外文翻译---图像的边缘检测
CannyEdgeDetectionTutorial(Canny边缘检测教程)

CannyEdgeDetectionTutorial(Canny边缘检测教程)Canny Edge Detection Tutorial(Canny 边缘检测教程)关于此算法的代码可以再/caiye917015406/article/details/7863825找到This tutorial assumes the reader:(1) Knows how to develop source code to read raster data(2) Has already read my Sobel edge detection tutorialThis tutorial will teach you how to:这个教程将教你:(1) Implement the Canny edge detection algorithm. 实现Canny边缘检测算法INTRODUCTIONEdges characterize boundaries and are therefore a problem of fundamental importance in image processing. Edges in images are areas with strong intensity contrasts ? a jump in intensity from one pixel to the next. Edge detecting an imagesignificantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. This was also stated in my Sobel and Laplace edge detection tutorial, but I just wanted reemphasize the point of why you would want to detect edges.边缘描述边界在图像的预处理中是一个重要的问题。
(2)图像分割边缘检测

边缘检测(Edge Detection) 边缘检测(Edge Detection)
边缘:指图像局部亮度变化显著的部分, 边缘:指图像局部亮度变化显著的部分, 主要存在于目标与目标、目标与背景、 主要存在于目标与目标 、目标与背景、区域与 区域(包括不同的颜色 )之间, 是图像分割、 区域(包括不同的颜色)之间,是图像分割、 纹理特征提取和形状特征提取的重要基础。 纹理特征提取和形状特征提取的重要基础。 边缘表现为图像上的不连续性 (灰度级的突变 灰度级的突变 纹理结构的突变, 颜色的变化) , 纹理结构的突变 , 颜色的变化 。 这种不连 续可利用求导数方便地检测到。 续可利用求导数方便地检测到。
简称LoG算字) 又叫“墨西哥帽子” 简称LoG算字),又叫“墨西哥帽子”函数 LoG算字
边缘检测(Edge Detection) 边缘检测(Edge Detection)
利用边缘检测来分割图像, 利用边缘检测来分割图像,基本思想是先检测 图像中的边缘点, 图像中的边缘点,再按照某种策略将边缘沿点 连接成轮廓,从而构成分割区域。 连接成轮廓,从而构成分割区域。 由于边缘是所要提取目标和背景的分界线, 由于边缘是所要提取目标和背景的分界线, 提 取出边缘才能将目标和背景区分开。 取出边缘才能将目标和背景区分开。
边缘检测
最简单的边缘检测方法是并行微分算子法。 最简单的边缘检测方法是并行微分算子法。 利用相邻区域的像素值不连续的性质, 利用相邻区域的像素值不连续的性质,采 用一阶或二阶导数来检测边缘点。 用一阶或二阶导数来检测边缘点。 一阶导数求极值点,二阶导数求过零点。 一阶导数求极值点,二阶导数求过零点。
简化为:
| ∇ f ( x , y ) |=| f( x , y ) − f( x + 1, y + 1) | + | f( x + 1, y ) − f( x , y + 1) |
图像边缘检测

图像边缘检测边缘是图像最基本的特征,其在计算机视觉、图像分析等应用中起着重要的作用,这是因为图像的边缘包含了用于识别的有用信息,是图像分析和模式识别的主要特征提取手段。
1.何为“图像边缘”?在图像中,“边缘”指的是临界的意思。
一幅图像的“临界”表示为图像上亮度显著变化的地方,边缘指的是一个区域的结束,也是另一个区域的开始。
“边缘点”指的是图像中具有坐标[x,y],且处在强度显著变化的位置上的点。
2.如何表示边缘检测?在数学上,用导数来表示改变的快慢。
基于此,有许多方法用于边缘检测,他们绝大部分可以划分为两类:基于查找的一类和基于零穿越的一类。
基于查找的方法通过寻找图像一阶导数中的最大值和最小值来检测边界,通常将边界定位在梯度最大的方向(想想一阶导数的含义是图像变化的速度,最大的自然就是变化最显著的)。
基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。
图像在数学上可看做是二维离散函数,图像梯度就是这个二维离散函数的求导。
函数f(x,y)在(x,y)处的梯度为一个向量:计算这个向量的大小为:通常为了提高效率,常近似表示为:梯度的方向角为:差分通常是微分在离散的函数中的等效运算,所以计算图像的梯度常使用差分。
3.Sobel算子索贝尔算子(Sobel operator)是图像处理中的算子之一,主要用于边缘检测。
在技术上,它是一离散型差分算子,用来运算图像亮度函数的梯度之近似值。
在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。
公式该算子包含两组3X3的矩阵,分别为横向和纵向,将其与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:具体计算如下:Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)+(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y)+(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)= [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)+0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)+(-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)= [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)]其中f(a,b)表示图像(a,b)点的灰度值。
边缘检测MATLAB

一、图像分割概述图像分割一般采用的方法有边缘检测(edge detection)、边界跟踪(edge tracing)、区域生长(region growing)、区域分离和聚合等。
图像分割算法一般基于图像灰度值的不连续性或其相似性。
不连续性是基于图像灰度的不连续变化分割图像,如针对图像的边缘有边缘检测、边界跟踪等算法。
相似性是依据事先制定的准则将图像分割为相似的区域,如阈值分割、区域生长等。
二、边缘检测图像的边缘点是指图像中周围像素灰度有阶跃变化或屋顶变化的那些像素点,即灰度值导数较大或极大的地方。
边缘检测可以大幅度的减少数据量,并且剔除不相关信息,保留图像重要的结构属性。
边缘检测基本步骤:平滑滤波、锐化滤波、边缘判定、边缘连接。
说明:垂直于边缘的走向,像素值变化比较明显,可能呈现阶跃状,也可能呈现屋顶状。
因此,边缘可以分为两种:一种为阶跃性边缘,它两边的像素灰度值有着明显的不同;另一种为屋顶状边缘,它位于灰度值从增加到减少的变化转折点。
对于阶跃性边缘,二阶方向导数在边缘处呈现零交叉;对于屋顶状边缘,二阶方向导数在边缘处取极值。
三、边缘检测算法:•基于一阶导数:Roberts算子、Sobel算子、Prewitt算子•基于二阶导数:高斯-拉普拉斯边缘检测算子•Canny边缘检测算法四、matlab实现1)基于梯度算子(一阶导数)的边缘检测BW=edge(I,type,thresh,direction,’nothinning’)thresh是敏感度阈值参数,任何灰度值低于此阈值的边缘将不会被检测到。
默认值为空矩阵[],此时算法自动计算阈值。
direction指定了我们感兴趣的边缘方向,edge函数将只检测direction中指定方向的边缘,其合法值如下:可选参数’nothinning’,指定时可以通过跳过边缘细化算法来加快算法运行的速度。
默认是’thinning’,即进行边缘细化。
2)基于高斯-拉普拉斯算子(三阶导数)的边缘检测BW=edge(I,’log’,thresh,sigma)sigma指定生成高斯滤波器所使用的标准差。
外文翻译---MATLAB 在图像边缘检测中的应用

英文资料翻译MATLAB application in image edge detection MATLAB of the 1984 countries MathWorks company to market since, after 10 years of development, has become internationally recognized the best technology application software. MATLAB is not only a kind of direct, efficient computer language, and at the same time, a scientific computing platform, it for data analysis and data visualization, algorithm and application development to provide the most core of math and advanced graphics tools. According to provide it with the more than 500 math and engineering function, engineering and technical personnel and scientific workers can integrated environment of developing or programming to complete their calculation.MATLAB software has very strong openness and adapt to sex. Keep the kernel in under the condition of invariable, MATLAB is in view of the different application subject of launch corresponding Toolbox (Toolbox), has now launched image processing Toolbox, signal processing Toolbox, wavelet Toolbox, neural network Toolbox and communication tools box, etc multiple disciplines special kit, which would place of different subjects research work.MATLAB image processing kit is by a series of support image processing function from the composition, the support of the image processing operation: geometric operation area of operation and operation; Linear filter and filter design; Transform (DCT transform); Image analysis and strengthened; Binary image manipulation, etc. Image processing tool kit function, the function can be divided into the following categories: image display; Image file input and output; Geometric operation; Pixels statistics; Image analysis and strengthened; Image filtering; Sex 2 d filter design; Image transformation; Fields and piece of operation; Binary image operation; Color mapping and color space transformation; Image types and type conversion; Kit acquiring parameters and Settings.1.Edge detection thisUse computer image processing has two purposes: produce more suitable for human observation and identification of the images; Hope can by the automatic computer image recognition and understanding.No matter what kind of purpose to, image processing the key step is to contain a variety of scenery of decomposition of image information. Decomposition of the end result is that break down into some has some kind of characteristics of the smallest components, known as the image of the yuan. Relative to the whole image of speaking, this the yuan more easily to be rapid processing.Image characteristics is to point to the image can be used as the sign of the field properties, it can be divided into the statistical features of the image and image visual, two types of levy. The statistical features of the image is to point to some people the characteristics of definition, through the transform to get, such as image histogram, moments, spectrum, etc.; Image visual characteristics is refers to person visual sense can be directly by the natural features, such as the brightness of the area, and texture or outline, etc. The two kinds of characteristics of the image into a series of meaningful goal or regional p rocess called image segmentation.The image is the basic characteristics of edge, the edge is to show its pixel grayscale around a step change order or roof of the collection of those changes pixels. It exists in target and background, goals and objectives, regional and region, the yuan and the yuan between, therefore, it is the image segmentation dependent on the most important characteristic that the texture characteristics of important information sources and shape characteristics of the foundation, and the image of the texture characteristics and the extraction of shape often dependent on image segmentation. Image edge extraction is also the basis of image matching, because it is the sign of position, the change of the original is not sensitive, and can be used for matching the feature points.The edge of the image is reflected by gray not continuity. Classic edge extraction method is investigation of each pixel image in an area of the gray change, use edge first or second order nearby directional derivative change rule,with simple method of edge detection, this method called edge detection method of local operators.The type of edge can be divided into two types: (1) step representation sexual edge, it on both sides of the pixel gray value varies significantly different; (2) the roof edges, it is located in gray value from the change of increased to reduce the turning point. For order jump sexual edge, second order directional derivative in edge is zero cross; For the roof edges, second order directional derivative in edge take extreme value.If a pixel fell in the image a certain object boundary, then its field will become a gray level with the change. The most useful to change two features is the rate of change and the gray direction, they are in the range of the gradient vector and the direction to said. Edge detection operator check every pixel grayscale rate fields and evaluation, and also include to determine the directions of the most use based on directional derivative deconvolution method for masking.Digital image processing technique has been widely applied to the biomedical field, the use of computer image processing and analysis, and complete detection and recognition of cancer cells can help doctors make a diagnosis of tumor cancers. Need to be made in the identification of cancer cells, the quantitative results, the human eye is difficult to accurately complete such work, and the use of computer image processing to complete the analysis and identification of the microscopic images have made great progress. In recent years, domestic and foreign medical images of cancer cells testing to identify the researchers put forward a lot of theory and method for the diagnosis of cancer cells has very important meaning and practical value.Cell edge detection is the cell area of the number of roundness and color, shape and chromaticity calculation and the basis of the analysis their test results directly affect the analysis and diagnosis of the disease. Classical edge detection operators such as Sobel operator, Laplacian operator, each pixel neighborhood of the image gray scale changes to detect the edge. Although these operators is simple, fast, but there are sensitive to noise, get isolated or in short sections of acontinuous edge pixels, overlapping the adjacent cell edge defects, while the optimal threshold segmentation and contour extraction method of combining edge detection, obtained by the iterative algorithm for the optimal threshold for image segmentation, contour extraction algorithm, digging inside the cell pixels, the last remaining part of the image is the edge of the cell, change the processing order of the traditional edge detection algorithm, by MATLAB programming, the experimental results that can effectively suppress the noise impact at the same time be able to objectively and correctly select the edge detection threshold, precision cell edge detection.2.Edge detection of MATLABMATLAB image processing toolkit defines the edge () function is used to test the edge of gray image.(1) BW = edge (I, "method"), returns and I size binary image BW, includingelements of 1 said is on the edge of the point, 0 means the edge points.Method for the following a string of:1) soble: the default value, with derivative Sobel edge detectionapproximate measure, to return to a maximum gradient edge;2) prewitt: with the derivative prewitt approximate edge detection, amaximum gradient to return to edge;3) Roberts: with the derivative Roberts approximate edge detection margins,return to a maximum gradient edge;4) the log: use the Laplace operation gaussian filter to I carry filtering,through the looking for 0 intersecting detection of edge;5) zerocross: use the filter to designated I filter, looking for 0 intersectingdetection of edge.(2) BW = edge (I, "method", thresh) with thresh designated sensitivitythreshold value, rather than the edge of all not thresh are ignored.(3) BW = edge (I, "method" thresh, direction, for soble and prewitt methodspecified direction, direction for string, including horizontal level said direction; Vertical said to hang straight party; Both said the two directions(the default).(4) BW = edge (I, 'log', thresh, log sigma), with sigma specified standarddeviation.(5) [BW, thresh] = edge (...), the return value of a function in fact have multiple(" BW "and" thresh "), but because the brace up with u said as a matrix, and so can be thought a return only parameters, which also shows the introduction of the concept of matrix MATLAB unity and superiority.st wordMATLAB has strong image processing function, provide a simple function calls to realize many classic image processing method. Not only is the image edge detection, in transform domain processing, image enhancement, mathematics morphological processing, and other aspects of the study, MATLAB can greatly improve the efficiency rapidly in the study of new ideas.MATLAB 在图像边缘检测中的应用MATLAB自1984年由国MathWorks公司推向市场以来,历经十几年的发展,现已成为国际公认的最优秀的科技应用软件。
数字图像处理__Canny边缘检测

摘要边缘检测是数字图像处理中的重要内容,边缘是图像最基本的特性。
在图像边缘检测中,微分算子可以提取出图像的细节信息,景物边缘是细节信息中最具有描述景物特征的部分,也是图像分析中的一个不可或缺的部分。
本文详细地分析了目前常用的几种算法,即:Roberts交叉微分算子、Sobel微分算子、Priwitt微分算子和Laplacian微分算子以及Canny算子,用C语言编程实现各算子的边缘检测,并根据边缘检测的有效性和定位的可靠性,得出Canny算子具备有最优边缘检测所需的特性。
关键词:图像处理,微分算子,Canny算子,边缘检测AbstractEdge detection is the important contents of digital image processing ,and the edge is the most basic characteristics of the image.In the image edge detection ,differential operator can be used to extract the details of the images,features’edge is the most detailed information describing the characteristics of the features of the image analysis, and is also an integral part of the image.This article gives the detailed analysis of several algorithms which is commonly used at present,such as Roberts cross-differential operator、Sobel differential operator、Priwitt differential operator、Laplacian differential operator and Canny operator,and we complete with the C language procedure to come ture edge detection.According to the effectiveness of the image detection and the reliability of the orientation,we can deduced that the Canny operator have the characteristics which the image edge has.Keywords: Image processing, Canny operator, differential operator, edge detection目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 引言 (1)1.2 数字图像技术的概述 (2)1.3 边缘检测 (3)1.4 论文各章节的安排 (4)第二章微分算子边缘检测 (5)2.1 Roberts算子 (5)2.2 Sobel算子 (5)2.3 Priwitt算子 (6)2.4 Laplacian算子 (6)第三章Canny边缘检测 (8)3.1 Canny指标 (8)3.2 Canny算子的实现 (9)第四章程序设计与实验 (12)4.1各微分算子的程序设计 (12)4.2 实验结果及比较 (14)第五章结论与展望 (17)5.1 结论 (17)5.2 展望 (17)致谢 ..................................................................................................... 错误!未定义书签。
图像的边缘检测实验报告

图像的边缘检测实验报告
《图像的边缘检测实验报告》
图像的边缘检测是计算机视觉领域中的重要技术之一,它可以帮助我们识别图
像中物体的边缘和轮廓,从而实现图像分割、特征提取和目标识别等应用。
在
本次实验中,我们将对几种常用的边缘检测算法进行比较和分析,以评估它们
在不同场景下的性能和适用性。
首先,我们使用了Sobel算子进行边缘检测。
Sobel算子是一种基于梯度的边缘检测方法,它通过对图像进行卷积操作来寻找像素值变化最大的地方,从而找
到图像中的边缘。
实验结果显示,Sobel算子在一些简单场景下表现良好,但
在复杂背景和噪声干扰较大的情况下效果不佳。
接着,我们尝试了Canny边缘检测算法。
Canny算法是一种多阶段的边缘检测
方法,它通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值处理等
步骤来检测图像中的边缘。
实验结果显示,Canny算法在复杂场景下表现出色,能够有效地抑制噪声并找到图像中的真实边缘。
最后,我们还尝试了Laplacian算子和Prewitt算子等其他边缘检测算法,并对
它们的性能进行了比较和分析。
实验结果显示,不同的边缘检测算法在不同场
景下表现出各自的优势和劣势,需要根据具体的应用需求来选择合适的算法。
总的来说,本次实验对图像的边缘检测算法进行了全面的比较和分析,为我们
进一步深入理解和应用这些算法提供了重要的参考和指导。
希望通过这些实验
结果,我们能够更好地利用边缘检测技术来解决实际的图像处理问题,为计算
机视觉领域的发展做出更大的贡献。
图像边缘检测

V ol.15, No.1©2004 Journal of Software 软 件 学 报 1000-9825/2004/15(01)0000 图像边缘检测Edge Detection of ImageLi Jie(Department of Computer Science and Technology,Nanjing University, Nanjing, China)Email:lijie1108@摘 要: 边缘检测是在图像的局部区域上针对像素点的一种运算,在计算机视觉、图像理解等应用中扮演着重要的角色,同时也是图象分析与模式识别的重要环节。
因为图像的边缘包含了模式识别的有用信息,所以边缘检测是图像分析和模式识别中特征提取的主要手段,也使得边缘检测在计算机视觉的一些预处理算法中有着重要的地位。
另外,随着科技日新月异的发展,边缘检测技术也逐渐运用到生产和生活中。
因此,对边缘检测的研究也有很重要的实际应用价值。
本文介绍了边缘检测的一般步骤,对灰度图像的几种边缘检测算法,作简单的介绍。
关键词: 边缘检测; 经验模型分解;Sobel 算子;神经网络中图法分类号: TP-301 文献标识码: A1 引言边缘检测是图像处理领域中最基本的问题,也是经典的技术难题之一,它的解决对于进行高层次的特征提取、特征描述、目标识别和图像理解等有着重大的影响。
因此,边缘检测在图像分割、模式识别、计算机视觉等众多方面都有着非常重要的地位。
然而由于成像过程中的投影、混合、畸变和噪声等导致图像的模糊和变形,边缘往往难于检测,这使得人们一直致力于构造具有良好性质的边缘检测算子。
边缘检测的研究有着久远的历史,其原因一方面是由于课题本身的重要性,另一方面也反映了这个课题的深度和难度。
所以,边缘检测方面的研究具有非常重要的理论意义。
由于边缘为图像中灰度发生急剧变化的区域边界,传统的图像边缘检测方法大多可归结为图像高频分量的增强过程,微分运算自然就成了边缘检测与提取的主要手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附:英文资料翻译图像的边缘检测To image edge examination algorithm research academic reportAbstractDigital image processing took a relative quite young discipline, is following the computer technology rapid development, day by day obtains the widespread application.The edge took the image one kind of basic characteristic, in the pattern recognition, the image division, the image intensification as well as the image compression and so on in the domain has a more widespread application.Image edge detection method many and varied, in which based on brightness algorithm, is studies the time to be most long, the theory develops the maturest method, it mainly is through some difference operator, calculates its gradient based on image brightness the change, thus examines the edge, mainly has Robert, Laplacian, Sobel, Canny, operators and so on LOG. First as a whole introduced digital image processing and the edge detection survey, has enumerated several kind of at present commonly used edge detection technology and the algorithm, and selects two kinds to use Visual the C language programming realization, through withdraws the image result to two algorithms the comparison, the research discusses their good and bad points.对图像边缘检测算法的研究学术报告摘要数字图像处理作为一门相对比较年轻的学科, 伴随着计算机技术的飞速发展, 日益得到广泛的应用. 边缘作为图像的一种基本特征, 在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用.图像边缘提取的手段多种多样,其中基于亮度的算法,是研究时间最久,理论发展最成熟的方法, 它主要是通过一些差分算子, 由图像的亮度计算其梯度的变化, 从而检测出边缘, 主要有Robert, Laplacian, Sobel, Canny, LOG 等算子. 首先从总体上介绍了数字图像处理及边缘提取的概况, 列举了几种目前常用的边缘提取技术和算法,并选取其中两种使用Visual C++语言编程实现,通过对两种算法所提取图像结果的比较,研究探讨它们的优缺点.First chapter introduction§1.1 image edge examination introductionThe image edge is one of image most basic characteristics, often is carrying image majority of informations.But the edge exists in the image irregular structure and innot the steady phenomenon, also namely exists in the signal point of discontinuity place, these spots have given the image outline position, these outlines are frequently we when the imagery processing needs the extremely important some representative condition, this needs us to examine and to withdraw its edge to an image. But the edge examination algorithm is in the imagery processing question one of classical technical difficult problems, its solution carries on the high level regarding us the characteristic description, the recognition and the understanding and so on has the significant influence; Also because the edge examination all has in many aspects the extremely important use value, therefore how the people are devoting continuously in study and solve the structure to leave have the good nature and the good effect edge examination operator question.In the usual situation, we may the signal in singular point and the point of discontinuity thought is in the image peripheral point, its nearby gradation change situation may reflect from its neighboring picture element gradation distribution gradient. According to this characteristic, we proposed many kinds of edge examination operator: If Robert operator, Sobel operator, Prewitt operator, Laplace operator and so on.These methods many are wait for the processing picture element to carry on the gradation analysis for the central neighborhood achievement the foundation, realized and has already obtained the good processing effect to the image edge extraction. . But this kind of method simultaneously also exists has the edge picture element width, the noise jamming is serious and so on the shortcomings, even if uses some auxiliary methods to perform the denoising, also corresponding can bring the flaw which the edge fuzzy and so on overcomes with difficulty.Along with the wavelet analysis appearance, its good time frequency partial characteristic by the widespread application in the imagery processing and in the pattern recognition domain, becomes in the signal processing the commonly used method and the powerful tool.Through the wavelet analysis, may interweave decomposes in the same place each kind of composite signal the different frequency the block signal, but carries on the edge examination through the wavelet transformation, may use its multi-criteria and the multi-resolution nature fully , real effective expresses the image the edge characteristic.When the wavelet transformation criterion reduces, is more sensitive to the image detail; But when the criterion increases, the image detail is filtered out, the examination edge will be only the thick outline.This characteristic is extremely useful in the pattern recognition, we may be called this thick outline the image the main edge.If will be able an image main edge clear integrity extraction, this to the goal division, the recognition and so on following processing to bring the enormous convenience.Generally speaking, the above method all is the work which does based on the image luminance information.In the multitudinous scientific research worker under, has obtained the very good effect diligently.But, because the image edge receives physical condition and so on the illumination influences quite to be big above, often enables many to have a common shortcoming based on brightness edge detection method, that is the edge is not continual, does not seal up.Considered the phase information in the image importance as well as its stable characteristic, causes using the phase information to carry on the imagery processing into new research topic. In this paper soon introduces one kind based on the phase image characteristic examination method - - phase uniform method.It is not uses the image the luminance information, but is its phase characteristic, namely supposition image Fourier component phase most consistent spot achievement characteristic point.Not only it can examine brightness characteristics and so on step characteristic, line characteristic, moreover can examine Mach belt phenomenon which produces as a result of the human vision sensation characteristic.Because the phase uniformity does not need to carry on any supposition to the image characteristic type, therefore it has the very strong versatility.第一章绪论§1.1 图像边缘检测概论图像边缘是图像最基本的特征之一, 往往携带着一幅图像的大部分信息. 而边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置,这些轮廓常常是我们在图像处理时所需要的非常重要的一些特征条件, 这就需要我们对一幅图像检测并提取出它的边缘. 而边缘检测算法则是图像处理问题中经典技术难题之一, 它的解决对于我们进行高层次的特征描述, 识别和理解等有着重大的影响; 又由于边缘检测在许多方面都有着非常重要的使用价值, 所以人们一直在致力于研究和解决如何构造出具有良好性质及好的效果的边缘检测算子的问题.在通常情况下,我们可以将信号中的奇异点和突变点认为是图像中的边缘点,其附近灰度的变化情况可从它相邻像素灰度分布的梯度来反映. 根据这一特点,我们提出了多种边缘检测算子:如Robert 算子,Sobel算子,Prewitt 算子, Laplace 算子等.这些方法多是以待处理像素为中心的邻域作为进行灰度分析的基础,实现对图像边缘的提取并已经取得了较好的处理效果. 但这类方法同时也存在有边缘像素宽, 噪声干扰较严重等缺点,即使采用一些辅助的方法加以去噪,也相应的会带来边缘模糊等难以克服的缺陷.随着小波分析的出现, 其良好的时频局部特性被广泛的应用在图像处理和模式识别领域中, 成为信号处理中常用的手段和有力的工具. 通过小波分析, 可以将交织在一起的各种混合信号分解成不同频率的块信号,而通过小波变换进行边缘检测,可以充分利用其多尺度和多分辨率的性质,真实有效的表达图像的边缘特征.当小波变换的尺度减小时,对图像的细节更加敏感;而当尺度增大时,图像的细节将被滤掉,检测的边缘只是粗轮廓.该特性在模式识别中非常有用,我们可以将此粗轮廓称为图像的主要边缘.如果能将一个图像的主要边缘清晰完整的提取出来,这将对目标分割,识别等后续处理带来极大的便利.总的说来,以上方法都是基于图像的亮度信息来作的工作. 在众多科研工作者的努力下,取得了很好的效果.但是,由于图像边缘受到光照等物理条件的影响比较大, 往往使得以上诸多基于亮度的边缘提取方法有着一个共同的缺点, 那就是边缘不连续, 不封闭. 考虑到相位信息在图像中的重要性以及其稳定的特点, 使得利用相位信息进行图像处理成为新的研究课题. 在本文中即将介绍一种基于相位的图像特征检测方法——相位一致性方法. 它并不是利用图像的亮度信息,而是其相位特点,即假设图像的傅立叶分量相位最一致的点作为特征点.它不但能检测到阶跃特征, 线特征等亮度特征, 而且能够检测到由于人类视觉感知特性而产生的的马赫带现象. 由于相位一致性不需要对图像的特征类型进行任何假设,所以它具有很强的通用性.§1.2 image edge definitionThe image majority main information all exists in the image edge, the main performance for the image partial characteristic discontinuity, is in the image the gradation change quite fierce place, also is the signal which we usually said has the strange change place. The strange signal the gradation change which moves towards along the edge is fierce, usually we divide the edge for the step shape and the roof shape two kind of types (as shown in Figure 1-1).In the step edge two side grey levels have the obvious change; But the roof shape edge is located the gradation increase and the reduced intersection point.May portray the peripheral point in mathematics using the gradation derivative the change, to the step edge, the roof shape edge asks its step, the second time derivative separately. To an edge, has the possibility simultaneously to have the step and the line edge characteristic. For example on a surface, changes from a plane to the normal direction different another plane can produce the step edge; If this surface has the edges and corners which the regular reflection characteristic also two planes form quite to be smooth, then works as when edges and corners smooth surface normal after mirror surface reflection angle, as a result of the regular reflection component, can produce the bright light strip on the edges and corners smooth surface, such edge looked like has likely superimposed a line edge in the step edge. Because edge possible and in scene object important characteristic correspondence, therefore it is the very important image characteristic.Forinstance, an object outline usually produces the step edge, because the object image intensity is different with the background image intensity.§1.3 paper selected topic theory significanceThe paper selected topic originates in holds the important status and the function practical application topic in the image project.The so-called image project discipline is refers foundation discipline and so on mathematics, optics principles, the discipline which in the image application unifies which accumulates the technical background develops.The image project content is extremely rich, and so on divides into three levels differently according to the abstract degree and the research technique: Imagery processing, image analysis and image understanding.As shown in Figure 1-2, in the chart the image division is in between the image analysis and the imagery processing, its meaning is, the image division is from the imagery processing to the image analysis essential step, also is further understands the image the foundation. The image division has the important influence to the characteristic.The image division and based on thedivision goal expression, the characteristic extraction and the parameter survey and so on transforms the primitive image as a more abstract more compact form, causes the high-level image analysis and possibly understands into.But the edge examination is the image division core content, therefore the edge examination holds the important status and the function in the image project.Therefore the edge examination research always is in the image engineering research the hot spot and the focal point, moreover the people enhance unceasingly to its attention and the investment.§1.2 图像边缘的定义图像的大部分主要信息都存在于图像的边缘中, 主要表现为图像局部特征的不连续性, 是图像中灰度变化比较剧烈的地方, 也即我们通常所说的信号发生奇异变化的地方. 奇异信号沿边缘走向的灰度变化剧烈,通常我们将边缘划分为阶跃状和屋顶状两种类型(如图1-1 所示).阶跃边缘中两边的灰度值有明显的变化; 而屋顶状边缘位于灰度增加与减少的交界处. 在数学上可利用灰度的导数来刻画边缘点的变化,对阶跃边缘,屋顶状边缘分别求其一阶,二阶导数. 对一个边缘来说,有可能同时具有阶跃和线条边缘特性.例如在一个表面上,由一个平面变化到法线方向不同的另一个平面就会产生阶跃边缘; 如果这一表面具有镜面反射特性且两平面形成的棱角比较圆滑,则当棱角圆滑表面的法线经过镜面反射角时,由于镜面反射分量,在棱角圆滑表面上会产生明亮光条, 这样的边缘看起来象在阶跃边缘上叠加了一个线条边缘. 由于边缘可能与场景中物体的重要特征对应,所以它是很重要的图像特征.比如,一个物体的轮廓通常产生阶跃边缘, 因为物体的图像强度不同于背景的图像强度.§1.3 论文选题的理论意义论文选题来源于在图像工程中占有重要的地位和作用的实际应用课题.所谓图像工程学科是指将数学,光学等基础学科的原理,结合在图像应用中积累的技术经验而发展起来的学科.图像工程的内容非常丰富,根据抽象程度和研究方法等的不同分为三个层次:图像处理,图像分析和图像理解.如图1-2 所示,在图中,图像分割处于图像分析与图像处理之间,其含义是,图像分割是从图像处理进到图像分析的关键步骤,也是进一步理解图像的基础.图像分割对特征有重要影响. 图像分割及基于分割的目标表达, 特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能. 而边缘检测是图像分割的核心内容, 所以边缘检测在图像工程中占有重要的地位和作用. 因此边缘检测的研究一直是图像技术研究中热点和焦点,而且人们对其的关注和投入不断提高.。