谐波的基础知识,谐波、谐波的种类及谐波频率计算
资料1谐波相关基础知识介绍

谐波相关知识介绍一.关于谐波背景一:2003年8月17日,美国纽约大停电,数万居民在一年中最热的天气下“煎熬”了5天,发生60起重大火灾,一天经济损失200-300亿美元。
背景二:九十年代初,三列电气机车同时在山西石洞口电厂供电区域通过,结果将经过十几次锻打的12.5兆瓦发电机组主轴扭成“麻花”,西北电网因此解网,发生电力系统最高等级恶性事故。
背景三:我省某大型钢铁公司70吨交流电弧炉,由于没有安装电力滤波装置,一台9万千伏安变压器瞬间被烧坏,损失500多万元。
触目惊心的事故,发人深思的教训。
这一切都指向同一个源头:谐波。
用专业术语说,受到谐波污染的电网使得无功电压补偿不足,最终造成巨大损失。
谐波,对电力系统环境的影响和危害不能小觑。
由于谐波污染范围大、距离远、传播快,对电网的污染比之于一个问题化工厂对大气环境的污染更为严重。
据权威测算,仅江苏一个省,每天因谐波而浪费的电就有上亿度。
1.关于谐波的通俗解释:正常情况下交流电的电流电压波形为正弦波,若有谐波的存在,会使标准的正弦波发生畸变,呈不规则的波形;谐波是电网中的“污染”,影响电能质量,危害极大。
2.专业解释:谐波:(harmonic)对周期性交流信号量进行傅立叶级数分解,得到频率为基波频率大于1的整数倍的分量。
我国供电系统频率为50Hz,所以5次谐波的频率为250 Hz。
7次谐波的频率为350 Hz。
11次谐波的频率为550 Hz,13次谐波的频率为650 Hz。
总谐波畸变率:(THD)周期性交流量的谐波含量的方均根值与基波分量的方均根值之比(用百分数表示)。
电压总谐波畸变率以THDU表示,电流总谐波畸变率以THDI表示。
谐波源(harmonic source):向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备。
功率因数:有功功率与视在功率的比值称为功率数。
功率因数调整电费:实行两部分电价制度的用电企业,供电部门根据用户平均功率因数而加收或减免的电费,称为功率因数调整电费二.电力部门对企业用电有两个重要的衡量指标:(1).功率因数: 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S)。
电力系统谐波基本原理

电力系统谐波基本原理一、谐波定义谐波是指一个周期电气量的正弦波分量,其频率为基波频率的整数倍。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经非线性负载时,负载不能吸收全部的基波能量,剩余的部分就会以高次谐波的形式释放出来。
二、谐波产生电力系统中的谐波主要来源于两方面:一方面是由于发电机和变压器等元件的非线性特性;另一方面是由于电力电子设备、整流器、逆变器等的大量应用。
这些设备在正常工作时会产生大量的谐波电流,注入到电力系统中,对电力系统造成影响。
三、谐波频率谐波的频率是基波频率的整数倍。
对于50Hz的基波频率,其产生的谐波主要为50Hz、100Hz、150Hz等。
对于400Hz的基波频率,其产生的谐波主要为400Hz、800Hz、1200Hz等。
四、谐波影响谐波对电力系统的影响是多方面的,主要表现在以下几个方面:1. 增加电力损耗:由于谐波的存在,会导致线损增加,特别是在高次谐波的场合下,线损会更加明显。
2. 影响设备正常运行:谐波会导致变压器、电动机等设备的效率降低,甚至引发设备故障。
3. 干扰通信系统:高次谐波会对通信线路产生干扰,影响通信质量。
4. 引发继电保护误动作:谐波会导致继电保护装置误动作,从而引发停电事故。
5. 影响电子设备:对于电子设备来说,谐波会影响其正常工作,导致设备性能下降。
五、谐波抑制为了减小谐波对电力系统的影响,需要采取相应的措施来抑制谐波的产生和传播。
常用的抑制谐波的方法包括:1. 改善供电系统设计:采用合适的变压器连接方式和合理的供电布局,降低系统中各元件的谐波产生量。
2. 增加无功补偿装置:通过在系统中增加无功补偿装置,可以提高系统的功率因数,减小谐波电流。
3. 采用滤波器:滤波器是抑制谐波的重要手段之一,可以通过滤波器将特定频率的谐波进行过滤。
4. 使用有源滤波器:有源滤波器能够主动产生与谐波大小相等、方向相反的电流,对系统中的谐波进行补偿,达到消除谐波的目的。
谐波

谐波1、定义:电力系统谐波的定义是对周期性非正弦电量进行傅里叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。
谐波实际上是一种干扰量,使电网受到“污染”2、谐波产生的原因:电网中的谐波主要是由各种大量电力和用电交流设备以及其他非线性的负载产生的。
主要的谐波源可分为两大类:(1)、含半导体非线性元件的谐波源。
如各种整流设备、交流调压装置、交流设备、直流拖动设备整流器、PWM变频器等。
(2)、含电弧和铁磁非线性设备的谐波源。
如交流电弧炉、交流电焊机、日光灯和发电机、变压器及铁磁谐振设备等。
家用电器设备分属上述两类谐波源,也是不可忽视的谐波源。
这些设备都使得电力系统的电压、电流波形发生畸变,从而产生高次谐波。
3、谐波的危害:谐波对各种电力设备、通讯设备以及线路都会产生有害的影响,严重时会造成设备的损坏和电力系统事故。
主要危害有一下几个方面:(1)、谐波影响各种电器设备的正常工作,对旋转电机(发电机和电动机)产生附加功率损耗和发热、产生脉冲转矩和噪声,使变压器局部严重发热,使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏。
(2)、谐波使公用电网中的元件产生附加的功率损耗,降低发电、输电以及用电设备的效率。
(3)、电力系统谐波会导致继电保护和自动控制装置的误动或拒动;并使电气测量仪表的计量不准确。
(4)、谐波会对邻近的通讯系统产生干扰,轻者产生噪音,降低通信质量;重者导致信息丢失,使通信系统无法正常工作。
(5)、谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使前几个方面的危害大大增加,甚至引起严重的事故。
4、谐波的治理:传统的谐波抑制方法有两大类:一类是对产生谐波的谐波源装置本身进行改造的方法;另一类是设置谐波滤波装置的方法。
(1)、第一类方法主要有:增加整流相数;采用多重化接线方式;采用先进的控制技术,如PWM技术;谐波消去优化法等;限制交流装置的容量;加入滤波环节等。
谐波计算公式及原理

谐波计算公式及原理在我们的日常生活和各种工程技术领域中,谐波可是个不容忽视的“小家伙”。
它常常隐藏在电流、电压这些“大部队”里,悄悄地搞些小动作。
今天咱们就来好好扒一扒谐波的计算公式和原理,弄清楚它到底在玩什么花样。
先来说说啥是谐波。
想象一下电流或者电压像一群整整齐齐前进的士兵,正常情况下它们步伐一致,节奏稳定。
但有时候,里面会冒出几个不老实的,走着走着就乱了节奏,和大部队不太合拍,这些不和谐的“捣蛋鬼”就是谐波。
谐波的产生原因有很多。
比如说,各种非线性的电子设备,像电脑、变频器、节能灯等等,它们在工作的时候就会把原本规规矩矩的电流或者电压给搅乱,产生谐波。
那怎么来计算谐波呢?这就得提到一个重要的公式:傅里叶级数。
这玩意儿听起来好像挺高大上的,其实说白了就是把一个复杂的波形分解成一系列简单的正弦波的叠加。
就好比把一堆乱麻一根根地捋清楚。
假设我们有一个周期为 T 的函数 f(t) ,那么它可以展开成傅里叶级数:f(t) = a₀ + Σ(an*cos(nωt) + bn*sin(nωt)) (n = 1, 2, 3,...)这里面的 a₀是直流分量,an 和 bn 就是谐波的系数啦。
具体计算这些系数呢,就得用到积分啦。
比如说an = (2/T) * ∫(f(t) * cos(nωt))dt (积分区间为一个周期 T),bn 也类似。
听起来是不是有点头疼?别担心,咱们通过一个实际的例子来感受一下。
有一次,我在工厂里检修设备。
发现一台大型电机运行的时候声音不太对劲,有点“嗡嗡”的杂音。
凭经验我感觉可能是谐波在捣乱。
于是我拿出仪器一测,果然,电流的波形变得奇奇怪怪的。
回到办公室,我就开始根据采集到的数据计算谐波。
那过程可不轻松,各种积分、推导,差点把我脑袋绕晕。
但最终算出来,发现是 5 次谐波和 7 次谐波的含量比较高。
找到了问题所在,解决起来就有方向啦。
我们对设备进行了一些调整和优化,换掉了一些老化的部件,还加了滤波装置。
说明谐波、间谐波和次谐波的区别

说明谐波、间谐波和次谐波的区别摘要:一、谐波、间谐波和次谐波的定义及特点二、谐波、间谐波和次谐波之间的区别三、实际应用中的区分和重要性正文:在电磁学、信号处理等领域,谐波、间谐波和次谐波是常见的术语,它们在电力系统、通信系统等方面有着广泛的应用。
下面我们将详细探讨这三者之间的区别。
一、谐波、间谐波和次谐波的定义及特点1.谐波:谐波是指在正弦波基础上,频率为整数倍基频的波形。
它具有频率整数倍、相位连续、波形对称等特点。
谐波在电力系统中主要由非线性负载和电源不平衡引起。
2.间谐波:间谐波是指频率不是基频整数倍的波形,它存在于非线性系统、非线性元件和多个频率的线性组合中。
间谐波的波形和相位无规律,能量分布较分散。
3.次谐波:次谐波是指频率是基频的整数倍的波形,但其倍数小于谐波。
次谐波的能量较低,对电力系统和通信系统的影响较小。
二、谐波、间谐波和次谐波之间的区别1.频率:谐波是基频的整数倍,间谐波不是基频整数倍,次谐波是基频的整数倍但倍数小于谐波。
2.波形和相位:谐波和次谐波具有对称的波形和连续的相位,间谐波的波形和相位无规律。
3.能量分布:谐波和次谐波能量相对集中,间谐波能量分布较分散。
4.产生原因:谐波主要由非线性负载和电源不平衡引起,间谐波和非线性系统、非线性元件以及多个频率的线性组合有关,次谐波产生原因与谐波相似,但影响较小。
三、实际应用中的区分和重要性1.电力系统:谐波、间谐波和次谐波会影响电力系统的稳定性和电能质量,如引起设备过热、噪音、损耗增加等问题。
通过对这三者的分析和控制,可以降低电力系统的故障风险,提高电能利用率。
2.通信系统:谐波和间谐波会对通信信号产生干扰,导致信号失真、误码率增加等问题。
研究和消除这些干扰有助于提高通信系统的可靠性和稳定性。
3.谐波、间谐波和次谐波的区分在电力系统设计和故障诊断中具有重要意义。
通过对这三者的分析和研究,可以有效评估电力系统的运行状态,为电力系统的优化和管理提供科学依据。
三相谐波计算公式

三相谐波计算公式三相系统的谐波计算涉及到谐波的含义、谐波的计算公式、谐波的特性等方面的内容。
下面将详细介绍三相谐波计算的公式。
首先,介绍一下谐波的概念。
谐波是指频率是基波整数倍的波形分量。
在三相系统中,电流和电压都存在谐波分量。
谐波会导致电路中的各种问题,例如电网负载的损坏、电能计量不准确等。
因此,准确计算和控制三相谐波非常重要。
在三相谐波计算中,常用的谐波计算公式有傅立叶级数法和向量法两种方法。
傅立叶级数法是一种将周期性函数分解成一系列基波及其谐波的方法。
对于三相电压和电流的谐波计算,可以使用傅立叶级数法来计算。
其计算公式如下:电压和电流的傅立叶级数展开式为:\[V_n = \frac{2}{\sqrt{3}} \sum_{k=1}^{\infty} V_{nk} \cos(k \omega t + \theta_{nk})\]其中,\(V_n\)表示第n次谐波的幅值,\(V_{nk}\)表示第n次谐波的k次分量的幅值,\(\omega\)表示基波频率,\(t\)表示时间,\(\theta_{nk}\)表示第n次谐波的k次分量的相位。
电压和电流谐波含有奇次和偶次分量。
奇次谐波的频率为基波频率的(2k-1)倍,偶次谐波的频率为基波频率的2k倍。
向量法是一种利用向量图形解三相电路问题的方法。
在向量法中,电压和电流谐波的计算不需要分解成基波和谐波分量,而是直接计算各谐波的分量和相位。
电压和电流的谐波分量可表示为向量和相位差的乘积。
谐波分量的计算公式如下:\(V_n = V_{n1} \angle \theta_{n1} + V_{n2} \angle \theta_{n2} + V_{n3} \angle \theta_{n3}\)其中,\(V_{n}\)表示第n次谐波的幅值,\(V_{n1}\)、\(V_{n2}\)、\(V_{n3}\)表示谐波分量的幅值,\(\theta_{n1}\)、\(\theta_{n2}\)、\(\theta_{n3}\)表示谐波分量的相位差。
什么是谐波?电力系统谐波怎么产生的?老司机给你科普一下!
什么是谐波?电力系统谐波怎么产生的?老司机给你科普一下!(1)谐波的含义在振动学里认为一个振动产生的波里具有一定频率的振幅最大的正弦波叫基波。
其他高于基波频率的小波就叫作谐波。
电力系统对谐波的定义:对周期性非正弦电量(电压或电流)进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
(基波及其表达式)(基波及2.3.4次谐波)(掺入2.3.4次谐波后的复合波)(2)谐波的产生电力系统是由发电、变电、输配电和用电这四个环节所组成的整体,每个环节均有可能产生谐波。
发电环节:略...变电环节:略...输配电环节:略...用电环节:用电系统中谐波主要是由非线性负载引起,由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。
三次谐波公式:复合波公式:(3)非线性设备含义简言之,设备中产生的电流波形是断续的或突变的,它不是一个可采用线性法则进行运算的连续函数,一般要采用傅里叶级数来描述它。
例如:上图为三相整流回路,整流后的电流波形为阶梯方波,右图是按傅里叶级数展开后的频谱,可以看出五次和七次谐波比例很高。
又如:上图为单相整流回路,整流后的电流波形为断续波形,右图是按傅里叶级数展开后的频谱,其中三次谐波比例很高。
(4)三次谐波电流的特殊性三次谐波电流主要是由单相非线性负载(如荧光灯,节能灯及镇流器等)产生的。
因其频率的特殊性,三次谐波在电网中性线上产生的后果尤为严重。
在三相电网中,基波各相的相位差为120°;而三次谐波相位差为360°。
由下图可见,各相线内的三次谐波电流在中性线上汇集时,其瞬时值是直接同相相加的,故中性线上的三次谐波电流一般为约为3倍的相线上的三次谐波电流,甚至会大于相线上的基波电流。
来源:继保小知识。
谐波的概念
谐波的概念谐波是物理学中一个重要的概念,它常常出现在机械振动、电磁波和量子力学等领域,具有很多有趣的性质和应用。
本文将从定义、特点、计算方法和应用等方面探讨谐波的概念。
一、定义谐波指的是振动或波动中频率与基波(最低频率)的整数倍相等的波。
例如,对于一个长度为L的弦,其基波频率为f1,第一个谐波频率为f2=2f1,第二个谐波频率为f3=3f1,依此类推。
二、特点谐波与基波的频率成整数倍关系,因此它们的周期也成整数倍关系。
谐波的波长也成整数倍关系,比基波的波长短,能量集中于特定的频率,具有单一频率的纯净波形。
此外,谐波的振幅也呈整数倍衰减,通常只有前几个谐波在实际应用中有用,并且前几个谐波的振幅比后面的谐波明显高。
三、计算方法谐波与基波的频率f1、f2、f3等等依次成整数倍关系,用公式f_n =nf1(n为整数)来表示。
对于弦、管道、电路等物理系统,其谐波频率有不同的计算公式。
例如,对于长度为L,拉紧系数为T,质量线密度为μ的弦,其第n个谐波频率为:f_n = n v / 2L,其中v=sqrt(T/μ)是弦的传播速度。
四、应用谐波在物理学、工程学和音乐学等领域有广泛的应用。
在物理学中,谐波是机械振动、电磁波和量子力学中重要的概念,可以用来解释共振、声学和光学等现象。
在工程学中,谐波分析是检测机器和结构的重要手段,可以有效地发现机器故障和结构缺陷。
在音乐学中,谐波分析可以帮助人们理解音乐的谱系和和声结构,为音乐教育和演奏提供重要的理论支持。
综上所述,谐波是物理学中的一个重要概念,具有很多有趣的性质和应用。
了解谐波的定义、特点、计算方法和应用,有助于我们更好地理解物理现象和工程问题,同时也为音乐学和艺术创作提供了有益的参考。
谐波知识
谐波知识一、谐波的定义谐波是指电压中所含有的频率为50HZ正弦基波的整数倍的电量,50HZ称为基波频率,大于基波频率3倍=150HZ的波称之为三次谐波,基波频率5倍250HZ 的波称之为五次谐波,以此类推。
不管几次谐波,他们都是正弦波。
一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。
二、谐波的产生产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器、中频炉、电焊机等。
用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。
谐波电流的产生是与功率转换器的脉冲数相关的。
6脉冲设备仅有5、7、11、13、17、19 ….n倍于电网频率。
功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。
其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。
在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。
在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。
次数越高,谐波分量的振幅越低。
只要哪里有谐波源那里就有谐波产生。
也有可能,谐波分量通过供电网络到达用户网络。
例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。
三、谐波的来源谐波问题早在20世纪20年代和30年代就引起了人们的注意。
谐波的基础知识,谐波、谐波的种类及谐波频率计算
谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容易产生谐波,谐波的影响是什么1 谐波的基础知识(1)什么是基波电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz,所以2 基波是50 Hz。
(2)什么是谐波电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为谐波。
电网或电路中,电压产生的谐波为电压谐波;电流产生的谐波为电流谐波。
(3)谐波有几种整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。
偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。
奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。
正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。
负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。
零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。
高频谐波:指频率为圆耀怨kHz的谐波。
(4)谐波频率如何计算谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿3 缘园Hz等。
(5)哪些设备或电路容易产生谐波1)非线性负载,例二极管整流电路(AC/DC)。
2)三相电压或电流不对称性负载。
3)逆变电路(DC/AC)。
4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。
5)晶闸管调压装置或调速电路。
6)电镀设备。
7)电弧炉、矿热炉、锰矿炉、磷矿炉、电石炉、硅铁炉。
8)电解槽。
9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。
10)电池充电机。
11)变频器(低压或高压变频器)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算
———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算
本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容
易产生谐波,谐波的影响是什么
1 谐波的基础知识
(1)什么是基波?
电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz,所以
2 基波是50 Hz。
(2)什么是谐波?
电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为谐波。
电网或电路中,电压产生的谐波为电压谐波;
电流产生的谐波为电流谐波。
(3)谐波有几种?
整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。
偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。
奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。
正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。
负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。
零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。
高频谐波:指频率为圆耀怨kHz的谐波。
(4)谐波频率如何计算?
谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿
3 缘园Hz等。
(5)哪些设备或电路容易产生谐波?
1)非线性负载,例二极管整流电路(AC/DC)。
2)三相电压或电流不对称性负载。
3)逆变电路(DC/AC)。
4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。
5)晶闸管调压装置或调速电路。
6)电镀设备。
7)电弧炉、矿热炉、锰矿炉、磷矿炉、电石炉、硅铁炉。
8)电解槽。
9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。
10)电池充电机。
11)变频器(低压或高压变频器)。
12)脉幅调制(PAM)调压电路或者是脉宽调制(PWM)调频电路。
13)谐波的次数与整流电路的相数有关,例三相、六相、十二相、十八相、二十四相,当相数越多并通过移相方式就可
谐波次数及谐波分量减小。
例如采用输入变压器移相技术的单元串联在高压频率器的主电路。
14)开关电源。
15)斩波电路、斩波调速。
16)工频电炉。
17)中频电炉。
18)天车、起重机械。
19)气体放电的照明灯具,例:节能灯、荧光灯(T5、T8)、金卤灯、钠灯、汞灯、氪灯、氚灯等,使用时都有一定的
谐波产生。
20)软起动装置(使用SCR调压)。
(6)谐波电流的方向如何?
谐波电流从负载流向供电变压器直至供电网络,即由终端负载向前级的流入。
(7)谐波的影响是什么?
1)对变压器的影响谐波电流使铜损增加、漏磁增加;谐波电压使铁损增加;谐波功率造成噪声增大、温升提高。
2)对电力电线的影响谐波电流易过载,导致过热、破坏绝缘、集肤效应加大。
3)对电动机的影响谐波电流增加铜损、谐波电压增加铁损,谐波的功率造成机械效率减小,功率因数下降,有效转矩
减小。
4)对控制系统的影响电压零点漂移、线电压不平衡、仪表仪器的指示不准,以致控制判断错误,甚至控制系统失控。
5)对通信设备的影响谐波会产生感应电磁场,影响通信质量。
6)对电容器的影响一般大型电动机或低压电网都有无功功率补偿或功率因数补偿,基本都是使用电容器来实现的,因
谐波产生,易使电容器产生过电流、过电压、过温度,造成击穿损坏,原因是谐波电流易发生并联谐振,产生大电流,串联谐振产生过电压,一般电容器运行电流臆1.3 倍额定值电流,否则迅速损坏,而谐波电流以5、7、11次为主。