中心极限定理典型习题
《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。
习题五

习题五 大数定律与中心极限定理一、填空题1.设随机变量~[0,1]X U ,由切比雪夫不等式可得(12P X -≥≤ 0.25 ; 2.设()1,()4,E X D X ==则由契比雪夫不等式有(57)P X -<<=98; 3.设12,,...,,...n X X X 是相互独立的随机变量序列,且2(),()0i i E X D X μσ==≠(1,2,...)i =,则对10,lim ()ni n i P X n εμε→∞=∀>-≥=∑ 0 ;4.设随机变量,X Y ,已知()2,()2,()1,()4,0.5,E X E Y D X D Y ρ=-====- 则由契比雪夫不等式有(6)P X Y +≥≤ 1/12 ;5.已知正常男性成人血液中,每毫升白细胞数平均是7300,标准差是700。
利用契比雪夫不等式估计每毫升血液中的白细胞数在5200至9400之间的概率p =98; 6.设n ξ是n 重贝努里试验中事件A 出现的次数,p 为A 在每次试验中出现的概率,则对0,lim ()nn P p nξεε→∞>-≥= 0 ;7.假设某一年龄女童的平均身高为130厘米,标准差是8厘米。
现在从该年 龄段的女童中随机地选取五名儿童测其身高,估计它们的平均身高在120至140 厘米的概率为259改; 8.设12,,...,,...n X X X 是相互独立的随机变量序列,且都在[-1,1]服从均匀分布,则1lim (ni n i P X →∞=≤=∑0.5改;二、选择题1.设随机变量X 的方差()D X 存在,0a >,则()(1)X E X P a->≤( C )A .()D X B. 1 C.2()D X aD. 2()a D X . 2. 设(),()E X D X 都存在,则对于任意实数,()a b a b >,可以用契比雪夫不等式估计出概率( D ).A .()P a X b << B. (())P a X E X b <-<C. ()P a X a <<D. ()P X b a ≥-3. 设随机变量2~(,)X N μσ,随σ的增大()P X μσ-<( C )A .单调增大 B. 单调减小 C. 保持不变 D. 增减不变. 4.设随机变量X 的方差存在,并且满足不等式2(()3)9P X E X -≥≤,则一定有( D )A .()2D X = B. 7(()3)9P X E X -<<C. ()2D X ≠D. 7(()3)9P X E X -<≥5.设X 为连续型随机变量,且方差存在,则对任意常数C 和0ε>,必有( C )A .()E X CP X C εε--≥=B. ()E X CP X C εε--≥≥C. ()E X CP X C εε--≥≤D. 2()E X CP X C εε--≥≤6. 已知129,,...,X X X 是独立同分布的随机变量序列,且()1,()1,i i E X D X ==则对0,ε∀>下列式子成立的是( B 改 )A .921(1)1i i P X εε=-<≥-∑ B .9211(1)19i i P X εε-=-<≥-∑C .921(1)1i i P X εε-=-<≥-∑ D .9211(1)19i i P X εε-=-<≥-∑D 改291911)191(-=-≥<-∑εεi i X P7.已知121000,,...,X X X 是独立同分布的随机变量,且~(1,)(1,...,1000)i X B p i =则下列不正确的是( C )A .1000111000i i X p =≈∑ B .10001~(1000,)i i X B p =∑ C.10001()()()i i P a X b b a φφ=<<≈-∑D.10001()i i P a X b φφ=<<≈-∑8.设 12,,...,n X X X 相互独立,12,...,n n S X X X =+++,则根据列维——林德伯格中心极限定理,当 n 充分大时,n S 近似服从正态分布,只要12,,...,n X X X ( B )A .有相同的数学期望 B. 有相同分布C. 服从同一指数分布D. 服从同一离散型分布.三、解答题1.每次射击中,命中目标的炮弹数的均值为2,方差为1.5 ,求在100次 射击中有180到达220发炮弹命中目标的概率. 解:设X 为在100次射击中炮弹命中目标的次数 由林德伯格—列维定理知)1,0(~5.11002100N X ⨯⨯-)5.110021002205.110021005.11002100180()220180(⨯⨯-<⨯⨯-<⨯⨯-=<<X P X P )63.15.1100210063.1(<⨯⨯-<-=X P 1)63.1(2)63.1()63.1(-Φ=-Φ-Φ=0.89682.由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件 能正常工作的概率为90% .为了使整个系统能正常运行,至少必须有85%的部件正常工作,求整个系统能正常运行的概率. 解:设X 为正常工作的部件数 由德莫佛-拉普拉斯中心极限定理知)85(≥X P )1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≥⨯⨯⨯-=X P -=1)1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≤⨯⨯⨯-X P )35(1-Φ-=)35(Φ==0.95153.设有 30 个同类型的某电子器件1230,,...,X X X ,若(1,...,30)i X i =的寿命服从参数为0.1λ=的指数分布,令T 为 30 个器件正常使用的总计时间,求(350)P T >解:由林德伯格—列维定理知(350)P T >=)10030300350100301030(⨯->⨯⨯-T P =)30/53010300(1≤--T P =)30/5(1Φ-=0.18144.在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N μ,若以n X 表示n 次称量结果的平均值,问n 至少取多大,使得(0.1)0.5n P X μ-≥<.解:由林德伯格—列维定理知(0.1)0.5n P X μ-≥< 5.0)/2.01.0/2.0(___<≥-nnX P n μ5.0)/2.01.0/2.0(1___<≤--nnX P n μ[])/2.01.0()/2.01.0(1nn -Φ-Φ-=)/21(22n Φ-5.0< 2≥n5.某单位设置一电话总机,共有 200 门电话分机,每门电话分机有 5%的时间要用外线通话,假设各门分机是否使用外线通话是相互独立的,问总机至少要配置多少条外线,才能以90%的概率保证每门分机要使用外线时,有外线可供使用. 解:用X 表示200个分机中同时需要使用外线的台数。
《概率论与数理统计》习题 第四章 大数定律和中心极限定理

第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫ ⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n 2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______.解. E(X -Y) = E(X)-E(Y) = 2-2 = 0D(X -Y) = D(X) + D(Y)-)()(2Y D X D XYρ= 1 + 4-2×0.5×1×2 = 3 所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02)由棣莫佛-拉普拉斯定理:)(2198.002.040002.0400lim 22x dt e x X P x t n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯⨯-⎰∞--∞→π 所以 ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯--=≤-=≥98.002.0400798.002.040081)1(1)2(X P X P X P ≈ 1-Φ(-2.5) = Φ(2.5) = 0.9938.2. 设供电网中有10000盏灯, 夜晚每一盏灯开着的概率都是0.7, 假设各灯开、关时间彼此无关, 计算同时开着的灯数在6800与7200之间的概率.解. 假设X 表示10000盏灯中开着的灯数, 所以X ~B(10000, 0.7)由棣莫佛-拉普拉斯定理:)(217.03.010*******lim 22x dt e x X P xt n Φ==⎪⎭⎫ ⎝⎛≤⨯⨯-⎰∞--∞→π所以 )72006800(≤≤X P ⎪⎭⎫ ⎝⎛⨯⨯-≤⨯⨯-≤⨯⨯-=7.03.010000700072007.03.010********.03.01000070006800X P ≈ Φ(4.36)-Φ(-4.36) = 2Φ(4.36)-1 = 2×0.999993-1 = 0.999.。
沪教版五年级上册 中心极限定理的计算提优练习卷

沪教版五年级上册中心极限定理的计算
提优练习卷
沪教版五年级上册中心极限定理的计算提优练卷
题目一
已知函数 $y = \frac{1}{x}$,求函数 $y = \frac{1}{x}$ 在区间$[1, 3]$ 上的定积分值。
解答一
根据定积分的定义,区间 $[1, 3]$ 上的定积分可以表示为 $I = \int_{1}^{3} \frac{1}{x} dx$。
利用定积分的性质,我们可以将上述定积分转化为函数的原函数求值:$I = [\ln|x|]_{1}^{3} = \ln(3) - \ln(1) = \ln(3)$。
所以,函数 $y = \frac{1}{x}$ 在区间 $[1, 3]$ 上的定积分值为$\ln(3)$。
题目二
已知函数 $y = \sqrt{x}$,求函数 $y = \sqrt{x}$ 在区间 $[0, 4]$ 上的定积分值。
解答二
根据定积分的定义,区间 $[0, 4]$ 上的定积分可以表示为 $I = \int_{0}^{4} \sqrt{x} dx$。
利用定积分的性质,我们可以将上述定积分转化为函数的原函数求值:$I = [\frac{2}{3}x^{\frac{3}{2}}]_{0}^{4} = \frac{2}{3} \cdot 4^{\frac{3}{2}} - \frac{2}{3} \cdot 0^{\frac{3}{2}} =
\frac{16}{3}$。
所以,函数 $y = \sqrt{x}$ 在区间 $[0, 4]$ 上的定积分值为$\frac{16}{3}$。
以上是本文档中心极限定理的计算提优练习卷的部分题目和解答。
如有需要,请进一步补充练习题目。
CH5大数定律及中心极限定理--练习题

CH5大数定律及中心极限定理--练习题第一篇:CH5 大数定律及中心极限定理--练习题CH5 大数定律及中心极限定理1.设Ф(x)为标准正态分布函数,Xi=⎨100⎧1,事件A发生;⎩0,事件A不发生,i=1,2,…,100,且P(A)=0.8,X1,X2,…,X100相互独立。
令Y=∑i=1Xi,则由中心极限定理知Y的分布函数F(y)近似于()y-804A.Ф(y)2.从一大批发芽率为0.9的种子中随机抽取100粒,则这100粒种子的发芽率不低于88%的概率约为.(已知φ(0.67)=0.7486)3.设随机变量X1,X2,…,Xn,…独立同分布,且i=1,2…,0nB.Ф()C.Ф(16y+80)D.Ф(4y+80)Yn=∑i=1⎧⎪Xi,n=1,2,Λ.Φ(x)为标准正态分布函数,则limP⎨n→∞⎪⎩⎫⎪≤1⎬=()np(1-p)⎪⎭Yn-npA.0B.Φ(1)C.1-Φ(1)D.14.设5.设X服从(-1,1)上的均匀分布,试用切比雪夫不等式估计6.设7.报童沿街向行人兜售报纸,设每位行人买报纸的概率为0.2,且他们买报纸与否是相互独立的。
试求报童在想100为行人兜售之后,卖掉报纸15到30份的概率8.一个复杂系统由n个相互独立的工作部件组成,每个部件的可靠性(即部件在一定时间内无故障的概率)为0.9,且必须至少有80%的部件工作才能使得整个系统工作。
问n至少为多少才能使系统的可靠性为0.959.某人有100个灯泡,每个灯泡的寿命为指数分布,其平均寿命为5小时。
他每次用一个灯泡,灯泡灭了之后立即换上一个新的灯泡。
求525小时之后他仍有灯泡可用的概率近似值相互独立的随机变量,且都服从参数为10的指数分布,求的下界是独立同分布的随机变量,设, 求第二篇:ch5大数定律和中心极限定理答案一、选择题⎧0,事件A不发生1.设Xi=⎨(i=1,2Λ,10000),且P(A)=0.8,X1,X2,Λ,X10000相互独立,令1,事件A发生⎩10000Y=∑X,则由中心极限定理知Y近似服从的分布是(D)ii=1A.N(0,1)C.N(1600,8000)B.N(8000,40)D.N(8000,1600)2.设X1,X2,……,Xn是来自总体N(μ,σ2)的样本,对任意的ε>0,样本均值X所满足的切比雪夫不等式为(B){X-nμ<ε}≥εnσC.P{X-μ≥ε}≤1-εA.P2nσ{X-μ<ε}≥1-nεnσD.P{X-nμ≥ε}≤εB.Pσ23.设随机变量X的E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P(|X-E(X)|≤3σ)≥(C)A.C.1 98 919121B.3D.14.设随机变量X服从参数为0.5的指数分布,用切比雪夫不等式估计P(|X-2|≥3)≤(C)A.C.1B.3D.1二、填空题1.将一枚均匀硬币连掷100次,则利用中心极限定理可知,正面出现的次数大于60的概率近似为___0.0228________.(附:Φ(2)=0.9772)2.设随机变量序列X1,X2,…,Xn,…独立同分布,且E(Xi)=μ,D(Xi)=σ2>0,i=1,2,…, 则⎧n⎫X-nμ⎪⎪i⎪i=1⎪>x⎬=_对任意实数x,limP⎨n→∞nσ⎪⎪⎪⎪⎩⎭∑___________.3.设随机变量X的E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P(|X-E(X)|≤3σ2)≥ ___8/9________。
概率论及数理统计教程习题(第四章大数定律及中心极限定理)

习题10 (切比雪夫不等式)•填空题1.设随机变量X的数学期望E(X) ,方差D(X) 2,则由切比雪夫不等式,得P(X 3 )2.随机掷6枚骰子,用X表示6枚骰子点数之和,则由切比雪夫不等式,得P(15 X 27)3.若二维随机变量(X,Y)满足,E(X) 2,E(Y) 2,D(X) 1,D(Y) 4,R(X,Y) 0.5,则由切比雪夫不等式,得P(X 丫 6)4.设X1, X2, ,X n,是相互独立、同分布的随机变量序列,且E(X i) 0, D(X i) 一致有n界(i 1,2, ,n,),则lim P( X i n) .ni 1二•选择题1.若随机变量X的数学期望与方差都存在,对 a b,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。
①P(a X b);②P(a X E(X)b);③P( a X a);④P(X E(X)b a).12.随机变量X服从指数分布e(),用切比雪夫不等式估计P(X | -) ( )①;②2③4;④-.)1.lim P(nX i 2三•解答题1.已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若 E(X) 7300,D(X ) 7002,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。
2.如果X-X 2, ,X n 是相互独立、同分布的随机变量序列,E(X i )3.设X i ,X 2, ,X n ,是相互独立、同分布的随机变量序列,E(X i 4)存在,且一致有界(i 1,2, ,n,).对任意实数 0,证明D(X i )8 (i 1,2, ,n) •记 XX i , 由切比雪夫不等式估计概率p(X 4).E(X i ) 0,D(X i )•填空题1.若随机变量X 服从正态分布 N(2,4),则P(X 3)P(0 X 4) ________________ ,P(X 1)5.随机变量X 1,X 2相互独立,且都服从标准正态分布,记丫 2 3X 1 4X 2,则丫概率密度f Y (y)_________________ . ________________•选择题6.若随机变量 X 1,X 2 ,,X n 相互独立,且X i ~ N(,2) (i 1 n1,2, ,n),则 D(— X i )n i 1( )①2 ;②n2; ③2/n ;④2/n 2.7.若随机变量 X,Y 相互独立, 且都服从正态分布N(:,2).设X Y ,X Y ,则cov(,)( ).①2 2 ;②1 ;③ 1;④0.X Y8.若随机变量 X,Y 满足 X ~ N(1, 32) , Y ~ N(0, 42) , R(X,Y) 1/2,则 D( ) 3 2( ).④2.11 (特征函数)2.若随机变量X ~ N (2),且 P(X c) P(X c),则 c3.若随机变量X ~ N(2, 2),且P(2 X4) 0.3,则 P(X 0)4.若X 服从正态分布 N ( 2),记 P( k X当 0.9时,k,当 0.95 时,k•解答题1.某种电池的寿命X (单位:h )服从正态分布N(300, 352) . (1)求寿命大于250小时的概率,(2)求x,使寿命在300 x之间的概率不小于092.测量某一目标的距离时,随机误差X ~ N(0, 402)(单位:m)(1)求P(X 30),(2)若作三次独立测量,求至少有一次测量误差的绝对值不超过30米的概率。
大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,, 21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i 218===ξμξ对于∑==ni in1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==, 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X 相互独立且同分布, 而且有1,1(1,2,9),i i EX DX i === 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,, 21为相互独立的随机变量序列,且),,( 21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=, 那么, 对于任一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指{}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
大数定律与中心极限定理定义与例题

则称随机变量列 { Xn } 依概率收敛到 X ,记作 Xn P X
或
P
lim
n
Xn
X.
二、大数定律
伯努利大数定律
在 n 重伯努利试验中事件 A 发生的频率n / n 依概 率收敛于 A 发生的概率 p, 即对于任意 0, 有
lim P n
n
n
p
0.
设 X1, X2 , , Xn 独立同服从0-1分布 B(1, p), 则对
Yn X1 X 2 X n E(Y100 ) 100 3.5 350, D(Y100 ) 100 1.712
P{Y100
400}
P
Y100 350 17.1
400 350
17.1
1 0(2.9240) 1 0.9982 0.0018.
例2 用四舍五入法获得用3位小数表示的近似值时,
X2 i
依概率收敛于
2 2
解:
E
(
X
2 i
)
D( Xi
)
E(Xi ) 2 2 2
(i 1,2,)
且X
2 1
,
X
2 2
,,
X
2 n
,相互独立
故
1
n
n i 1
X
2 i
P 2
2
3)设X1, X 2 ,是 相 互 独 立 的 随 机 变 量序 列,
且 它 们 的 期 望 均 为 零, 方 差 为 2 ,则 当n足 够
12
12
P{V 20 5 0.387} 1 P{ V 100 0.387}
100 20
100 20
1
12
0.387
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
P
X
4001.1 400 0.19
1.147
1 (1.147) 0.1357;
12
(2)以Y 记有一名家长来参加会议的学生数,
则 Y ~ b(400, 0.8), 由德莫佛-拉普拉斯定理知,
P{Y 340}
P
Y 400 0.8 400 0.8 0.2
340 400 0.8
解:设X是损坏的部件数,则 X~B(100,0.1)。
则整个系统能正常工作当且仅当 X 15.
由德莫佛-拉普拉斯定理有
lim
P{
n
np
x}
(x)
n
npq
P{X 15} P
X 100 0.1
15 100 0.1
100 0.1 0.9 100 0.1 0.9
15 100 0.1 100 0.1 0.9
2,
由 E( X k ) 0, 得 E( Xk2 ) D( Xk ) [E( Xk )]2 由辛钦定理知
对于任意正数 , 有
lim
n
P
1 n
n k 1
X
k
2
2
1.
1
三、典型例题
例1 系统由100个相互独立起作用的部件组成,每
个部件的损坏率为0.1。系统要正常工作,至少有
85个部件正常工作,求系统正常工作的概率。
400
0.8
0.2
P
Y 400 0.8 400 0.8 0.2
2.5
(2.5)
0.9938
.
13
5 3
0.952.
5
例2 一船舶在某海区航行, 已知每遭受一次海浪 的冲击, 纵摇角大于 3º的概率为1/3, 若船舶遭受 了90 000次波浪冲击, 问其中有29 500~30 500次 纵摇角大于 3º的概率是多少?
解 将船舶每遭受一次海
浪的冲击看作一次试验,
并假设各次试验是独立的,
在90 000次波浪冲击中纵摇角大于 3º的次数为 X, 则 X 是一个随机变量, 且 X ~ b(90000, 1).
20
V Vk
k 1
求 PV 105 的近似值。
解: EVk 5, DVk 102 / 12, (k 1,2, ,20),
P{V 105} P
V - 20 5
105 - 20 5
20 102 / 12 20 102 / 12
P
V - 100
0.387
20 (10 / 12)
P{29500 X 30500} 5 2 5 2
2 2 0.9995.
8
n
X k n
lim P{ k1
x}
n
n
1
x t2
e 2 dt
2
例3 一加法器同时收到20个噪声电压,Vk (k 1,2, ,20)
设它们是互相独立的随机变量,且都在区间(0,10)上
服从均匀分布,记
解 (1) 以 Xk (k 1, 2, , 400) 记 第 k 个学生来参加会议的家 长数,
10
(1) 以 Xk (k 1, 2, , 400) 记
长 第则数k 个X, k学的生分来布参律加为会Xp议kk
的家0 0.05
1 0.8
2 0.15
易知 E( Xk ) 1.1, D( Xk ) 0.19, (k 1,2, ,400)
3
6
分布律为
P{ X
k}
90
000
1
k
2
90
000
k
,
k 3 3
所求概率为
k 1, ,90000.
P{29500 X 30500}
30500
90000
1
k
2
90000k
.
k29501 k 3 3
直接计算很麻烦,利用德莫佛-拉普拉斯定理
P{29500 X 30500}
P
29500
np(1
np p)
X np np(1 p)
30500 np(1
np
p)
7
30500 np
np (1 p) 29500 np np (1 p )
1
t2
e 2 dt
2π
30500 np 29500 np
np(1 p) np(1 p)
n 90000, p 1 , 3
400
而 X Xk ,根据独立同分布的中心极限定理,
k 1
400
随机变量
Xk
k 1
4001.1
X
4001.1
400 0.19
400 0.19
近似服从正态分布 N (0, 1),
11
于是 P{ X 450}
P
X
400 1.1 400 0.19
450 400 1.1
400
0.19
三、典型例题
例1
设随机变量 X1, X2 , , Xn , 独立同分布,
且 E( Xk ) 0, D( Xk ) 2 , k 1,2, , 证明对任
意正数 有
lim
n
P
1 n
n k 1
X
k
2
2
1.
解 因为 X1, X2 , , Xn , 是相互独立的,
所以
X12
,
X
2 2
,
, Xn2 , 也是相互独立的,
1 (0.387) 0.348
9
例4 对于一个学生而言, 来参加家长会的家长 人数是一个随机变量. 设一个学生无家长、1名 家长、 2名家长来参加会议的概率分别为0.05, 0.8,0.15. 若学校共有400名学生, 设各学生参加 会议的家长数相互独立, 且服从同一分布. (1) 求 参加会议的家长数 X 超过450的概率; (2) 求有1 名家长来参加会议的学生数不多于340的概率.