一元一次方程微课
《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
《一元一次方程》示范课教学PPT课件

(2)你认为应引进什么样的未知量?如何用方程表示这 个问题中的相等关系?
(3)列方程的依据是什么?
合作探究
问题1:一辆客车和一辆卡车同时从A地出发沿同一公路同 方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
课堂练习
解:(1)设沿跑道跑x周, 400 x 3 000 是一元一次方程.
(2)设甲种铅笔买了x支,乙种铅笔买了(20-x)支,
0.3 x 0.6 20 x 9 是一元一次方程.
课堂练习
2.练习:根据下列问题,设未知数,列出方程,并指出是 不是一元一次方程:
(3)一个梯形的下底比上底多2 cm,高是5 cm,面积是40 cm2,求上底.
合作探究
问题1:一辆客车和一辆卡车同时从A地出发沿同一公路同 方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
问题2:对于上面的问题,你还能列出其他方程吗? 设客车行驶时间为x h, 根据路程相等列方程,得:70x=60(x+1).
km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
你会用算术方法解决这个问题吗?
对于1
km的路程,客车比卡车少用:
1 60
1 70
h,
则A,B两地间的路程是:
1
1 60
1 70
=42( 0 km).
合作探究
问题1:一辆客车和一辆卡车同时从A地出发沿同一公路同 方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
5.5一元一次方程省公开课一等奖全国示范课微课金奖PPT课件

求பைடு நூலகம்方程
第8页
练习1:小彬用172元钱买了两种书, 共10本,单价分别为18元,10元, 每种书小彬各买了多少本? 设18元书买了x本,
据题意,得
18x+10(10-x)=172.
解,得 x=9 则, 10-x=10 -9=1(本). 答:小彬买了18元书9本,10元书1本.
第9页
请列表分析下面题中等量关系
第4页
1、成人票+学生票=1000张 2 成人票款+学生票款=6950元
设售出学生票为x张,
填写下表:
学生
成人
票数/张 票款/元
x
1000 - x
5x 8(1000 -
依据等量关系,可列出方程: x)
8(1成00人0 -票款x) + 学生5x票款 =6950 第5页
例1:某文艺团体为“希望工程”募捐义演, 成人票8元,学生票5元.
2x 435 x 94
第11页
成人票与学生票各售出多少张?
解:设学生票为x张, 依题意得 5x+8(1000-x) =6950.
解,得 x=350.
此时,1000-x = 1000-350 = 650(张). 答:售出成人票650张,学生票350张.
第6页
1、成人票+学生票=1000张 2 成人票款+学生票款=6950元
设售出成人票为x张,
填写下表:
学生
成人
票数/张 1000 - x
x
票款/元 5(1000 - x) 8x
依据等量关系,可列出方程:
成人8票x 款 + 5学(1生00票0 -款 =6950 第7页
议一议
●列一元一次方程处理实际问题普通步骤 是什么?
冀教版七年级数学上册 5.2 一元一次方程(第五章 一元一次方程 学习、上课课件)

5.2 一元一次方程
学习目标
1 课时讲解 方程的解
一元一次方程
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 方程的解
知1-讲
1. 方程的解 能使方程两边相等的未知数的值,叫作方程的解 . 2. 方程的解与解方程的关系 (1) 方程的解与解方程是两个
不同的概念,方程的解是结果,是具体的数值,而解方程是 变形的过程;(2) 方程的解是通过解方程求得的 .
感悟新知
例3 [母题教材P161练习T1 ]下列各式中,哪些是一元一知2-练 次方程?
(1) 12x+y=1-2y; (2) 7x+5=7( x-2);
(3)
5x2-
1 3
x-2=0;
(4)
2 x-1
=5;(5)
3 4
x=
1 2
;
(6) 2x2+5=2(x2-x) .
感悟新知
知2-练
解题秘方:利用一元一次方程的定义进行判断 .
的解是
x=4,求
a2-
2a的值 .
解题秘方:利用方程的解的定义,将已知的解代 入方程中,求出待定字母的值 .
感悟新知
解:把
x=4
代入方程
3a-x=
x 2
+3
,
得
3a-4=
4 2
+3,解得
a=3.
当 a=3 时, a 2-2a=3 2-2× 3=3.
知1-练
感悟新知
知1-练
2-1. [月考·石家庄] 若x=2是关于x的一元一次方程 bx -a-2=0(a≠ 0)的 一 个 解,则a-2b的值等于
微课5.6 应用一元一次方程——追赶小明

枣庄十五中 周荣奎
“线段图”的基本应 用
1.借助“线段图”分析复杂问题中的数量关系,从
而建立方程解决实际问题,提高分析问题、解决问
题的能力,进一步体会方程模型的作用.
2.应用一元一次方程解决行程问题.
【例题】小明和小彬每天早晨坚持跑步,小彬每秒跑
4 m,小明每秒跑6 m. (1)如果他们站在100 m跑道的两端同时相向起跑,那 么几秒后两人相遇? (2)如果小明站在100 m跑道的起跑处,小彬站在他前
面10 m处,两人同时同向起跑,几秒后小明能追上小彬?
趣味图解:
(1)如果他们站在100 m跑道的两端同时相向起跑,那么几
秒后两人相遇? 100 m
小明所跑的路程 小明所跑的路程 +
小彬所跑的路程 小彬所跑的路程 =100
小 明
相 遇
小 彬
【解析】(1)设x s后两人相遇,由题意得
4x+6x=100, 10x=100, x=10, 答:10 s后两人相遇.
趣味图解:
(2)如果小明站在100 m跑道的起跑处,小彬站在他前面
10 m处,两人同时同向起跑,几秒后小明能追上小彬?
小彬 小明 若设x s后小明能追上小彬. 10 小明 小彬 6x 4x
追及点
追由题意得 6x-4x=10 2x=10 x=5 答:5 s后小明追上小彬.
行程问题常见类型及公式有哪些? (1)相遇问题:相遇时间×速度和=路程和. (2)追及问题:追及时间×速度差=被追及的路程. 在套用公式时应具体问题具体分析,理论联系实际.
线段图是有几条线段组合在一起,用来表示应用题中的 数量关系,帮助人们分析题意,解答问题的一种平面图 形。特点:从抽象的文字到直观的再创造、再演示的过 程。线段图,以其形象、直观的特点,在数学教学中 广泛应用。在数学教学中,注重让学生运用线段图来 解决实际问题,有效地提高了学生的自我学习能力和 创新能力,使学生学会学习。
解一元一次方程去分母省公开课一等奖全国示范课微课金奖课件

1.为庆贺校运会开幕,七年级(1)班学生接收了制 作校旗任务.原计划二分之一同学参加制作,天 天制作40面.而实际上,在完成了三分之一以后, 全班同学一起参加,结果比原计划提前一天半完 成任务.假设每人制作效率相同,问共制作小旗 多少面?
2.小张和父亲预定搭乘家门口公共汽车赶往火车站, 去故乡探望爷爷.在行驶了三分之一旅程后,预 计继续乘公共汽车将会在火车开车后半小时抵达 火车站,便随即下车改乘出租车,车速提升了一 倍,结果赶在火车开车前15分钟抵达火车站.已 知公共汽车平均速度是40千米/时,问小张家到 火车站有多远?
解: 设鸡x只,列方程 2x+4(21-x) =66 解,得 x=9 所以兔个数为: 21-x=12(只)
答: 笼中有鸡9只,兔12只.
第33页
2.李白街上走,提壶去买酒,遇店加一倍, 见花喝一斗;三遇店和花,喝光壶中酒,试 问酒壶中原有多少酒?
斗: 古代一个计量单位; 1斗 = 10升 .
第34页
3.去分母与去括号这两 步分开写,不要跳步, 预防忘记变号。
第7页
例:2: 解方程
解: 去分母(方程两边同乘12),得
3(x-1) -4(2x+5) =-3×12
去括号,得
3x-3-8x-20=-36
移项,得
3x-8x=-36+3+20
合并同类项,得
-5x=-13
系数化为1,得
13
x
5
第8页
解: 去分母(方程两边同乘12),得 4(-x+4)-12x+5×12=4(x-3)-3(x-1) 去括号,得 -4x-16-12x+60=4x-12-3x+3 移项,得 -4x-12x-4x+3x=-12+3+16-60 合并同类项,得 -17x=-53 系数化为1,得
七年级上册数学网课人教版一元一次方程

七年级上册数学网课人教版一元一次方程一、什么是一元一次方程一元一次方程,也称简单一元方程,是最基本的代数方程形式,它是关于一个未知数的方程,形式为 ax+b=0 或ax+b=c( a≠0,b,c 为常数)。
本课程中,我们将讨论一元一次方程 x+2=5 的解法,以及解决其它一元一次方程的基本方法。
二、解一元一次方程的方法1、情况一:ax+b=0,此时只有一个解 x=-b/a。
2、情况二:ax+b=c,此时有两种解法:(1)通过“加减法”:先分别加上b和c,使右边变为0,得到:ax=−b+c,再将两边同乘以a的倒数,得到 x = (c-b)/a。
(2)通过“乘除法”:先将两边同除以a,得到 x + b/a=c/a,再将两边同加b/a,得到 x = c/a-b/a。
三、解一元一次方程的技巧1、利用模式:当出现常见方程形式时,可利用相应模式去解,以提高效率。
比如开头无系数和以系数1开头的一元一次方程都可以用“加减法”去解。
2、错题巩固:针对一些主观性题目,由于其特殊性,需要考生熟记一些模式及其解法方法,以减少出错的几率。
3、把问题转化为容易解的形式:当出现一些比较复杂的一元一次方程时,可以尝试把新的问题转形为两步去解,第一步在原方程中消去未知数,第二步再利用该方程两边相加得到答案。
四、一元一次方程的应用一元一次方程在日常生活中广泛应用,尤其是在财务管理、物价调研、文体活动绩效评估、人口统计、理财投资等方面,都会用到一元一次方程。
比如我们在购买衣服时,以某件衣服的售价减去优惠的金额,得到所付的金额:假设某件衣服的售价为50元,优惠的金额为20元,我们只需要把50减去20,就可以得到最后要付的金额30元,可以用一元一次方程的形式表示为“50 - x = 30”,x等于20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学微课教案
科目数学年级七年级课题一元一次方程的应用
教学目标借助“线段图”分析行程问题中的数量关系,继续利用路程时间速度三个量之间的关系,列方程解应用题。
通过观察、类比进一步培养学生的数学创新能力,培养学生与人合作的能力,培养学生学习数学的热情。
学情简析通过新课的学习,学生已经掌握一元一次方程应用基本的解题思路、方法,会分析解决简单的实际问题,但整个知识掌握不系统、不全面,解题正确率不高。
教法发现法、练习法、讨论法教具多媒体课件、彩色粉笔、小黑板等
教学过程
教学环节教学内容教师活动学生活动
创设问题情境回顾旧知
例题赏析
巩固练习趣味数学:
小明和小刚从相距6千米的两地同时出发同向而行,小明
每小时走7千米,小刚每小时走5千米,小明带了一只小狗,
小狗每小时跑10千米,小狗随小明同时出发,向小刚跑去,
碰到小刚后就立即回头向小明跑去,碰到小明后再回头跑
向小刚……,直到小明追上小刚时才停住,求这条小狗一共
跑了多少路?
温故知新
1.路程问题中路程速度时间三者的关系:
2.列方程解应用题的一般步骤:
3.路程问题中的两种基本题型:
例1:一列慢车从某站开出,每小时行驶48千米,45分钟
后,一列快车也从该站出发,与慢车同向而行,如要1.5小
时追上慢车,快车每小时需行多少千米?
过程展示:
相等关系:快车路程=慢车先行路程+慢车后行路程
解:设快车每小时行x千米,由题意得
1.5x=48×3/4 +48×1.5
解得:x=72
答:快车每小时需行72千米
练习1:小红和小明家距离300米,两人沿同一条路线出
发去某地,小明每秒跑4米,小红骑自行车每秒行10米,
若小明在小红的前面,则小红多长时间可追上小明?
练习2:一队学生去校外进行军事野营训练,以5千米/时的
速度行进,走了12分钟的时候,学校要将一个紧急通知传
给队长,通讯员从学校出发骑自行车以14千米/时的速度,
按原路追上去,通讯员用多少时间可以追上学生队伍?
引导观察
提问
提出问题
讲解分析
个别指导
反馈纠正
思考回答
思考回答
计算
计算
走进生活
巩固练习
导入题目求解开拓发展
小结在一次环城自行车比赛中,已知最快的运动员每小时行30
千米,最慢运动员每小时行10千米,环城一周为60千米,
则速度最快的运动员第一次遇到速度最慢的运动员需用多
少小时?
1、和小明每天绕1个长为400米的环形跑道练习跑步,小
彬每秒跑6米,小明每秒跑4米,若二人同时同地同向跑步,
经几秒后首次相遇?
若二人同时同地反向跑步,经几秒后首次相遇?
2、两站间路程384千米,一列慢车从甲站开出,速度为48
千米/时,慢车开出30分钟后,一列快车从乙站开出,速度
为72千米/时,两车相遇需多长时间?
小明和小刚从相距6千米的两地同时出发同向而行,小明
每小时走7千米,小刚每小时走5千米,小明带了一只小狗,
小狗每小时跑10千米,小狗随小明同时出发,向小刚跑去,
碰到小刚后就立即回头向小明跑去,碰到小明后再回头跑
向小刚……,直到小明追上小刚时才停住,求这条小狗一共
跑了多少路?
1、火车用26秒的时间,通过一座长为256米的隧道(即从
车头进入入口到列车车尾离开出口),这列火车又用16秒的
时间通过了一座长96米的桥,求火车的车长?
2、某初一学生在做作业时,不慎将墨水瓶打翻,使一道作
业题只看到如下字样:“甲乙两地相距40千米,摩托车从甲
地出发,每小时行45千米,运货车从乙站出发,每小时行
35千米,————?(横线部分表示被墨水覆盖的若干文
字)”请将这道作业题补充完整,并列出方程。
通过本节课的学习:
1.你有哪些收获?
2.你还有什么困惑?
完成学案中其它练习。
引导分析
启发提问
引导分析
启发引导
拓展提问
观察思考
计算
合作交流
思考讨论解答
思考解答
思考总结
作业
教后记
本节复习一元一次方程的应用,由于复习课重视的是知识的系统和提高,练习密度大,学生往往感到单调,所以本节课我通过一道趣味数学题来创设情境,引起学生兴趣。
放在最后求解达到首尾呼应效果,借此题还复习了间接设法,一题多用。
在知识的复习上围绕两种基本题型展开,着重分析等量关系,在讲解追及问题的特例---环城自行车比赛问题时,我设计了动画演示使学生轻松得到了相等关系。
在教学中适当运用讨论法,将一些较难问题如求火车长放手给学生,通过小组合作交流将问题轻松愉快地解决,学生的积极性也被充分调动起来,营造了良好的课堂氛围,还培养了学生的协作能力。
但在一些个别问题的处理上,我有些急于功成,不能大胆的放手给学生;题目形式的设计过于单一,各环节的衔接不够紧凑,今后教学中我会注意这些问题并及时改进。