linux进程间通信

合集下载

linux中ipc机制

linux中ipc机制

linux中ipc机制
Linux IPC(Inter-Process Communication)机制
1、什么是IPC
Inter-Process Communication,即进程间通信,是操作系统中提供的一种机制,它允许多个进程在没有同时运行的情况下,能够进行通信、协作和共享数据。

Linux提供了五种IPC机制:信号量、管道、消息队列、共享内存、Socket。

2、信号量
信号量是用于同步的一种技术,它主要用于解决两个以上进程同时访问同一资源的问题,即资源竞争问题。

信号量是一个计数锁,可以用它来保护共享资源,它可以阻止多个进程同时进入临界区,以保护临界资源。

3、管道(pipe)
管道的创建是由内核完成的,管道是一种半双工的通信方式,它具有一端数据输入,另一端负责数据输出。

管道只能用于具有公共祖先的两个进程之间的通信。

4、消息队列
消息队列是一种异步的IPC机制,它允许多个进程之间在内核中传递消息。

消息队列在缓存中存储消息,如果消息队列满了,则写入消息失败,如果消息队列空了,则读取消息失败。

5、共享内存
共享内存是一种实时的IPC机制,它比消息队列的通信速度快得
多,因为它不需要内核处理。

共享内存可用于多个进程之间的共享数据,这样多个进程可以访问该共享内存区域的数据,从而减少数据传输时间。

6、 Socket
Socket是一种进程间通信技术,它允许两个或多个进程之间通过网络进行通信。

Socket也可以用作本地进程间的通信,它在多个不同的操作系统中可以使用,甚至可以在不同操作系统之间通信。

详解linux进程间通信-消息队列

详解linux进程间通信-消息队列

详解linux进程间通信-消息队列前⾔:前⾯讨论了信号、管道的进程间通信⽅式,接下来将讨论消息队列。

⼀、系统V IPC 三种系统V IPC:消息队列、信号量以及共享内存(共享存储器)之间有很多相似之处。

每个内核中的 I P C结构(消息队列、信号量或共享存储段)都⽤⼀个⾮负整数的标识符( i d e n t i f i e r )加以引⽤。

⽆论何时创建I P C结构(调⽤m s g g e t、 s e m g e t或s h m g e t) ,都应指定⼀个关键字(k e y),关键字的数据类型由系统规定为 k e y _ t,通常在头⽂件< s y s / t y p e s . h >中被规定为长整型。

关键字由内核变换成标识符。

以上简单介绍了IPC,对接下来介绍的消息队列、信号量和共享内存有助于理解。

⼆、消息队列 1、简介 消息队列是消息的链接表 ,存放在内核中并由消息队列标识符标识。

我们将称消息队列为“队列”,其标识符为“队列 I D”。

m s g g e t⽤于创建⼀个新队列或打开⼀个现存的队列。

m s g s n d⽤于将新消息添加到队列尾端。

每个消息包含⼀个正长整型类型字段,⼀个⾮负长度以及实际数据字节(对应于长度),所有这些都在将消息添加到队列时,传送给 m s g s n d。

m s g r c v⽤于从队列中取消息。

我们并不⼀定要以先进先出次序取消息,也可以按消息的类型字段取消息。

2、函数介绍ftok函数#include <sys/types.h>#include <sys/ipc.h>key_t ftok(const char *pathname, int proj_id);//“/home/linux” , 'a'功能:⽣成⼀个key(键值)msgget函数#include <sys/types.h>#include <sys/ipc.h>#include <sys/msg.h>int msgget(key_t key, int msgflg);功能:创建或取得⼀个消息队列对象返回:消息队列对象的id 同⼀个key得到同⼀个对象格式:msgget(key,flag|mode);flag:可以是0或者IPC_CREAT(不存在就创建)mode:同⽂件权限⼀样msgsnd函数int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);功能:将msgp消息写⼊标识为msgid的消息队列msgp:struct msgbuf {long mtype; /* message type, must be > 0 */消息的类型必须>0char mtext[1]; /* message data */长度随意};msgsz:要发送的消息的⼤⼩不包括消息的类型占⽤的4个字节msgflg:如果是0 当消息队列为满 msgsnd会阻塞如果是IPC_NOWAIT 当消息队列为满时不阻塞⽴即返回返回值:成功返回id 失败返回-1msgrcv函数ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,int msgflg);功能:从标识符为msgid的消息队列⾥接收⼀个指定类型的消息并存储于msgp中读取后把消息从消息队列中删除msgtyp:为 0 表⽰⽆论什么类型都可以接收msgp:存放消息的结构体msgsz:要接收的消息的⼤⼩不包含消息类型占⽤的4字节msgflg:如果是0 标识如果没有指定类型的消息就⼀直等待如果是IPC_NOWAIT 则表⽰不等待msgctl函数int msgctl(int msqid, int cmd, struct msqid_ds *buf);msgctl(msgid,IPC_RMID,NULL);//删除消息队列对象 程序2-2将简单演⽰消息队列: --- snd.c ---#include "my.h"typedef struct{long type;char name[20];int age;}Msg;int main(){key_t key = ftok("/home/liudw",'6');printf("key:%x\n",key);int msgid = msgget(key,IPC_CREAT|O_WRONLY|0777);if(msgid<0){perror("msgget error!");exit(-1);}Msg m;puts("please input your type name age:");scanf("%ld%s%d",&m.type,,&m.age);msgsnd(msgid,&m,sizeof(m)-sizeof(m.type),0);return0;} --- rcv.c ---#include "my.h"typedef struct{long type;char name[20];int age;}Msg;int main(){key_t key = ftok("/home/liudw",'6');printf("key:%x\n",key);int msgid = msgget(key,O_RDONLY);if(msgid<0){perror("msgget error!");exit(-1);}Msg rcv;long type;puts("please input type you want!");scanf("%ld",&type);msgrcv(msgid,&rcv,sizeof(rcv)-sizeof(type),type,0);printf("rcv--name:%s age:%d\n",,rcv.age);msgctl(msgid,IPC_RMID,NULL);return0;} 运⾏演⽰: 三、详解ftok函数 ftok根据路径名,提取⽂件信息,再根据这些⽂件信息及project ID合成key,该路径可以随便设置。

linux dbus协议标准

linux dbus协议标准

linux dbus协议标准
DBus(D-Bus)是Linux系统下的一种进程间通信协议,它允许应用程序在系统级别进行通信。

DBus协议是一种基于消息传递的协议,类似于Unix中的Unix Domain Sockets。

DBus协议定义了一组标准的消息格式和消息传递规则,以确保不同应用程序之间的通信能够正常进行。

DBus协议标准包括以下几个方面:
1. 消息格式:DBus消息由一系列字节组成,其中包括消息类型、消息ID、目标地址、数据长度和数据内容等信息。

DBus消息分为三种类型:消息、方法调用和方法响应。

2. 消息传递规则:DBus协议规定了消息传递的规则,包括消息的发送和接收顺序、消息的传递方式、消息的传递超时时间等。

DBus协议还规定了一些特殊情况下的消息传递规则,如消息的重复发送和接收等。

3. 地址和对象路径:DBus协议中的消息是通过地址和对象路径来指
定目标应用程序或对象的。

DBus地址分为两种类型:名称和ID。

DBus 对象路径是指应用程序或对象在系统中的路径,通常由多个部分组成。

4. 认证和授权:DBus协议中的应用程序可以通过认证和授权机制来保护通信的安全性。

DBus协议提供了一些认证和授权机制,如基于密码的认证和基于权限的授权等。

5. 错误处理:DBus协议中的应用程序可以通过错误处理机制来处理通信中的错误。

DBus协议提供了一些错误处理机制,如消息丢失和消息重复等。

总之,DBus协议是Linux系统下的一种重要的进程间通信协议,它定义了一组标准的消息格式和消息传递规则,以确保不同应用程序之间的通信能够正常进行。

L-IPC

L-IPC

25


有名管道的创建可以使用函数 mkfifo(),该函 数类似文件中的open()操作,可以指定管道的路 径和打开的模式。 在创建管道成功之后,就可以使用open、read、 write这些函数了。与普通文件的开发设置一样, 对于为读而打开的管道可在open中设置 O_RDONLY,对于为写而打开的管道可在open中设 置 O_WRONLY,在这里与普通文件不同的是阻塞 问题。由于普通文件的读写时不会出现阻塞问题, 而在管道的读写中却有阻塞的可能,这里的非阻 塞标志可以在open函数中设定为 O_NONBLOCK。
26


对于读进程 若该管道是阻塞打开,且当前 FIFO 内没有数 据,则对读进程而言将一直阻塞直到有数据写 入。 若该管道是非阻塞打开,则不论 FIFO 内是否 有数据,读进程都会立即执行读操作。 对于写进程 若该管道是阻塞打开,则写进程而言将一直阻 塞直到有读进程读出数据。 若该管道是非阻塞打开,则当前 FIFO 内没有 读操作,写进程都会立即执行读操作。
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGIOT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 在Alpha AXP Linux系统上,信号的编号有些不同。

linux进程间通讯的几种方式的特点和优缺点

linux进程间通讯的几种方式的特点和优缺点

linux进程间通讯的几种方式的特点和优缺点Linux进程间通讯的方式有多种,其优缺点也不尽相同,接受者依赖发送者之时间特性可承载其优端。

下面就讨论几种典型的方式:1、管道(Pipe):是比较传统的方式,管道允许信息在不同进程之间传送,由一端输入,另一端输出,提供全双工式劝劝信息传送,除此之外,伺服端也可以将其服务转换为管道,例如说Web服务程序。

管道的优点:简单易懂、可靠、灵活、容易管理,可以控制发送端和接收端的信息流量。

管道的缺点:线程之间的信息量不能太大,也只能在本机上使用,不能通过网络发送信息。

2、消息队列(Message queue):消息队列主要应用在大型网络中,支持多种消息队列协议,广泛用于在远程机器上的进程间的交互、管理进程间的数据和同步问题。

消息队列的优点:主要优点是这种方式可以将消息发送给接收端,然后接收端可以从距离发送端远的地方网络上接收消息,通过消息队列可以较好的管理和控制进程间的数据流量和同步问题。

消息队列的缺点:缺点是消息队里的管理复杂,并且有一定的延迟,而且它使用时应避免共享内存,对于多处理器和跨网络环境, TCP 传输数据时也比不上消息队列的传输效率高。

3、共享内存(Share Memory):是最高效的进程间通信方式,也是最常用的,它使进程在通信时共享一个存储地址,双方都可以以该存储地址作为参数进行读写操作。

共享内存的优点:实现高性能,数据同步操作快、数据可以高速传输,可以解决多处理器以及跨网络环境的通信。

共享内存的缺点:由于进程间直接使用物理内存,没有任何保护,所需要使用较复杂的同步机制来完成数据的可靠传输。

总的来说,每种进程通讯方式都有各自的优缺点,不同的系统需求也许需要多种方案的相互配合才能有效的处理系统间通信的问题。

系统设计者应根据具体系统需求,选择合适的进程通信方式来实现更好的进程间通信。

简述linux中进程间各种通信方式特点

简述linux中进程间各种通信方式特点

简述linux中进程间各种通信方式特点Linux中进程间通信方式有多种,包括管道,命名管道,消息队列,信号量,共享内存和套接字。

每种通信方式都有自己的特点和适用场景。

一、管道1. 特点:- 管道是最简单的进程间通信方式之一,只能用于具有父子关系的进程间通信。

- 管道是一个单向通道,数据只能在一个方向上流动。

- 管道的容量有限,在写度满之前,读进程阻塞;在读度空之前,写进程阻塞。

2. 使用场景:- 父子进程之间需要进行简单的数据传输。

二、命名管道1. 特点:- 命名管道是一种特殊类型的文件,可以实现不相关进程的通信。

- 命名管道是半双工的,只能在一个方向上传输数据。

- 命名管道是顺序读写的,进程可以按照顺序读取其中的数据。

2. 使用场景:- 不相关的进程需要进行数据传输。

- 需要按照顺序进行传输的场景。

三、消息队列1. 特点:- 消息队列是一组消息的链表,具有特定的格式和标识符。

- 消息队列独立于发送和接收进程的生命周期,可以实现不相关进程间的通信。

- 消息队列可以根据优先级进行消息的传输。

2. 使用场景:- 需要实现进程间相对复杂的数据传输。

- 数据传输具有优先级。

四、信号量1. 特点:- 信号量是一个计数器,用于实现多个进程之间的互斥和同步。

- 信号量有一个整数值,只能通过定义的操作进行访问。

- 信号量可以用于控制临界区的访问次数。

2. 使用场景:- 多个进程需要共享公共资源。

- 需要进行互斥和同步操作。

五、共享内存1. 特点:- 共享内存是一块可以被多个进程共同访问的内存区域。

- 共享内存是最快的进程间通信方式,因为数据不需要在进程之间拷贝。

- 共享内存需要通过同步机制(如信号量)进行互斥访问。

2. 使用场景:- 需要高效地进行大量数据传输。

- 数据读写频繁,需要最小化数据拷贝的开销。

六、套接字1. 特点:- 套接字是一种网络编程中常用的进程间通信方式。

- 套接字支持不同主机上的进程进行通信。

实验六 进程间通信


3.2 实验内容(2)

进程的管道通信
编写程序,实现进程的管道通信:父进程使用系统调用pipe() 建立一个管道。创建两个子进程p1和p2,分别向管道个发一 条信息后结束: Child 1 is sending a message to parent. Child 2 is sending a message to parent. 父进程从管道中分别接收两个子进程发来的消息并显示在屏 幕上,然后父进程结束。要求父进程先接受子进程p1发来的 消息,然后再接收子进程p2发来的消息。
实验六 进程间通信

预备知识
Linux进程间通信 进程软中断通信
管道和消息队列

实验指导
软中断通信函数
管道通信的使用
消息队列的应用

实验目的、内容
2.1 软中断通信函数(1)

向一个进程或一组进程发送一个信号: int kill(pid, sig)
pid>0时,核心将信号发送给进程pid
理程序
2.1 软中断通信函数(2)

pid_t wait(int * status)
暂时停止目前进程的执行,直到有信号来或子进程结束

pid_t waitpid(pid_t pid, int * status, int options)
pid的取值 pid=-1时,等待任何一个子进程退出,相当于wait() pid=0时,等待进程组ID与目前进程相同的任何子进程 pid<-1时,等待进程组ID为pid绝对值的任何子进程 options有两个常数参数,可使用或运算,不用时设为0 WNOHANG:即使没有任何子进程退出,它也会立即返回 WUNTRACED:子进程进入暂停执行状态并马上返回,但结束 状态不予以理会

linux高级面试题

linux高级面试题Linux是一种开源的操作系统,广泛应用于服务器领域。

作为一个高级Linux工程师或运维人员,你可能会面试到一些比较复杂的问题。

本文将为你整理一些常见的Linux高级面试题,帮助你准备应对面试挑战。

1. 请解释什么是进程间通信(IPC)?常用的IPC机制有哪些?进程间通信是指不同进程之间进行信息交换和共享资源的机制。

常用的IPC机制包括管道、命名管道、信号量、消息队列、共享内存和套接字等。

2. 请解释什么是Linux文件系统?Linux文件系统是用于组织和管理文件和文件夹的一种方法。

它可以将文件存储在磁盘上,并提供对文件的读写和访问权限控制。

常见的Linux文件系统包括ext2、ext3、ext4和XFS等。

3. 如何在Linux中查看进程的资源占用情况?可以使用top命令或者htop命令来实时监控进程的资源占用情况。

使用ps命令可以列出所有进程,并查看它们的PID、内存占用、CPU 占用等信息。

4. 如何在Linux中查找一个文件?可以使用find命令来在指定的目录中递归查找文件。

例如,使用“find /path/to/directory -name filename”来查找指定目录下名为filename 的文件。

5. 如何在Linux中设置定时任务?可以使用crontab命令来设置定时任务。

使用“crontab -e”命令编辑定时任务配置文件,并使用特定的时间和命令来指定定时任务的执行条件。

6. 请解释什么是软链接和硬链接?它们之间有什么区别?软链接(符号链接)是一个指向另一个文件或目录的特殊文件,类似于Windows中的快捷方式。

硬链接是指多个文件共享同一个inode,它们对应的实际文件内容是相同的。

软链接可以跨文件系统进行链接,而硬链接只能在同一个文件系统内进行链接。

当原始文件被删除时,软链接将失效,而硬链接仍然可以访问原始文件内容。

7. 如何查看Linux系统的硬件信息?可以使用dmidecode命令来查看Linux系统的硬件信息。

Linux进程间通信(七):消息队列msgget()、msgsend()、msgrcv()。。。

Linux进程间通信(七):消息队列msgget()、msgsend()、msgrcv()。

下⾯来说说如何⽤不⽤消息队列来进⾏进程间的通信,消息队列与命名管道有很多相似之处。

有关命名管道的更多内容可以参阅我的另⼀篇⽂章:⼀、什么是消息队列消息队列提供了⼀种从⼀个进程向另⼀个进程发送⼀个数据块的⽅法。

每个数据块都被认为含有⼀个类型,接收进程可以独⽴地接收含有不同类型的数据结构。

我们可以通过发送消息来避免命名管道的同步和阻塞问题。

但是消息队列与命名管道⼀样,每个数据块都有⼀个最⼤长度的限制。

Linux⽤宏MSGMAX和MSGMNB来限制⼀条消息的最⼤长度和⼀个队列的最⼤长度。

⼆、在Linux中使⽤消息队列Linux提供了⼀系列消息队列的函数接⼝来让我们⽅便地使⽤它来实现进程间的通信。

它的⽤法与其他两个System V PIC机制,即信号量和共享内存相似。

1、msgget()函数该函数⽤来创建和访问⼀个消息队列。

它的原型为:int msgget(key_t, key, int msgflg);与其他的IPC机制⼀样,程序必须提供⼀个键来命名某个特定的消息队列。

msgflg是⼀个权限标志,表⽰消息队列的访问权限,它与⽂件的访问权限⼀样。

msgflg可以与IPC_CREAT做或操作,表⽰当key所命名的消息队列不存在时创建⼀个消息队列,如果key所命名的消息队列存在时,IPC_CREAT标志会被忽略,⽽只返回⼀个标识符。

它返回⼀个以key命名的消息队列的标识符(⾮零整数),失败时返回-1.2、msgsnd()函数该函数⽤来把消息添加到消息队列中。

它的原型为:int msgsend(int msgid, const void *msg_ptr, size_t msg_sz, int msgflg);msgid是由msgget函数返回的消息队列标识符。

msg_ptr是⼀个指向准备发送消息的指针,但是消息的数据结构却有⼀定的要求,指针msg_ptr所指向的消息结构⼀定要是以⼀个长整型成员变量开始的结构体,接收函数将⽤这个成员来确定消息的类型。

实验三操作系统进程间通信

实验三操作系统进程间通信实验三进程间通信班级:计科f1406 姓名:王家平学号:201416010619一、实验目的:Linux系统的进程通信机构(IPC)允许在任意进程间大批量的交换数据。

本实验的目的是了解和熟悉Linux支持的通信机制、共享存储区机制及信号量机制。

二、实验预备内容:阅读Linux系统的msg.c sem.c shm.c等源码文件,熟悉Linux的三种通信机制。

三、实验内容:(1) 消息的创建,发送和接收(2) 使用系统调用msgget(),msgsnd(), msgrev()及msgctl()编制一长度为1k的消息发送和接收程序。

<程序设计>(1) 为了便于操作和观察结果,用一个程序作为“引子”,先后fork()两个子进程,SERVER和CLIENT,进行通信。

2) SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。

当遇(到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER。

SERVER 每接收到一个消息后显示一句“(server)received”。

(3) CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。

最后一个消息,即是SERVER端需要的结束信号。

CLIENT每发送一条信息后显示一句“(client)sent”。

(4) 父进程在SERVER和CLIENT均退出后结束。

(5)四(实验代码1.#include <stdio.h>#include <sys/types.h>#include <sys/msg.h>#include <sys/ipc.h>#define MSGKEY 75struct msgform{long mtype;char mtext[1030];}msg;int msgqid,i;void CLIENT(){ int i;msgqid=msgget(MSGKEY,0777);for (i=10;i>=1;i--){msg.mtype=i;printf("(client)sent \n");msgsnd(msgqid,&msg,1024,0); /*发送消息msg入msgid消息队列*/ }exit(0);}void SERVER(){msgqid=msgget(MSGKEY,0777|IPC_CREAT); /*由关键字获得消息队列*/ do{msgrcv(msgqid,&msg,1030,0,0); /*从msgid消息队列接收消息msg*/ printf("(server)received \n");}while(msg.mtype!=1); /*消息类型为1时,释放队列*/msgctl(msgqid,IPC_RMID,0);exit(0);}void main(){while((i=fork())==-1);if(!i) SERVER();while((i=fork())==-1);if(!i) CLIENT();wait(0);wait(0);}2.#include <stdio.h>#include <sys/types.h>#include <sys/msg.h>#include <sys/ipc.h>#define MSGKEY 75struct msgform{long mtype;char mtext[1030];}msg;int msgqid,i;CLIENT(){ int i;msgqid=msgget(MSGKEY,0777);for (i=10;i>=1;i--){msg.mtype=i;printf("(client)sent \n");msgsnd(msgqid,&msg,1024,0); /*发送消息msg入msgid消息队列*/ }exit(0);}main(){while((i=fork())==-1); if(!i) CLIENT();wait(0);}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
CHENLI 2021/3/7
linux进程间通信(IPC)由以下几部分发展而来:
早期UNIX进程间通信、基于System V进程间通信、 基于Socket进程间通信和POSIX进程间通信。
UNIX进程间通信方式包括:管道、FIFO、信号。
System V进程间通信方式包括:System V消息队 列、System V信号灯、System V共享内存。
POSIX进程间通信包括:posix消息队列、posix信 号灯、posix共享内存。
3
CHENLI 2021/3/7
现在linux使用的进程间通信方式: (1)管道(pipe)和有名管道(FIFO) (2)信号(signal) (3)消息队列 (4)共享内存 (5)信号量 (6)套接字(socket)
数据的修改,别的进程应该立刻看到。 通知事件:一个进程需要向另一个或一组进程发送消息,
通知它(它们)发生了某种事件(如进程终止时要通知父 进程)。 资源共享:多个进程之间共享同样的资源。为了作到这一 点,需要内核提供锁和同步机制。 进程控制:有些进程希望完全控制另一个进程的执行(如 Debug进程),此时控制进程希望能够拦截另一个进程的 所有陷入和异常,并能够及时知道它的状态改变。
printf("pipe create error\n");
return -1;
}
else
printf("pipe create success\n");
close(pipe_fd[0]);
close(pipe_fd[1]);
}
8
CHENLI 2021/3/7
2.2 管道读写
管道主要用于不同进程间通信。实际上,通常先创建一 个管道,再通过fork函数创建一个子进程。
linux进程间通信
1. 进程间通信概述 2. 管道通信 3. 信号 4. 共享内存 5. 消息队列
1
CHENLI 2021/3/7
1、进程间通信概述
进程间通信有如下一些目的: 数据传输:一个进程需要将它的数据发送给另一个进程,
发送的数据量在一个字节到几兆字节之间。 共享数据:多个进程想要操作共享数据,一个进程对共享
12
CHENLI 2021/3/7
使用popen()创建的管道必须使用pclose( )关闭。其实, popen/pclose和标准文件输入/输出流中的fopen()/fclose() 十分相似。
库函数:pclose();
原型:int pclose( FILE *stream );
返回值:返回调用状态。
库函数:popen();
原型: FILE *popen ( char *command, char *type);
返回值:如果成功,返回一个新的文件流。如果无法 创建进程或者管道,返回NULL。
管道中数据流的方向是由第二个参数type控制的。此参 数可以是r或者w,分别代表读或写。但不能同时为读和写。 在Linux系统下,管道将会以参数type中第一个字符代表的 方式打开。所以,如果你在参数type中写入rw,管道将会 以读的方式打开。
图2 父子进程管道的文件描述符对应关系
9
CHENLI 2021/3/7
子进程写入和父进程读的命名管道:
图 3 关闭父进程fd[1] 和 子进程[0]
10
CHENLI 2021/3/7
2.3 管道读写注意事项
可以通过打开两个管道来创建一个双向的管道。 但需要在子进程中正确地设置文件描述符。
必须在系统调用fork( )中调用pipe( ),否则子进 程将不会继承文件描述符。
4
CHENLI 2021/3/7
2、管道通信
普通的Linux shell都允许重定向,而重定向使用的就是 管道。例如:
ps | grep vsftpd
管道是单向的、先进先出的、无结构的、固定大小的字 节流,它把一个进程的标准输出和另一个进程的标准输入 连接在一起。写进程在管道的尾端写入数据,读进程在管 道的首端读出数据。数据读出后将从管道中移走,其它读 进程都不能再读到这些数据。管道提供了简单的流控制机 制。进程试图读空管道时,在有数据写入管道前,进程将 一直阻塞。同样,管道已经满时,进程再试图写管道,在 其它进程从管道中移走数据之前,写进程将一直阻塞。
当使用半双工管道时,任何关联的进程都必须 共享一个相关的祖先进程。因为管道存在于系统 内核之中,所以任何不在创建管道的进程的祖先 进程之中的进程都将无法寻址它。而在命名管道 中却不是这样。
11
CHENLI 2021/3/7
2.4 标准流管道
与linux中文件操作有文件流的标准I/O一样,管道的操作 也支持基于文件流的模式。接口函数如下
13
CHENLI 2021/3/7
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
系统调用:pipe( );
原型:int pipe(int fd[2]);
返回值:如果系统调用成功,返回0。如果系统调用失 败返回- 1:
errno = EMFILE (没有空闲的文件描述符)
EMFILE (系统文件表已满)
EFAULT (fd数组无效)
6
CHENLI 2021/3/7
注意:fd[0] 用于读取管道,fd[1] 用于写入管 道。
图1 linux中NLI 2021/3/7
#include <unistd.h> #include <errno.h> #include <stdio.h> #include <stdlib.h>
int main()
{
int pipe_fd[2];
if(pipe(pipe_fd)<0){
管道主要用于不同进程间通信。
5
CHENLI 2021/3/7
2.1 管道创建与关闭
创建一个简单的管道,可以使用系统调用pipe( )。它接 受一个参数,也就是一个包括两个整数的数组。如果系统 调用成功,此数组将包括管道使用的两个文件描述符。创 建一个管道之后,一般情况下进程将产生一个新的进程。
相关文档
最新文档