18H37
TMS type
Si
Cyano type
10
流动相
流动相选择注意事项: ▪纯度:采用“ HPLC ”级溶剂 ▪避免使用会引起柱效损失或保留特性变化的溶剂 ▪对试样有适宜的溶解度 ▪溶剂粘度要小 ▪与检测器相匹配 ▪流动相配制时的顺序
26
进样体积与响应值关系
检
测
器
响 应
部分注入
值
定量管体积的一半
18
进样器
▪ 自动进样器 ▪ 手动进样器
原理:(六通阀) 注入方式:
1)全量注入 2)部分注入
返回
19
HPLC六通阀进样器的使用及保养
• 六通阀进样器是高效液相色谱系统中最理想的进样器,它是 由圆形密封垫(转子)和固定底座(定子)组成。美国Rheodyne 公司的六通阀进样器最为通用,各大HPLC仪器制造商均以 此产品作为仪器的进样器。
24
溶剂等级
水的等级
纯化水 蒸馏水 去离子水
吸 光
去离子水
率 纯化水
波长 (nm) 因为不纯物的存在,去离子的吸光率较高
纯化水中去除了无机和有机的污染物
12
HPLC用水可以通过以下几个方面来得到:
• 1 专门的纯水机或超纯水机; • 2 去离子水重蒸; • 3 二次或三次重蒸水; • 4 采用类似家用的纯水机; • 5 市场上瓶装的纯净水或蒸馏水; • 6 其它途径;
Modified Si
9
反相HPLC 色谱柱
C18 (ODS) type
C8 (octyl) type Non-polar property
C4 (butyl) type Phenyl type
-Si-C18H37
TMS type
Si
Cyano type
10
流动相
流动相选择注意事项: ▪纯度:采用“ HPLC ”级溶剂 ▪避免使用会引起柱效损失或保留特性变化的溶剂 ▪对试样有适宜的溶解度 ▪溶剂粘度要小 ▪与检测器相匹配 ▪流动相配制时的顺序
26
进样体积与响应值关系
检
测
器
响 应
部分注入
值
定量管体积的一半
18
进样器
▪ 自动进样器 ▪ 手动进样器
原理:(六通阀) 注入方式:
1)全量注入 2)部分注入
返回
19
HPLC六通阀进样器的使用及保养
• 六通阀进样器是高效液相色谱系统中最理想的进样器,它是 由圆形密封垫(转子)和固定底座(定子)组成。美国Rheodyne 公司的六通阀进样器最为通用,各大HPLC仪器制造商均以 此产品作为仪器的进样器。
24
微滴液相微萃取技术用于气相色谱-质谱法分析药品中的酞酸酯和对羟基苯甲酸酯

! 第"期
漆爱明, 等: 微滴液相微萃取技术用于气相色谱 ! 质谱法分析药品中的酞酸酯和对羟基苯甲酸酯
・ "),・
康造成严重影响。 ! ! 酞酸 酯 ( "#$% ) 是 邻 苯 二 甲 酸 酯 类 物 质, 已成 为全球普遍关注 的 一 类 环 境 污 染 物 致孕 妇 流 产、婴 儿 畸 形
[$] [#]
!" 实验部分
! ! !" 仪器与试剂 ! ! 234536 ,37846 *%)) 气相色谱 ! 质谱联用仪; ,37! %%,, 进 样 器; 846 -. 1 *, 294%5:6 $+ $* 工 作 站; ;/,0 &- 谱库; .<<!&"% 四 联 磁 力 加 热 搅 拌 器; 萃取 小瓶; 搅 拌 子( 自 制, 长 约 $+ ) == , 直 径 约 )+ == ) 。 ! ! 对羟基 苯 甲 酸 甲 酯 ( *" ) 、 对羟基苯甲酸乙酯 ( $" ) 、 对羟基苯甲酸丙酯 ( "" ) 、 对羟 基 苯 甲酸 丁 酯 ( +" ) 、 对羟基苯甲酸异丙酯 ( /"" ) 、 )*" 、 )$" 和 )+" 均为分析纯, 由国药集 团 化 学 试 剂 有 限 公 司 提 供。药品样品 ( 葡萄 糖 注 射 液、 复 方 氯 化 钠 注 射 液、 藿香正气水、 眼药水) 均由当地某医院提供。 ! ! 甲醇为色谱纯, 正己烷、 环己烷、 甲苯为分析纯, 均由 上 海 陆 都 化 学 试 剂 厂 提 供。 去 离 子 水 采 用 *5>>5!? 纯水系统 ( 美国 *5>>5@:49 公司) 制得。 ! ! #" 色谱和质谱分析条件 ! ! 色谱条件: 色谱柱 )+!$ ( ") = . )+ *$ == , )+ *$ 。载 气 为 氦 气, 流 速 为 %+ ) =A 1 =56 。 进 样 量 !=) %+ ) ! A ; 分 流 进 样, 分 流 比 $ / % 。 初 始 温 度 %*) B , 保持 % =56 后以 % B 1 =56 升至 %#) B , 保持 % =56 ,
液相色谱技术PPT课件

11
理论板数的计算方法
N 5.54( tR )2 W1/2
N 16( tR )2 Wb
理论塔板高度: HL N
L---柱长
N---理论塔板数 tR---保留时间 W1/2---半峰宽 Wb---峰底宽度
12
22.2 色谱分离方法的分类
色谱分离方法很多,种类有四、五十种 但常用于生物大分子分离的色谱方法,按机
22 液相色谱技术 Chromatography
1
背景
色谱法也称色层法,是1906年俄国植物学家Michael Tswett发现并命名的。他将植物叶子的色素通过装填有 吸附剂的柱子,各种色素以不同的速率流动后形成不同的 色带而被分开,由此得名为“色谱法” (Chromatography) 。
后来无色物质也可利用吸附柱色谱分离。 英国生物学家Martin和Synge。他们首先提出了色谱塔
理分,有以下几种:
13
按操作形式不同分类:
柱色谱:将固定相装于柱内,使样品沿一个方向移动 而达到分离。
纸色谱:用滤纸做液体的载体,点样后,用流动相展 开,以达到分离鉴定的目的。
薄层色谱:将适当粒度的吸附剂铺成薄层,以纸色谱 类似的方法进行物质的分离和鉴定。
纸色谱和薄层色谱主要适用于小分子物质的快速检 测分析和少量分离制备,通常为一次性使用,而柱 色谱是常用的色谱形式,适用于样品分析、分离。 生物化学中常用的凝胶色谱、离子交换色谱、亲和 色谱、高效液相色谱等都通常采用柱色谱形式。
V 2 V 1 V t V 0 m 2 m 1
分配系数m影响因素:分子量, 分子形状, gel孔径 结构;与pH, I, T无关.
21
2)凝胶介质 对介质的要求: 1st 亲水性高; 2nd 表面惰性,不发生化学和物理变化; 3rd 高稳定性,有较宽的pH和I适应范围; 4th 具有一定的孔径分布; 5th 机械强度高,耐高压操作,寿命长。
理论板数的计算方法
N 5.54( tR )2 W1/2
N 16( tR )2 Wb
理论塔板高度: HL N
L---柱长
N---理论塔板数 tR---保留时间 W1/2---半峰宽 Wb---峰底宽度
12
22.2 色谱分离方法的分类
色谱分离方法很多,种类有四、五十种 但常用于生物大分子分离的色谱方法,按机
22 液相色谱技术 Chromatography
1
背景
色谱法也称色层法,是1906年俄国植物学家Michael Tswett发现并命名的。他将植物叶子的色素通过装填有 吸附剂的柱子,各种色素以不同的速率流动后形成不同的 色带而被分开,由此得名为“色谱法” (Chromatography) 。
后来无色物质也可利用吸附柱色谱分离。 英国生物学家Martin和Synge。他们首先提出了色谱塔
理分,有以下几种:
13
按操作形式不同分类:
柱色谱:将固定相装于柱内,使样品沿一个方向移动 而达到分离。
纸色谱:用滤纸做液体的载体,点样后,用流动相展 开,以达到分离鉴定的目的。
薄层色谱:将适当粒度的吸附剂铺成薄层,以纸色谱 类似的方法进行物质的分离和鉴定。
纸色谱和薄层色谱主要适用于小分子物质的快速检 测分析和少量分离制备,通常为一次性使用,而柱 色谱是常用的色谱形式,适用于样品分析、分离。 生物化学中常用的凝胶色谱、离子交换色谱、亲和 色谱、高效液相色谱等都通常采用柱色谱形式。
V 2 V 1 V t V 0 m 2 m 1
分配系数m影响因素:分子量, 分子形状, gel孔径 结构;与pH, I, T无关.
21
2)凝胶介质 对介质的要求: 1st 亲水性高; 2nd 表面惰性,不发生化学和物理变化; 3rd 高稳定性,有较宽的pH和I适应范围; 4th 具有一定的孔径分布; 5th 机械强度高,耐高压操作,寿命长。
《液相色谱技术》课件

通过液相色谱技术,可以检测环境中的有毒有害物质,如农药、酚类等,为环境治理和保护提供科学依据。
生态毒理学研究
液相色谱技术可以用于研究环境污染物对生物体的毒理学效应,有助于了解环境污染对生态系统的危害。
液相色谱技术的未来发展与挑战
高效液相色谱法(HPLC)
HPLC是液相色谱技术中的一种,具有高分离效能、高灵敏度、高选择性等优点,被广泛应用于生物医药、环境监测、食品安全等领域。随着技术的不断发展,HPLC的分离柱、检测器等关键部件也在不断改进,提高了分离效果和检测灵敏度。
智能化与自动化:随着机器人技术和自动化控制技术的发展,液相色谱技术的操作将更加智能化和自动化。未来的液相色谱仪将更加便捷、高效,能够实现自动化进样、自动优化分离条件等功能,大大提高分析效率。
感谢观看
THANKS
流动相的准备与更换
根据实验要求,准备好适量的流动相,并定期更换以保证实验结果的准确性。
定期清洗进样器、色谱柱和检测器,保持仪器表面清洁。
日常保养
定期校准
常见故障排除
对仪器进行定期校准,确保检测结果的准确性。
遇到问题时,应先检查电源、管线连接等基本情况,再根据仪器手册排查故障。
03
02
01
液相色谱技术的实验设计
色谱柱
检测色谱柱流出的组分,并将其转化为电信号,便于记录和检测。
检测器
用于采集、处理、分析和存储色谱数据。
数据处理系统
数据处理与分析
采集色谱数据,进行峰识别、定量和合适的流速、检测波长等参数,开始色谱分离。
进样
将样品注入进样器,设定进样量,启动进样程序。
准备工作
检查仪器是否正常,准备好流动相、色谱柱和样品。
样品前处理的挑战:液相色谱技术对于样品的要求较高,需要进行适当的前处理以去除杂质、提高分离效果。目前常用的样品前处理方法包括沉淀、萃取、吸附等,但这些方法操作繁琐、耗时长且效果不稳定。为解决这一问题,新型的样品前处理技术如固相萃取、免疫吸附等正在不断发展,以提高样品处理的效率和效果。
生态毒理学研究
液相色谱技术可以用于研究环境污染物对生物体的毒理学效应,有助于了解环境污染对生态系统的危害。
液相色谱技术的未来发展与挑战
高效液相色谱法(HPLC)
HPLC是液相色谱技术中的一种,具有高分离效能、高灵敏度、高选择性等优点,被广泛应用于生物医药、环境监测、食品安全等领域。随着技术的不断发展,HPLC的分离柱、检测器等关键部件也在不断改进,提高了分离效果和检测灵敏度。
智能化与自动化:随着机器人技术和自动化控制技术的发展,液相色谱技术的操作将更加智能化和自动化。未来的液相色谱仪将更加便捷、高效,能够实现自动化进样、自动优化分离条件等功能,大大提高分析效率。
感谢观看
THANKS
流动相的准备与更换
根据实验要求,准备好适量的流动相,并定期更换以保证实验结果的准确性。
定期清洗进样器、色谱柱和检测器,保持仪器表面清洁。
日常保养
定期校准
常见故障排除
对仪器进行定期校准,确保检测结果的准确性。
遇到问题时,应先检查电源、管线连接等基本情况,再根据仪器手册排查故障。
03
02
01
液相色谱技术的实验设计
色谱柱
检测色谱柱流出的组分,并将其转化为电信号,便于记录和检测。
检测器
用于采集、处理、分析和存储色谱数据。
数据处理系统
数据处理与分析
采集色谱数据,进行峰识别、定量和合适的流速、检测波长等参数,开始色谱分离。
进样
将样品注入进样器,设定进样量,启动进样程序。
准备工作
检查仪器是否正常,准备好流动相、色谱柱和样品。
样品前处理的挑战:液相色谱技术对于样品的要求较高,需要进行适当的前处理以去除杂质、提高分离效果。目前常用的样品前处理方法包括沉淀、萃取、吸附等,但这些方法操作繁琐、耗时长且效果不稳定。为解决这一问题,新型的样品前处理技术如固相萃取、免疫吸附等正在不断发展,以提高样品处理的效率和效果。
色谱概论和经典液相色谱法PPT课件

04
液Байду номын сангаас色谱法的实验技术
实验前的准备
仪器准备
试剂准备
实验设计
安全措施
确保液相色谱仪、检测器、 泵、进样器等设备处于良好 工作状态,并进行必要的校
准和维护。
根据实验需求,准备适量的 流动相、固定相、样品等,
确保试剂的质量和纯度。
根据研究目的和目标化合物 性质,设计合理的色谱条件, 包括流动相组成、流速、柱
结合免疫分析的高特异性和液相色谱的高分离性能,实现对生
物样品中目标分子的快速、准确分析。
THANKS FOR WATCHING
感谢您的观看
定性分析
根据色谱图和检测器信号, 结合已知化合物的保留值或 光谱数据,对未知化合物进 行定性分析。
定量分析
通过外标法、内标法或标准 加入法等方法,依据色谱图 中的峰面积或峰高,对目标 化合物进行定量分析。
分离效果评估
根据分离后的色谱图,评估 色谱柱的分离效果、柱效等 指标,为实验条件的优化提 供依据。
快速分析
通过改进色谱柱和检测器技术,缩短分析时间和 提高检测速度,提高分析效率。
微型化
发展微型化色谱柱和微型化检测器,降低样品消 耗和试剂消耗,实现绿色环保分析。
超高效液相色谱法的研究进展
高灵敏度检测
利用新型检测器技术,提高检测灵敏度和选择性,实现对低浓度 样品的有效分析。
宽分离范围
发展多模式超高效液相色谱技术,实现宽分离范围和高分离效率的 分离分析。
在食品分析中的应用
食品添加剂分析
液相色谱法用于检测食品 中添加剂的种类和含量, 确保食品添加剂的安全使 用。
营养成分分析
通过液相色谱法对食品中 的营养成分进行分析,了 解食品的营养价值,指导 消费者合理选择食品。
萃取ppt课件

11
萃取剂S 原料F
萃取相E
萃 取
萃
设 备
取 剂 回
萃取物E′
收
回 收 萃 取 剂
S’
设
备
萃余相R
萃
设 备
取 剂 回
收
萃余物R′
萃取过程
12
一、中药材中的成分 分为有效成分,辅助成分,无效
成分和组织物。在提取中,前两者应 尽量提取完全,后两者尽量除去。
二、中药提取的类型 分为单体成分提取、单味药提取
变动范围大
15~75 6~45 3~6 3~60 4~95
75%~95%
he=3~6m he=1.5~6m 对HT=100~300mm时 微30% 3.4~12.5级
润滑油工艺,核燃料加 工
用氨水从NaOH中萃取
NaC1 回收苯酚 糠醛处理润滑油工艺 废水中脱酚
萃取设备的类型很多。按萃取设备的构造特点大体上 可以分为三类:一是单件组合式;二是塔式;三式离心6式。
油、挥发油、蜡),用于脱脂。易燃。
19
常用提取辅助剂: 主要是酸、碱和表面活性剂。
五、提取方法
1、煎煮法
用水作溶剂,将药材饮片或粗粉加热煮 沸一定的时间,以浸出有效成分的方法。
适用于有效成分能溶解于水且对湿、热
稳定的药材。
20
2、浸渍法
用定量溶剂,在一定的温度下将药材饮 片或颗粒浸泡一定时间,以浸出有效成分的 方法。
优点:提取液浓度和提取率较高,适 用于大批量生产;缺点:热敏性药材不适合, 占地面积大。
36
37
10、连续逆流提取 采用浸渍法或重渗漉法动态连续式提取, 药材的总体运动方向和溶液的总体流动方向 相反,药材连续不断地进入提取器的同时药 渣和提取液连续不断地排出。提取率高,适 合大规模提取。
萃取剂S 原料F
萃取相E
萃 取
萃
设 备
取 剂 回
萃取物E′
收
回 收 萃 取 剂
S’
设
备
萃余相R
萃
设 备
取 剂 回
收
萃余物R′
萃取过程
12
一、中药材中的成分 分为有效成分,辅助成分,无效
成分和组织物。在提取中,前两者应 尽量提取完全,后两者尽量除去。
二、中药提取的类型 分为单体成分提取、单味药提取
变动范围大
15~75 6~45 3~6 3~60 4~95
75%~95%
he=3~6m he=1.5~6m 对HT=100~300mm时 微30% 3.4~12.5级
润滑油工艺,核燃料加 工
用氨水从NaOH中萃取
NaC1 回收苯酚 糠醛处理润滑油工艺 废水中脱酚
萃取设备的类型很多。按萃取设备的构造特点大体上 可以分为三类:一是单件组合式;二是塔式;三式离心6式。
油、挥发油、蜡),用于脱脂。易燃。
19
常用提取辅助剂: 主要是酸、碱和表面活性剂。
五、提取方法
1、煎煮法
用水作溶剂,将药材饮片或粗粉加热煮 沸一定的时间,以浸出有效成分的方法。
适用于有效成分能溶解于水且对湿、热
稳定的药材。
20
2、浸渍法
用定量溶剂,在一定的温度下将药材饮 片或颗粒浸泡一定时间,以浸出有效成分的 方法。
优点:提取液浓度和提取率较高,适 用于大批量生产;缺点:热敏性药材不适合, 占地面积大。
36
37
10、连续逆流提取 采用浸渍法或重渗漉法动态连续式提取, 药材的总体运动方向和溶液的总体流动方向 相反,药材连续不断地进入提取器的同时药 渣和提取液连续不断地排出。提取率高,适 合大规模提取。
《液相层析色谱技术》课件

05
液相层析色谱技术 的挑战与展望
技术挑战与解决方案
分离效果不佳
当样品组分复杂时,液相层析色谱技术的分离效果可 能会受到影响。
分离速度慢
液相层析色谱技术的分离速度相对较慢,需要优化以 提高分离效率。
样品处理难度大
对于某些特殊样品,如生物大分子、蛋白质等,液相 层析色谱技术的样品处理难度较大。
技术挑战与解决方案
原理
通过流动相携带待分离物质通过 固定相,利用不同物质在固定相 上的吸附、溶解等性质差异实现 分离。
发展历程与现状
发展历程
液相层析色谱技术自20世纪初诞生以 来,经历了不断改进和发展,技术不 断完善和提高。
现状
目前液相层析色谱技术已经成为生物 医药、食品、环保等领域中重要的分 离分析工具,应用广泛。
多维分离技术
为了更好地分离复杂样品,液相层析色谱技术将与多种分 离技术结合,形成多维分离技术,进一步提高分离效果。
智能化与自动化
随着人工智能和自动化技术的发展,液相层析色谱技术将 实现智能化和自动化操作,提高分析效率和准确性。
应用领域拓展
随着技术的不断进步和应用需求的增加,液相层析色谱技 术的应用领域将进一步拓展,包括生物医药、环境监测、 食品安全等领域。
技术成本高
液相层析色谱技术需要高昂的设备和试剂成本,限制了其在 某些领域的应用。
解决方案
通过改进分离介质、优化流动相组成、提高检测灵敏度等手 段,提高分离效果和分离速度;同时,开发新型的样品处理 方法和技术,降低处理难度;此外,降低技术成本也是重要 的解决方向。
未来发展方向与趋势
提高分离效率
未来液相层析色谱技术将更加注重提高分离效率,通过改 进分离介质和优化分离条件,实现更快速、高效的分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它集采样、萃取和浓缩于一体, 具有成本低、装置简单、易与GC、 HPLC、毛细管电泳(CE)联用等优点; 同时由于微萃取是在多孔的中空纤维 腔中进行, 并不与样品溶液直接接触, 从而避免了悬滴萃取中溶剂容易损失 的缺点; 而且由于大分子、杂质等不能进入纤维孔, 此外还具备固相微萃取, 液滴微萃取不具备的净化功能;纤维是一次性使用的, 避免了固相微萃取 中可能存在的交叉污染问题。
1. 微量进样器; 2. 样品溶液 3. 有机溶剂 4. 搅拌子 5. 搅拌器
2、多孔中空纤维为载体的液相微萃取
由于悬在微量进样器针头上的有机液滴
在搅拌时易脱落,1999年Bjergaard提出了 以多孔中空纤维为载体的液相微萃取 (hollow fiber-based liquid-phase microextraction, HF-LPME)技术。即以多 孔的中空纤维为微萃取剂的载体。
4.2 pH的选择 对两相LPME,分配系数Ka 的大小是决定回收率的关键因
素。研究表明,两相LPME只适用于亲脂性高或中等的分析物 (Xa, >500),对于高度亲水的中性分析物,是不适用的。 对于酸、碱性分 析物,可通过控制溶液的pH值(使分析物以 非离子化状态存在)来提高分配系数。 对亲水性较强的带电荷物质可利用载体转运三相模式,但这 方面的报道目前还很少 ,有待深入研究。
在顶空液相微萃取中包含3相( 有机溶剂、液上空间、 样品) , 分析物在3相中的化学势是推动分析物从样品进入有 机液滴的驱动力, 可以通过不断搅拌样品产生连续的新表面 来增强这种驱动力。挥发性化合物在液上空间的传质速度非 常快, 这是因为在气相中, 分析物具有较大的扩散系数, 且 挥发性化合物从水中到液上空间再到有机溶剂比从水中直接 进入有机溶剂的传质速度快得多, 所以对于水中的挥发性有 机物, 顶空液相微萃取法比直接液相微萃取法更快捷。
三. 液相微萃取法的原理
液相微萃取是一个基于分析物在样品及小体积的有机溶剂( 或受体) 之间 平衡分配的过程。对于直接液相微萃取体系, 当系统达到平衡时, 有机溶剂 中萃取到的分析物的量由下式计算确定: n= K*VdC0Vs/ (K*Vd+ Vs) ( 1) 其中n为有机溶剂萃取到的分析物的量; C0 为分析物的初始浓度; K为分析 物在有机液滴与样品之间的分配系数; Vd、Vs 分别为有机液滴和样品的体 积。
该技术是在液-液萃取( Liquid-liquidextrac-tion, LLE) 的基础上发展起来的, 与液-液萃取相比, LPME可以提供与之相媲美的灵敏度, 甚至更佳的富 集效果, 同时, 该技术集采样、萃取和浓缩于一体,是 一项环境友好的样品前处理新技术, 特别适合于环 境样品中痕量、超痕量污染物的测定。
液相微萃取技术与色谱
液相微萃取技术与色谱
一. 概述 二. 液相微萃取的模式 三. 液相微萃取法的原理 四. 液相微萃取的影响因素 五. 液相微萃取与色谱联用 六. 液相微萃取的发展前景
1.简介
液相微萃取( liquid phase microextraction, LPME)是 20世纪90年代由Jeannot和Cantwell等最早报道的一种 新型的样品前处理技术,其基本原理是目标分析物在 样品与微升级的萃取溶剂之间达到分配平衡,从而实 现溶质的微萃取。LPME克服了传统液液萃取技术繁 琐、浪费、污染等缺点,具有消耗溶剂少(仅需µL级) , 富集倍数大,萃取效率高,操作更简便,便于实现分析的 自动化等优点。
四.影响萃取效率的因素
4.1萃取溶剂 对于基于多孔中空纤维的液相微萃取技术,有机溶剂的选择至关重要。所 选用的有机溶剂不仅要与纤维有良好的亲和力(能稳定存在于多孔孔隙中)、 不溶于水、挥发性低以及有适当的粘度(防止因扩散而损失),而且对分析 物要有合适的溶解度,保证分析物既能从样品溶液中被萃取,又能被接收 相反萃取。常用的萃取溶剂 有1一辛醇、正己基醚、二己醚、甲苯及乙酸 乙酯,也有使用混合溶剂和离子液体的报道。
对于顶空液相微萃取体系, 当体系达到平衡后液滴中分析物的萃取量n可 按下式计算:
n= KodwVdC0Vs/ (KodwVd+ KhsVh+ Vs) (3) 其中Khs为分析物在顶空与样品之间的分配系数; Vh 为样品的顶空的体积。
从( 1) 、( 2) 和( 3) 式中可以看出, 平衡时有机溶剂( 或受体) 中所萃取到 的分析物的量与样品的初始浓度呈线性关系。
2. 液相微萃取的特点 有机溶剂用量小,一般为几到几十微升,污染少 集目标物的萃取、纯化、浓缩于一步,操作简单,劳动强度
小 无需特殊设备,成本低 通过调节萃取用溶剂的极性或者酸碱性,可实现选择性萃取, 可减少基质干扰
二、液相微萃取的模式
1、单滴液相萃取
直接利用悬挂在色谱微 量进样器针头或Teflon棒 端的有机溶剂对溶液中 的分析物直接进行萃取 的方法, 叫做单滴液相微 萃取法。
3、分散液相微萃取
基于目标分析物在 样品溶液和小体积 的萃取剂之间平衡 分配的过程。在 DLLME操作过程中 (见图1),首先向样 品溶液中加入萃取 剂和分散剂,然后 振荡混合至形成乳 浊液,在离心分层 后用微量进样器取 出萃取剂直接进样 分析。
分散液相微萃取
Байду номын сангаас
4.顶空液相微萃取
顶空液相微萃取(headspace liquid phase microextraction , HS-LPME)是将有机溶剂悬于 微量进样针头或置于待测溶液 上方,分离富集分析物。这种 方法适用于分析物容易进入样 品上方空间的挥发性或半挥发 性有机化合物。
•对于液相微萃取/ 后萃取体系, 当体系达到平衡后受体中分析物 的萃取量n可按下式计算:
n= Ka/ dVaC0Vd/ (Ka/ dVa+ Korg/ dVorg+ Vd) (2) Vd、Va和Vorg分别为给体( 样品) 、受体和有机溶剂的体积; Ka/ d为分析物在受体与给体之间的分配系数;Korg/ d为分析物在有 机溶剂和给体之间的分配系数。