2007年“我爱数学夏令营”数学竞赛(六年级)
“我爱数学”初中生夏令营数学竞赛试题(含答案)

我爱数学初中生夏令营数学竞赛说明:第一试每题50分,共150分;第二试每题15分,共150分.第一试1、已知当x 的值分别为2、m 1、m 2时,多项式ax 2+bx+c 的值分别为0、p 1、p 2.如果a>b>c,并且p 1p 2-cp 1+ap 2-ac=0,那么,能否保证:当x 的值分别为m 1+5、m 2+5时,该多项式的值中至少有一个是正数?证明你的结论.2、在△ABC 中,∠A=75°,∠B=35°,D 是边BC 上一点,BD=2CD. 求证:AD 2=(AC+BD)(AC -CD).3、(1)写出四个连续的正整数,使得它们中的每一个都是某个不为1的完全平方数的倍数,并指出它们分别是哪一个完全平方数的倍数(2)写出六个连续的正整数,使得它们中的每一个都是某个不为1的完全平方数的倍数,并指出它们分别是哪一个完全平方数的倍数,说明你的计算方法.第二试1、若2 008=a n (-3)n +a n -1(-3)n -1+…+a 1(-3)+a 0(a i =0,±1,±2,i=0,1,…,n),则a n +a n -1+…+a 1+a 0= .2、能使关于x 的方程x 2-6x -2n =0(n ∈N+)有整数解的n 的值的个数等于 .3、如果函数y=b 的图像与函数y=x 2-3|x -1|-4x -3的图像恰有三个交点,则b 的可能值是 .4、已知a 为整数,关于x 的方程1||41224+-+x x x x +2-a=0有实数根.则a 的可能值是 . 5、如果某数可以表示成91的某个倍数的数字和,就把这个数叫做“和谐数”.那么,在1,2,…,2 008中,和谐数的个数是 .6、已知某种型号的汽车每台的售价是23万元.某工厂在一年中生产这种汽车的总成本由固定成本和生产成本两部分组成.一年的固定成本为7000万元.在这一年中生产这种汽车x 辆时,生产每一辆车的生产成本为x3x-70万元(0<x<1 000).要使该厂一年中生产的这种汽车的销售收入不低于总成本,则至少需要生产这种汽车 辆. 7、若2008个数a 1,a 2,…,a 2008满足a 1=2,20081)12008(112++---n n n n a a a a =0,其中,n=2,3,…,2 008,那么,a 2008可能达到的最大值是.8、已知⊙O 与直线l 切于点M,⊙O 外一定点A 和⊙O 都在直线l 的同一侧.点A 到直线l 的距离大于⊙O 的直径,点B 在⊙O 上.过点A 作直线l 的垂线AN,过点B 作直线l 的平行线BC,直线AN 与BC 交于点C.则当点B 的位置在 时,ACAB 2的值达到最小.9、在底角等于80°的等腰△ABC 的两腰AB 、AC 上,分别取点D 、E,使得∠BDC=50°,∠BEC=40°.则∠ADE=10、从1, 2,…, 2 008中选出总和为1009000的1004个数,并且这1 004个数中的任意两数之和都不等于2 009.则这1 004个数的平方和等于 . 参考公式:12+22+…+n 2=61n(n+1)(2n+1).参考答案第一试1、由已知得ax 2+bx+c=a(x -2)(x -c/2a), 且 4a+2b+c=0.又由a>b>c 得a>0,c<0,c/2a<0.因此,仅当c/2a≤x≤2时,该多项式的值不是正数. 由已知得(p 1+a)(p 2-c)=0. 则p 1+a=0或p 2-c=0. 解得p 1=-a<0或p 2=c<0.因此,存在i(i=1或2)使得p i <0,m i >c/2a.由已知得c=-4a -2b>-6a,则c/a>-6,c/2a>-3,m i +5>2.当x=mi+5时,该多项式的值是正数.因此,可以保证:当x 的值分别为m 1+5、m 2+5时,该多项式的值中至少有一个是正数. 2、由已知得∠C=70°.延长BC 至E,使AC=CE.联结AE.则∠CEA=∠CAE=21∠ACB=35°=∠ABC.故△CAE ∽△AEB.从而,AE 2=AC·BE,即AB 2=AC(AC+BC).①设F 是BD 的中点,联结AF.则CD=DF=FB.在△ACF 、△ADB 中,由中线的性质分别得 AC 2+AF 2=2CD 2+2AD 2,② AD 2+AB 2=2DF 2+2AF 2.③由式②、③得2AC2+AB 2=6CD 2+3AD 2.④ 将式①代入式④得3AC 2+AC·BC=6CD 2+3AD 2. 将BC=3CD 代入上式得AC 2+AC·CD=2CD 2+AD 2.故AD 2=AC 2+AC·CD -2CD 2=(AC+2CD)(AC -CD)=(AC+BD)(AC -CD).3、(1)242、243、244、245是四个连续的正整数,242是112的倍数、243是32的倍数、 244是22的倍数、245是72的倍数.(2)2 348 124、2 348 125、2 348 126、2 348 127、2 348 128、2 348 129是六个连续的正整数,其中,2 348 124是22的倍数、2 348 125是52的倍数,2 348 126是112的倍数、2 348 127是32的倍数、2 348 128是22的倍数、2 348 129是72的倍数. 计算方法如下:记A=4×9×121×49k(k ∈N+). 由(1)可知,A+240是22的倍数, A+242是112的倍数, A+243是32的倍数, A+244是22的倍数, A+245是72的倍数. 设A+241是52的倍数. 则当k=11时,上式成立. 此时,A=2 347 884.A+240=2 348 124是22的倍数, A+241=2 348 125是52的倍数, A+242=2 348 126是112的倍数, A+243=2 348 127是32的倍数, A+244=2 348 128是22的倍数, A+245=2 348 129是72的倍数.第二试1、0或±4或±8.2 008=2(-3)6-2(-3)5-2 (-3)3+(-3)2+1, 此时, a n +a n -1+…+a 0=0;2 008=2(-3)6-2(-3)5-2 (-3)3+(-3)2-(-3)-2, 此时, a n +a n -1+…+a 0=-4;2 008=-(-3)7-(-3)6-2(-3)5-2(-3)3+(-3)2-(-3)-2, 此时, a n +a n -1+…+a 0=-8;2 008=2(-3)6-2(-3)5+(-3)4+(-3)3+(-3)2+1, 此时, a n +a n -1+…+a 0=4;2 008=(-3)8+2(-3)7+(-3)5+(-3)4+(-3)3+(-3)2+1, 此时,a n +a n -1+…+a 0=8. 注意到将(-3)n 变为(-1)(-3)n+1-2(-3)n , 将2(-3)n 变为(-1)(-3)n+1-(-3)n , 将3(-3)n 变为(-1)(-3)n+1的时候, a n +a n -1+…+a 0的值都增加或减少4,并且当n>8时, a n +a n -1+…+a 0的绝对值不大于8.因此,a n +a n -1+…+a 0=0或±4或±8. 2、1.x=3±n 223+,其中, n223+是完全平方数.显然,n≥2.当n≥2时,可设2n +32=(2k+1)2(k ∈N+,k≥2), 即 2n -2=(k+2)(k -1).显见k -1=1,k=2,n=4.能使原方程有整数解的n 的值的个数等于1. 3、-6、-25/4.令y=x 2-3|x -1|-4x -3.则y=x 2-x -6=425)21(2--x ,x≤1; y=x 2-7x=449)27(2--x ,x>1.当x=1时,y=-6; 当x=12时,y=-25/4.由图像知,所求b 的可能值是-6、-25/4.4、0、1、2. 令y=1x |x |2+.则0≤y<1.由y 2-4y+2-a=0 (y -2)2=2+a 1<2+a≤4 -1<a≤2. 因此,a 的可能值是0、1、2. 5、2 007.注意到91=7×13.数字和为1的数不是91的倍数. 1 001,10 101,10 011 001,101 011 001, 100 110 011 001,1 010 110 011 001,… 都是91的倍数,而它们的数字和依次是2,3,4,5,6,7,….因此,在1,2,…,2 008中,能够表示成91的某个倍数的数字和的数的个数是2 007. 6、318.若该厂一年中生产的这种汽车的销售收入不低于总成本,则 23x -[7000+x xx370-]≥0x -x -300≥0 x ≥22011 1+ x≥234.6601+ x≥318. 因此,在一年中至少需要生产这种汽车318辆.7、2008 20062 .由已知得2008a a 1-n n =①或1-n n a 1a =②,1只能经过第①类变换或第②类变换变为an(n=2,3,…,2 008),从a1开始连续经过2 007次这样的变换变为a2 008. 连续两次第②类变换相互抵消,保持原数不变.连续三次变换依次是“第①类变换、第②类变换、第①类变换”时,其中两次第①类变换相互抵消,相当于只对原数进行了一次第②类变换.因此,对2的连续2 007次变换相当于对2连续进行m 次第①类变换或第②类变换,而且只有在第一次和最后一次变换中才可能是第②类变换.而对2连续2 007次变换:“前2 006次为第①类变换、最后一次为第②类变换”时,a 2008达到最大值2008 20062 .8、线段AM 内.设直线AB 与⊙O 的另一交点为D,不妨设点B 在点A 和D 之间.过点D 作直线AC 的垂线DE,垂足为E.则AB·AD=k(k 是一个不变的常数), △ABC ∽△ADE,AB/AC=AD/AE,AB 2/AC=AB·AD/AE=k/AE.当AE 达到最大值,即点B 的位置在线段AM 内时,AB 2/AC 的值达到最小. 9、50°.由已知∠BAC=20°,∠BCD=50°,故BC=BD,① ∠CBE=60°,∠ABE=20°.在CE 上取一点F 使∠CBF=20°,则∠EBF=40°,BF=FE,② ∠DBF=60°,∠BFC=80°,BC=BF.③由式①、③得BD=BF,知△BDF 是正三角形.于是,BF=DF.④ 由式②、④得DF=FE,知△DFE 是等腰三角形.又∠BFD=60°,知∠DFE=40°.从而,∠FED=70°,∠ADE=50°. 10、1 351 373 940.将1,2,…,2 008分成1 004组: {1,2 008},{2,2 007},…,{1 004,1 005}.由题设,各组中恰取出一个数.将2,4,…,2 008中的1 004,1 006,1 008,1 010分别换成同一组的1 005,1003,1001,999,其余各数不变,就是所选出的符合题目要求的1 004个数.2+4+…+2 008-(1 004+1 006+1 008+1 010)+(1 005+1 003+1 001+999) =1 009 020-(-1+3+7+11)=1 009 000,22+42+…+2 0082-(1 0042+1 0062+1 0082+1 0102)+(1 0052+1 0032+1 0012+9992) =4(12+22+…+1 0042)-2 009(-1+3+7+11) =2/3×1 004×1 005×2 009-2 009×20 =2 008×335×2 009-40 180=1 351 373 940. 答案与选法无关.。
六年级下册数学试题-培优讲学练考专题:方程组(含答案)全国通用

15、一水池有A、B两个进水龙头和一个出水龙头C,如果在水池空时同时将A、C打开,2小时可注满水池;同时打开B、C两龙头3小时可注满水池。当水满时,先打开C,7小时后把A、B同时打开(C仍开着),1小时后水池可注满,那么单独打开A,几小时可注满水池?
16、小明与小亮同在一幢楼,他们同时出发骑车去郊外看王老师,又同时到达王老师家,但途中小明休息的时间是小亮骑车时间的 ,而小亮休息的时间是小明骑车时间的 ,则小明和小亮骑车的速度比是___________。
方程组参考答案
[同步巩固演练]
1、(1) (2) (3)
(4) (5) (6)
2、1800
设甲、乙原来分别存款x元、y元,依题意,得 ,解得
(10+14)×3=72(千米)
即南北两镇相距72千米.
3、13元
设原来每个工人每天工资是x元。依题意可得方程
x2=(x-3)×(x+3.9)
x2=x2+3.9x-3x-11.7
0.9x=11.7
x=13
4、2.46
解
3×①-2×②得本+笔+尺=2.46(元).
5、
设AB=a,BC=b,依题意可知,甲、乙二人从A到C所用时间相等,即
Y
X
x-y=a
a年前
y-a=3
Y
a年后
y+a=x
x+a=39
关键是求出a,问题就解决了。
解这位老师今年是x岁,老师与学生的年龄差为a,则有:学生今年的年龄为x-a,a年以前学生的年龄是(x-a)-a=3,即x-2a=3①
我爱数学少年夏令营数学竞赛试卷

我爱数学少年夏令营数学竞赛试卷1.由三个非零数字组成的三位数与这三个数字之和的商记为k,假如k为整数,那么k的最大值是____。
2.下式是通过四舍五入得到的一个等式:其中每一个△代表一个数字,那么这三个△所代表的三个数字分别是_ ___。
余下废料是总量的____。
4.如下左图中给出6×6=36个点,请一笔画出一条折线,使得这条折线通过36个给定点中的每点至少一次,而且组成这条折线的直线段的条数最少。
那么你所画出的折线中直线段的条数是___。
5.如下右图中所有不同的三角形的个数是______。
6.甲、乙二人从周长250米的环形跑道上一点p同时、同向动身沿着次在点p相遇所用去的时刻是____分钟。
7.在下面的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,每个△代表一个数字,当算式成立时,乘积是____。
8.五个连续偶数之和为完全平方数,中间三个偶数之和为完全立方数(即一个整数的三次方)。
那么如此一组数中的最大数的最小值是____。
9.一张8×8的方格纸,每个方格都涂上红、蓝两色之一。
能否适当涂色,使得每个3×4(不论横竖)的12个方格中都恰有4个红格和8个蓝格?假如能行,请在下面的表格中画出来?10.甲、乙、丙三堆石子共196块,先从甲堆分给另外两堆,使得后两堆石子数增加一倍;再把乙堆照样分配一次;最后把丙堆也照样分配一次。
_____。
11.在右图中,ae∶ec=1∶2,cd∶db=1∶4,bf∶fa=1∶3,△abc的面积s=1,那么四边形afhg的面积safhg=______。
12.兄弟二人骑自行车同时动身从甲地到乙地,弟弟在前一半路程每小哥哥比弟弟早到20分钟。
那么甲、乙两地的距离是____千米。
运算竞赛试题(1)202-192+182-172+…+22-12=_____。
(2)(112233-112.233)÷(224466-224.466)=_____。
2007第五届小学数学希望杯六年级第二试试题及答案,推荐文档

第五届小学“希望杯”全国数学邀请赛六年级第2试3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%, 10%和2O%。
根据预测,甲、丙两种品牌彩电4月份的销售量之和为_______ 台。
定的整数)。
如果1 4 2 3,那么3 416 . 丄的整数部分是1 1 1 12005 2006 2007 20087 •在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。
请问,小鸭在这项比赛中用时______ 分钟。
8 . 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4X 15天是星期_______ 。
一、填空题(每小题5分,共60分。
)1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图中的②2 .气象台预报“本市明天降水概率是。
(填序号)①本市明天将有80%的地区降水。
③明天肯定下雨。
80%”。
对此信息,下列说法中正确的是②本市明天将有80%的时间降水。
④明天降水的可能性比较大。
3.将一块正方形纸片沿对角线折叠一次,个圆洞,再展开正方形纸片,得到下图中的然后在得到的三角形的三个角上各挖去。
(填序号)4 .下图是华联商厦O5 .对于非零自然数9 •将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有________ 个,最少有________ 个。
10 .已知n 个自然数之积是2007,这n 个自然数之和也是 2007,那么n 的值最大是O11 .如图,三角形田地中有两条小路 AE 和CF,交叉处为D,张大伯常走这两条小路,他知道DM DC 且AD= 2D 巳则两块田地 ACF 和 CFB 的面积比是A 、B 两地相对开出,两车第一次在距 A 地32千米处相遇, B 、A 两地后,立即沿原路返回,第二次在距 A 地64千米处 千米。
2007年“我爱数学夏令营”数学竞赛(六年级)

2007年我爱数学夏令营数学竞赛(六年级)姓名1、2007×2008×2009×2010+1 20082+2007-20082= 。
2、右面加法算式中相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么汉字“我爱夏令营”表示的5位是 。
3、圆周上有8个点,把它们两两相连。
若任意三条线都不交于一点,那么图中顶点全在圆内的三角形共有 个。
第三题,首先小朋友可能训练过类似的问题:圆周上8个点两两连接在内部最多产生多少个交点?这个问题要求学习过排列组合,每个交点对应于圆上的4个点,所以答案是8个里面取4个组合数=70。
这道比前面这个问题要难得多,要意识到每个三角形实际上对应圆周上6个点,所以解答是8个取6个这个组合数=28.4、A =5×5×……×5,B=2×2×……×2,那么较大数是 。
5、(54+4)×(94+4)×(134+4)×……×(494+4)(34+4)×(74+4)×(114+4)×……×(474+4)= 。
6、小强下午4点多钟开始课外活动,到6点多结束。
他一看表发现开始和结束的两个时刻分针和时针恰好兑换了位置。
那么他开始课外活动的时间是4点 分。
7、一个小公司有5个职工,月平均工资为2700元。
已知最高工资是最低工资的2倍,那么最高月工资最少为 元8、图中AC ∶CD=5∶1,S △ADE ∶S △ABC =4∶5,那么AE ∶EB= 。
9、分母不超过100且最接近713 但又不等于713 的分数是 。
10、在商场里,小明从正向上移动的自动楼梯部下120级台阶到达底部,然后从底部上90级台阶回到顶部。
自动楼梯从底部到顶部的台阶数是不变的,假设小明单位时间内下的台阶数是他上的台阶数的2倍。
则该自动楼梯从底到顶的台阶数为 。
2007第五届小学六年级全国数学邀请赛第1试和第2试及答案解析

2007第五届小学“希望杯”全国数学邀请赛六年级 第1试2007年3月18日 上午8:30至10:00亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。
1. 已知31::1.2,:0.75:,:____.(22a b b c c a ===那么写成最简单的整数比) 2.11111111(1)(1)(1)(1)(1)(1)(1)(1)23456789_____.0.10.20.30.40.50.60.70.80.9--------=++++++++ 3. 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的 三个数的和相等。
那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。
6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。
由图可知, 我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。
7.小红和小明帮刘老师修补一批破损图书。
根据图3中信息计算,小红和小时一共修补图书______本。
8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,古代合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。
完成这项工程共用______天。
9.甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇.A 、B 两地相距______千米。
小学数学竞赛经典题目解析

经典题目解析1、(南通市小学数学竞赛试题)计算:1111111111×9999999999〖思路点拨〗9999999999=10000000000-1,可以转化后计算。
解:原式=1111111111×(10000000000-1)=11111111110000000000-1111111111=111111111108888888892、(全国小学数学奥林匹克竞赛试题)计算:111111×999999+999999×777777【思路点拨】逆用乘法分配律,把公因数999999提取出来,再计算。
解:原式=999999×(111111+777777)=888888×(1000000-1)=8888871111123、(2000年深圳市罗湖区数学竞赛试题)计算:454+999×999+545【思路点拨】先算454+545,而后逆用分配律进行简算。
解:原式=(454+545)+999×999=999+999×999=999×(999+1)=9990004、(2001年“我爱数学”夏令营竞赛试题)计算:99+99×99+99×99×99【思路点拨】题中都是99,首先应相等99=100-1,从中寻找突破口。
解:原式=99+99×(100-1)+99×99×(100-1)=99+9900-99+99×9900-99×99=9900+99×9900-99×(100-1)=9900+99×9900-9900+99=99×9900+99=99×(9900+1)=(100-1)×9901=990100-9901=9801995、(甘肃省第八届小学数学冬令营竞赛试题)计算:19992000×20001999-19991999×20002000【思路点拨】类似这样数字很大的题目,直接计算十分困难,而且极易出错。
第3讲浓度问题(十字相乘法)

第三讲 浓 度 问 题(十字交叉相乘)浓度问题常用公式:溶液=溶质+溶剂 ,浓度=溶剂溶质×100%2、浓度三角形:3、常用方法:十字相乘法,浓度三角形,列方程十字交叉相乘法与浓度三角形在本质上是相同的,本质上都是比例。
(一) 补充练习。
1、 (2007年第五届“希望杯”一试六年级)一杯盐水,第一次加入一定量的水后,盐水的含盐百分比为15%,第二次又加入同样多的水,盐水的含盐百分比变为12%;第三次再加入同样多的水,盐水的含盐百分比将变为多少?解法⑴抓住题目中的不变量——盐的数量。
设这杯盐水中有盐60克。
第一次加水后盐水的总量变为60÷15%=400克。
第二次加水后盐水的总量变为60÷12%=500克。
每次加入的水量为500-400=100克。
第三次加入同样多的水后盐水的含盐百分比将变为:60÷(500+100)=10%解法⑵ 设第一次加水后盐水的重量变为α千克。
盐的重量是α×15%=0.15α。
第二次加水后盐水的总重量为0.15α÷12%=1.25α每次加入的水量为1.25α-α=0.25α第三次加入同样多的水后盐水的浓度为0.15α÷(1.25α+0.25α)=10%答:第三次加入同样多的水后盐水的浓度为10%。
2、 (人大附中选拔入学考试题)有两包糖,第一包糖由奶糖和水果糖组成,其中41为奶糖;第二包糖由酥糖和水果糖组成,其中51为酥糖。
将两包糖混合后,水果糖占78%,那么奶糖与酥糖的比例是多少?⑴本题是一道简单的浓度问题。
我们以水果糖为突破口:第一包奶糖占41;水果糖占43。
第二包酥糖占51;水果糖占54。
将两包糖混合后,水果糖占78%,(相当于混合溶液)根据浓度三角形,列出等式:第一包×(78%-43)=第二包×(54-78%) 第一包︰第二包 = (54-78%)︰(78%-43)=2︰3, ⑵ 把第一包糖的数量看作2份,第二包3份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年我爱数学夏令营数学竞赛(六年级)
姓名
1、2007×2008×2009×2010+1 20082+2007
-20082= 。
2、右面加法算式中相同的汉字表示相同的数字,不同的汉字表示不同的数字,
那么汉字“我爱夏令营”表示的5位是 。
3、圆周上有8个点,把它们两两相连。
若任意三条线都不交于一点,那么图
中顶点全在圆内的三角形共有 个。
第三题,首先小朋友可能训练过类似的问题:圆周上8个点两两连接在内
部最多产生多少个交点?这个问题要求学习过排列组合,每个交点对应于圆上的
4个点,所以答案是8个里面取4个组合数=70。
这道比前面这个问题要难得多,
要意识到每个三角形实际上对应圆周上6个点,所以解答是8个取6个这个组合
数=28.
4、A =5×5×……×5,B=2×2×……×2,那么较大数是 。
5、(54+4)×(94+4)×(134+4)×……×(494+4)(34+4)×(74+4)×(114+4)×……×(474+4)
= 。
6、小强下午4点多钟开始课外活动,到6点多结束。
他一看表发现开始和结束的两个时刻分针和时针恰好兑换了位置。
那么他开始课外活动的时间是4点 分。
7、一个小公司有5个职工,月平均工资为2700元。
已知最高工资是最低工资的2倍,那么最高月工资最少为 元
8、图中AC ∶CD=5∶1,S △ADE ∶S △ABC =4∶5,那么AE ∶EB= 。
9、分母不超过100且最接近713 但又不等于713 的分数是 。
10、在商场里,小明从正向上移动的自动楼梯部下120级台阶到达底部,然后从底部上90级台阶回到顶部。
自动楼梯从底部到顶部的台阶数是不变的,假设小明单位时间内下的台阶数是他上的台阶数的2倍。
则该自动楼梯从底到顶的台阶数为 。
11、甲、乙、丙三人参加一个共有30个选择题的比赛。
记分办法是在30分的基础上,每答对一题加4分,答错一题扣1分,不答既不扣分也不加分。
赛完发现根据甲所得总分可以准确算出他答对的题数,乙、丙二人所得总分相同,仅比甲少1分,但乙、丙答对的题数却互不相同。
由此可知,甲所得总分最多2007个5 4683个2 A E C
D B
我爱夏令营 数学夏令营 数学夏令营好 +
为。
12、构造6个互不相同的整数,使得其中任意两个数的乘积能被其和整除。
这6个数是
,,,,,。
请简述你的构造过程。