22有理数和无理数

合集下载

无理数的性质及与有理数的比较

无理数的性质及与有理数的比较

无理数的性质及与有理数的比较在数学领域,有理数和无理数是两个重要的概念。

有理数是可以表示为两个整数的比值的数,而无理数则不能用有限的小数或分数表示。

本文将探讨无理数的性质,并与有理数进行比较。

首先,无理数的定义是不能表示为有限小数或分数的数。

最著名的无理数是圆周率π,它的小数表示是无限不循环的。

这意味着π的小数部分永远不会重复。

类似地,根号2也是一个无理数,它不能表示为两个整数的比值。

无理数的这种特性使其在数学中具有重要的地位。

其次,无理数与有理数在数轴上的分布也有所不同。

有理数可以在数轴上找到一个精确的位置,而无理数则是无限不可数的。

这意味着在任何两个有理数之间,都存在无穷多个无理数。

例如,在数轴上的任意两个有理数之间,总能找到一个无理数。

这种无限性使得无理数在数学中具有广泛的应用。

此外,无理数还具有一些特殊的运算性质。

例如,无理数的加法、减法和乘法仍然是无理数。

这意味着两个无理数的和、差或积仍然是无理数。

然而,无理数的除法则可能是有理数。

例如,根号2除以根号2等于1,这是一个有理数。

这种运算性质使得无理数与有理数之间的关系更加复杂。

此外,无理数还具有一些有趣的性质。

例如,无理数的平方是无理数。

这意味着如果一个数是无理数,那么它的平方也是无理数。

这可以通过反证法证明。

假设一个数的平方是有理数,那么这个数本身就是有理数,这与无理数的定义相矛盾。

因此,无理数的平方必然是无理数。

最后,无理数与有理数之间存在一种特殊的关系,即无理数可以通过有理数的逼近来近似表示。

例如,我们可以用有理数来逼近根号2,使得它们的差尽可能地小。

这种逼近方法被广泛应用于实际问题的求解中。

通过有理数的逼近,我们可以获得无理数的近似值,从而更好地理解无理数的性质。

综上所述,无理数具有许多独特的性质,使其在数学中具有重要的地位。

与有理数相比,无理数在数轴上的分布更为广泛,运算性质更为复杂。

无理数的平方是无理数,但它们可以通过有理数的逼近来近似表示。

苏科版初中数学教材目录

苏科版初中数学教材目录

七年级上第1章我们与数学同行1.1 生活数学 1.2 活动思考第2章有理数2.1 正数与负数 2.2 有理数与无理数 2.3 数轴 2.4 绝对值与相反数 2.5 有理数的加法与减法 2.6 有理数的乘法与除法 2.7 有理数的乘方 2.8 有理数的混合运算第3章代数式3.1 字母表示数 3.2 代数式 3.3 代数式的值 3.4 合并同类项 3.5 去括号 3.6 整式的加减第4章一元一次方程4.1 从问题到方程 4.2 解一元一次方程 4.3 用一元一次方程解决问题第5章走进图形世界5.1 丰富的图形世界 5.2 图形的运动 5.3 展开与折叠 5.4主视图、左视图、俯视图第6章平面图形的认识(一)6.1 线段、射线、直线 6.2 角 6.3 余角、补角、对顶角 6.4 平行 6.5 垂直七年级下第7章平面图形的认识(二)7.1 探索直线平行的条件 7.2 探索平行线的性质 7.3 图形的平移7.4 认识三角形7.5 多边形的内角和与外角和第8章幂的运算8.1 同底数幂的乘法 8.2 幂的乘方与积的乘方8.3 同底数幂的除法第9章整式乘法与因式分解9.1 单项式乘单项式 9.2 单项式乘多项式 9.3 多项式乘多项式 9.4 乘法公式9.5 多项式的因式分解第10章二元一次方程组10.1 二元一次方程 10.2 二元一次方程组 10.3 解二元一次方程组 10.4 三元一次方程组10.5 用二元一次方程组解决问题第11章一元一次不等式11.1 生活中的不等式11.2 不等式的解集 11.3 不等式的性质11.4 解一元一次不等式11.5 用一元一次不等式解决问题11.6 一元一次不等式组第12章证明12.1 定义与命题12.2 证明 12.3 互逆命题八年级上册第1章全等三角形1.1 全等图形 1.2 全等三角形 1.3 探索三角形全等的条件第2章轴对称图形2.1 轴对称与轴对称图形 2.2 轴对称的性质 2.3 设计轴对称图案 2.4 线段、角的轴对称性 2.5 等腰三角形的轴对称性第3章勾股定理3.1 勾股定理 3.2 勾股定理的逆定理 3.3 勾股定理的简单应用第4章实数4.1 平方根 4.2 立方根 4.3 实数 4.4 近似数第5章平面直接坐标系5.1 物体位置的确定 5.2 平面直角坐标系第6章一次函数6.1 函数 6.2 一次函数 6.3 一次函数的图像 6.4 用一次函数解决问题6.5 一次函数与二元一次方程 6.6 一次函数、一元一次方程和一元一次不等式八年级下第7章数据的收集、整理、描述7.1 普查与抽样调查7.2 统计表、统计图的选用7.3 频数和频率7.4 频数分布表和频数分布直方图第8章认识概率8.1 确定事件与随机事件 8.2 可能性的大小 8.3 频率与概率第9章中心对称图形——平行四边形9.1 图形的旋转9.2 中心对称与中心对称图形 9.3 平行四边形9.4 矩形、菱形、正方形 9.5 三角形的中位线第10章分式10.1 分式10.2 分式的基本性质 10.3 分式的加减 10.4 分式的乘除10.5 分式方程第11章反比例函数11.1 反比例函数11.2 反比例函数的图像与性质11.3用反比例函数解决问题第12章12.1 二次根式12.2 二次根式的乘除 12.3 二次根式的加减九年级上第1章一元二次方程1.1 一元二次方程 1.2 一元二次方程的解法 1.3 一元二次方程的根与系数的关系 1.4 用一元二次方程解决问题第2章对称图形——圆2.1 圆 2.2 圆的对称性 2.3 确定圆的条件 2.4 圆周角2.5 直线与圆的位置关系 2.6 正多边形与圆 2.7 弧长及扇形的面积 2.8 圆锥的侧面积第3章数据的集中趋势和离散程度3.1 平均数 3.2 中位数与众数 3.3 用计算器求平均数3.4 方差 3.5 用计算器求方差第4章等可能条件下的概率4.1 等可能性 4.2 等可能条件下的概率(一) 4.3 等可能条件下的概率(二)九年级下第5章二次函数5.1 二次函数 5.2 二次函数的图像与性质 5.3 用待定系数法确定二次函数表达式 5.3 二次函数与一元二次方程 5.4 用二次函数解决问题第6章图形的相似6.1 图上距离与实际距离 6.2 黄金分割 6.3 相似图形 6.5 探索三角形相似条件 6.6 相似三角形的性质 6.7 图形的位似 6.8 用相似三角形解决问题第7章锐角三角形7.1 正切7.2 正弦、余弦7.3 特殊角的三角函数7.4 由三角函数值求锐角 7.5 解直角三角形7.6 用锐角三角函数解决问题第8章统计和概率的简单应用8.1 中学生的视力情况调查 8.2 货比三家8.3 统计分析帮你做预测 8.4 抽签方法合理吗 8.5 概率帮你做估计8.6 收取多少保险费才合理优质文档,内容可编辑。

有理数与无理数

有理数与无理数

谈谈有理数与无理数实数通常分为有理数和无理数两类。

这两类数的性质,对于九年义务教育阶段的初中学生来说,知道得较少。

本文试图对初中数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。

关于有理数,我们知道得较多,其特征有:1、由于实数实际上就是小数,因此有理数是指那些有限小数和无限循环小数;m2、每个有理数都可以写成分数的形式,即,其中m和n都是整数,且nn≠0。

利用这一特征很容易证明:任意两个有理数进行加、减、乘、除(除数不为0)四则运算所得的结果仍是有理数。

我们不加证明地给出关于有理数的一条结论:m当有理数的分母n能分解质因数为2α×5β(其中α、β为自然数)nm时,有理数能化成有限小数;否则,化为无限循环小数。

(关于有理数与小n数的互化问题,有兴趣的同学请可阅读相关书籍,不再赘述)2无理数是指那些无限不循环小数。

大家熟悉的无理数很多,、e、π等等都是。

与有理数相比,无理数不具备那样好的性质。

譬如,两个无理数的四2则运算结果不一定是无理数,象π-π=0,=1。

2根据有理数和无理数之间的相互关系,可以得到如下两条性质,它们在处理与有理数无理数有关的问题时,起着基本的作用:1、任何有理数≠任何无理数;2、设是a有理数,b是无理数,则a+b,a-b,a·b(a≠0),a/b(a≠0)都是无理数。

下面着重介绍实数无理性的判定方法。

在现行初中数学范围内所遇到的无理数主要有这样几种类型:与开方运算2311有关,如,;与对数值有关,如log23;与三角函数值有关,如cos20°,sin1°;此外还有象e(自然对数的底)、π(圆周率)这样的特殊值。

判定实数无理性的方法很多,但都有一个共同的特点,即采用反证法的技巧。

原因有二:第一、无理数的概念通常以“不是有理数的实数称为无理数”这一否定方式给出的;第二、当反设要判定的实数α不是无理数时,由有理数m和无理数的关系,α就是有理数,故α=(n≠0),于是就得到一个具体的n等式,这为我们导出矛盾提供了一个直观的工具。

2,2有理数与无理数

2,2有理数与无理数
m
n 0
的形式.
无限不循环小数叫做无理数.
练一练
把下列各数分别填在相应的集合里:
12 , 6 , 3 . 14 , 0 . 222 , 521 120 , 0 , ,1 . 696696669
正数集合: 有理2011江苏无锡中考
请写出一个大于1且小于2的 无理数 .
2.2有理数与无理数
教学目标
1.理解有理数和无理数的意义 2.会判断一个数是有理数还是无理数
思考
1.什么叫做有理数?
我们把能够写出分数形式 的数叫做有理数.
m n
m , n 是整数,
n 0
思考
2.(1)你能把0.81、1.56化为分数形式吗?
(2)你能把0.666…、0.818181…化为分数形式吗?
聚焦导学案
既不是正数也不是整数的有理数是( ) A.0和负分数 B.负分数 C.负整数和负分数 D.正整数和正分数 不小于-2.5而小于2.8的非负整数有( )
A.2个
B.3个
C.4个
D.5个
聚焦导学案
写出所有适合下列条件的数: (1)不大于3的正整数: (2)大于-3且不大于4的整数:
; .
反思感悟
1.我最大的收获是? 2.我对自己的表现感想是?
3.我与昨天相比有哪些进步? 4.你对本节课的学习还有哪些 困惑和建议?
(3)你能把0.1333…、0.3456456456…化为分数形式吗?
注意:1.实际上,有理数包括整数和分数两大类, 即整数和分数都是有理数 2.有限小数和循环小数都可以化为分数,所以它们都是有理数
将下列八个数填人它所在的数集里:
-18,3.1416,0,2004,π, 22 -0.1235,-96%,

七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)

七年级数学上册数学 2.2 有理数与无理数(五大题型)(解析版)

2.2有理数与无理数分层练习考察题型一有理数的识别1.在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数的个数有()A .5个B .4个C .3个D .2个【详解】解:在5-,0,1.3 ,2.121121112⋯(每两个2之间多一个1),3.1415926中,有理数有:5-,0,1.3,,3.1415926,共4个.故本题选:B .2.在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有()A .4个B .5个C .6个D .7个【详解】解:在0.010010001,0.3333⋯,227-,0,2π-,43%-,0.313113111⋯(每两个3之间依次多一个1)中,有理数有:0.010010001,0.3333⋯,227-,0,43%-,共5个.故本题选:B .考察题型二有理数的分类1.在下列数π,1+,6.7,15-,0,722,1-,25%中,属于整数的有()A .2个B .3个C .4个D .5个【详解】解:在数π,1+,6.7,15-,0,722,1-,25%中,整数的有:1+,15-,0,1-,共4个.故本题选:C .2.在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有()A .4个B .3个C .2个D .1个【详解】解:在10.1-,25,3.14,2π, 1.53- ,2.4224222422224⋯中,正分数有:25,3.14,共2个.故本题选:C .3.在数12-,π, 3.4-,0,3+,73-中,属于非负整数的个数是()A .4B .3C .2D .1【详解】解:12-、 3.4-、73-为负数,不属于非负整数;π不属于整数;0,3+属于非负整数.故本题选:C .4.下列各数:452,1,8.6,7,0,,4,101,0.05,9563---+--中,()A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有42,453--,0.05-是负分数【详解】解:由题意可知:A 、整数包括:1,7-,0,101+,9-,故本选项错误;B 、正整数包括:1和101+,故本选项错误;C 、非负数包括:1,8.6,101+,0,56,故本选项错误;D 、负分数包括:45-,243-,0.05-,故本选项正确.故本题选:D .5.把下列各数填入相应的集合中:6+,0.75,3-,0, 1.2-,8+,245,13-,9%,正分数集合:{}⋯;正整数集合:{}⋯;整数集合:{}⋯;有理数集合:{}⋯.【详解】解:正分数集合:{0.75,245,9%,}⋯;正整数集合:{6+,8+,}⋯;整数集合:{6+,3-,0,8+,}⋯;有理数集合:{6+,0.75,3-,0, 1.2-,8+,245,13-,9%,}⋯.6.把下列将数填入相应的集合中:23-,0.5,23-,28,0,4,135, 5.2-.【详解】解:如图所示:.7.将数分类:2-,0,0.1314-,11,227,143-,0.03,2%.正数:{};非负数:{};负分数:{};非负整数:{}.【详解】解:正数有:11,227,0.03,2%,非负数有:0,11,227,0.03,2%,负分数有:0.1314-,143-,非负整数有:0,11.8.把下列各数填在相应的集合内:3-,4,2-,15-,0.58-,0, 3.4- ,0.618,139,3.14.整数集合:{}⋯;分数集合:{}⋯;负有理数集合:{}⋯;非正整数集合:{}⋯.【详解】解:整数集合:{3-,4,2-,0}⋯;分数集合:1{5-,0.58-, 3.4- ,0.618,139,3.14}⋯;负有理数集合:{3-,2-,15-,0.58-, 3.4}-⋯;非正整数集合:{3-,2-,0}⋯.考察题型三有理数的概念辨析1.下列关于0的说法错误的是()A.任何情况下,0的实际意义就是什么都没有B.0是偶数,也是自然数C.0不是正数也不是负数D.0是整数也是有理数【详解】解:A、0的实际意义不是什么都没有,符合题意;B、0是偶数,也是自然数,不合题意;C、0不是正数也不是负数,不合题意;D、0是整数也是有理数,不合题意.故本题选:A.2.下面是关于0的一些说法:①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的负数;⑤0既不是奇数又不是偶数.其中正确说法的个数是()个.A.0B.1C.2D.3【详解】解:①0是正数与负数的分界,所以0既不是正数也不是负数,故原说法正确;②0和正整数都是自然数,所以0是最小的自然数,故原说法正确;③0既不是正数也不是负数,故原说法错误;④0既不是正数也不是负数,故原说法错误;⑤整数按能否被2整除分为奇数与偶数,0属于偶数,故原说法错误;综上,①②正确.故本题选:C.3.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数【详解】解:负整数和负分数统称负有理数,A正确,不合题意;整数分为正整数,0,负整数,B正确,不合题意;正有理数,0,负有理数组成全体有理数,C错误,符合题意;3.14是小数,也是分数,小数是分数的一种表达形式,D正确,不合题意.故本题选:C.4.下列说法正确的是()A.正整数、负整数统称为整数B.正分数、负分数统称为分数C.正数、0、负数统称为有理数D.整数、分数、小数都是有理数【详解】解:A.正整数、0、负整数统称为整数,故本选项错误;B.正分数、负分数统称为分数,故本选项正确;C.正有理数、0、负有理数统称为有理数,故本选项错误;D.无限不循环小数不是有理数,故本选项错误.故本题选:B.5.下列说法中正确的是()A.非负有理数就是正有理数B.有理数不是正数就是负数C.正整数和负整数统称为整数D.整数和分数统称为有理数【详解】解:A、非负有理数就是正有理数和0,故A选项不正确;B、0既不是正数也不是负数,是有理数,故B选项不正确;C、正整数、0、负整数统称为整数,故C选项不正确;D、整数和分数统称有理数,故D选项正确.故本题选:D.6.下列说法:(1) 3.56既是负数、分数,也是有理数;(2)正整数和负整数统称为整数;(3)0是非正数;(4)2023-既是负数,也是整数,但不是有理数;(5)自然数是整数.其中正确的个数是()A.1个B.2个C.3个D.4个【详解】解:(1)正确;(2)错误,还有0;(3)正确;(4)错误,2023-是有理数;(5)正确.正确的有3个,故本题选:C.7.下列说法中,正确的是()A.在有理数集合中,有最大的正数B.在有理数集合中,有最小的负数C.在负数集合中,有最大的负数D.在正整数集合中,有最小的正整数【详解】解:A、在有理数集合中,没有最大的正数,故A选项错误;B、在有理数集合中,没有最小的负数,故B选项错误;C、在负数集合中,没有最大的负数,故C选项错误;D、在正整数集合中,有最小的正整数1,故D选项正确.故本题选:D.8.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.a-一定是负数D.0既不是正数,也不是负数【详解】解: 非负数包括0和正数,A∴选项不合题意;∴选项不合题意;没有最小的正有理数,B若a是负数,则a∴选项不合题意;-是正数,C∴选项符合题意.既不是正数,也不是负数,D故本题选:D.9.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成【详解】解:A.没有最小的有理数,故本选项不合题意;B.最小的正整数是1,故本选项符合题意;C.有最小的有理数,故本选项不合题意;D.有理数由正有理数,0,负有理数组成,故本选项不合题意.故本题选:B.10.有下列说法:①最小的自然数为1;②最大的负整数是1-;③没有最小的负数;④最小的整数是0;⑤最小非负整数为0,其中,正确的说法有()A.2个B.3个C.4个D.5个【详解】解:①最小的自然数为0,故①不正确;②最大的负整数是1-,故②正确;③没有最小的负数,故③正确;④没有最小的整数,故④不正确;⑤最小非负整数为0,故⑤正确;综上,正确的说法有3个.故本题选:B.考察题型四数感问题1.有两个正数a,b,且a b<,把大于等于a且小于等于b所有数记作[a,]b,例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么nm的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,6【详解】m在[5,15]内,n在[20,30]内,515m∴,2030n,∴2030155nm,即463nm,∴nm的一切值中属于整数的有2,3,4,5,6.故本题选:B.2.设有三个互不相等的有理数,既可表示为1-,a b+,a的形式,又可表示为0,ba-,b的形式,则ab 的值为.【详解】解: 三个互不相等的有理数,既可表示为1-,a b +,a 的形式,又可表示为0,b a,b 的形式,∴这两个数组的数分别对应相等,a b ∴+与a 中有一个是0,b a-与b 中有一个是1-,若0a =,则b a无意义,0a ∴≠,0a b +=,∴a b =-,即1b a =-,b a-1=,∴1b =-,1a =,ab ∴的值为1-.故本题答案为:1-.考察题型五无理数的识别1.在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数的个数是()A .2个B .3个C .4个D .5个【详解】解:在数2021-,0.777⋯⋯,2π,833-,3.1415926,3π-中,无理数有:2π,3π-,共2个.故本题选:A .2.下列八个数:8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0),无理数的个数有()A .0个B .1个C .2个D .3个【详解】解:在实数8-,2.7,2-,2π,0.6 ,0,132,0.8080080008⋯⋯(每两个8之间逐次增加一个0)中,无理数有:2π,0.8080080008⋯⋯(每两个8之间逐次增加一个0),共2个.故本题选:C .3.介于3和π之间的一个无理数是()A .32π+B .3.15C .3.1D .0.15π-【详解】解:介于3和π之间的一个无理数是32π+.故本题选:A .4.(1)请你写出一个比1大且比2小的无理数,该无理数可以是;(2)两个无理数,它们的和为1,这两个无理数可以是.【详解】解:(1)无理数为:2π-,故本题答案为:2π-(答案不唯一);(2)(1)1ππ+-=,故本题答案为:π,1π-(答案不唯一).1.循环小数0.15可化分数为.【详解】解:设0.15x ⋅⋅=,则10015.15x ⋅⋅=,15.15150.15⋅⋅⋅⋅∴=+,10015x x ∴=+,解得:533x =.故本题答案为:533.2.已知有A ,B ,C 三个数集,每个数集中所包含的数都写在各自的大括号内,{2A =-,3-,8-,6,7},{3B =-,5-,1,2,6},{1C =-,3-,8-,2,5},请把这些数填在图中相应的位置.【详解】解:如图所示:.3.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.12B.1118C.76D.59【详解】解:由题意可得:这10个有理数,每9个相加,一共得出另外10个数,原10个有理数互不相等,∴它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22, 它们每一个都是原来10个有理数其中9个相加的和,∴如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.∴10个真分数相加得出结果为5,故所求的10个有理数之和为5/9.故本题选:D.。

有理数与无理数加减乘除的结果

有理数与无理数加减乘除的结果

有理数与无理数加减乘除的结果有理数和无理数,这俩家伙就像两位性格迥异的邻居。

有理数嘛,大家都知道,像1、2、0.5这类,都是整整齐齐的,能用分数表示的朋友。

他们的日常生活可简单了,数一数,算一算,结果总是看得见的。

可这无理数可就不那么简单了,比如根号2、π,还有那些永远也不能写成简单分数的家伙,他们像个小精灵,总在数轴上神出鬼没,让人哭笑不得。

想象一下,有理数在厨房里做饭,一切都得心应手,切菜、煮汤,调料放得刚刚好。

而无理数则像个艺术家,在画布上挥洒自如,几笔之后,竟然能产生不可思议的效果。

你问他是怎么做到的?他只会眨眨眼,不告诉你,因为他的秘密可不是谁都能懂的。

这俩人碰到一起,就好比火星撞地球,火花四溅。

加法呢,简单得很!有理数和有理数加起来,结果还是有理数。

你说好不好?再比如,无理数和无理数相加,结果也是无理数,这让人感到安慰。

可偏偏有理数和无理数相加,那结果却可能是有理数也可能是无理数,这让很多人绞尽脑汁,心里嘀咕:“这到底是咋回事?”就像开盲盒,兴奋又忐忑,你永远不知道自己会抽到什么。

再来说说减法,嘿,没什么好担心的,结果也还是跟加法差不多。

有理数减去有理数,还是有理数;无理数减无理数,还是无理数。

可如果你要是从有理数里减去无理数,那结果又得看运气,或许是有理数,或许是无理数。

简直像抽奖,谁能猜得到呢?乘法就更有意思了。

有理数乘有理数,结果依旧是有理数;无理数乘无理数,结果也是无理数。

可是,一旦有理数跟无理数一起玩儿,结果就像脱缰的野马,令人目瞪口呆,没准儿变成了有理数,也有可能还是无理数。

这种感觉就像打游戏,明明是简单的操作,却能产生千变万化的结果。

至于除法,哈哈,稍微复杂一点。

一个有理数除以一个无理数,那结果又有可能是无理数,或者在特定的情况下也能是有理数。

可千万别问我怎么来的,谁知道呢?就像你去酒吧喝酒,喝的再好,醒来也不一定记得昨天发生了什么。

看吧,这有理数和无理数的互动,真是耐人寻味。

有理数与无理数

有理数与无理数

40
2.2.4实数集是不可数的
定理6
实数集是不可数的。 证明:1)构造法 2)区间套法 定理7 存在着无理的实数。
41
2.2.5代数数

a0 xn a1xn1 a2 xn2 ... an1x an 0
代数基本定理 n次方程(1)在复数域中有n 个根。 定义 一个实数或复数叫做代数数,如果它 是某一个整系数方程的根。 定义 任何不是代数数的实数叫做超越数。 定理8 代数数的集合是可数的。 定理9 存在超越数。
38
几个对等集的例子:
A
A B
B
A
B
39
2.2.3有理数集是可数的
定义

凡与集N对等的集A都叫做可数集, 或称集 A是可数的。 定理1 正有理数的集合是可数的。 定理2 一个有限集和一个可数集如无公共 元素,那么它们的和集是可数的。 定理3 两两不相交的有限个可数集的和集 是可数的。 系1 全体整数的集合是可数的。 系2 全体有理数的集合是可数的。 定理4 两两不相交的可数个有限集的和集 是可数的。 定理5 两两不相交的可数个可数集的和集
17
2.1.5有理数域 数学造型:从0和1出发,通过有理运算可以 造出全部有理数。 有理数域兊服了自然数系的缺陷,相对来说 是比较完美的:对四则运算是封闭的,而且 具有稠密性。 数域是抽象代数的一个基本概念,有理数域 只是数域的一种(最小的数域).
18
2.1.6第一次数学危机
一个正方形的对角线与其 一边的长度是不可公度的 「万物皆数」
书里的著名对话说明远在康托尔 的集合论创始之前,伽利略对 无限已经有了很好的理解。
36
2.2.1一段富有启发性的历史对话

无理数与有理数的运算法则

无理数与有理数的运算法则

无理数与有理数的运算法则
无理数和有理数是数学中两种不同的数。

有理数可以表示为两个整数的比例,而无理数则无法表示为有理数的比例。

在进行无理数和有理数的运算时,有以下法则:
1. 无理数和有理数相加减,结果为无理数。

例如,π+3=π+3,√2-4=√2-4。

2. 无理数和有理数相乘,结果为无理数。

例如,π×2=2π,√3×5=5√3。

3. 无理数和有理数相除,结果为无理数。

例如,π÷5=π/5,√5÷2=√5/2。

4. 无理数之间的加减乘除,结果为无理数。

例如,π+√2=π+√2,π×√2=π√2,π÷√2=π/√2。

5. 有理数之间的加减乘除,结果为有理数。

例如,2+3=5,4-2=2,2×3=6,6÷2=3。

在实际运用中,我们需要注意无理数和有理数的运算结果是否有实际意义,并根据需求进行适当的化简或精度控制。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在学习了负数的概念之后,我们可以 将所有学过的数进行分类:
正整数:如 1,2,3,L
整数 零: 0
负整数:如 1,-2,-3,L
分数
正分数:如
1 ,5.9,5
2
2
,L
负分数:如

1 5
,-3.5,-
5 6
,L
整数和分数统称为有理数。
你能把下面的数分分类吗?
-05..6618,,-3,2,1.65,,346下的表格
边长 a 1<a<2 1.4<a<1.5 1.41<a<1.42 1.414<a<1.415
1.4142<a<1.4143
面积s=a2 1<S<4
1.96<S<2.25 1.9881<S<2.0164 1.999396<S<2.002225
1.99996164<S<2.00024449
2.1.2 有理数与无理 数
• 奇与偶,有界与无界,善与恶,左与右, 一与众,.雄与雌,直与曲,正方与长方, 亮与暗,动与静.
• 上面所写的这些对立概念被两千多年前的 著名的“毕达哥拉斯学派”认为是整个宇 宙的10个对立概念.
• 因此两千多年以前人们就认识到,世界是 由许多相互矛盾的事物组成的.你要认识这 个世界,改造这个世界,就要从这些矛盾 的事物入手.既然这是万物的普遍规律,那 么数学也要遵守.
练习3.把下列各数填入相应的集合中
2
-2 , 0 , 3
,
-0.25,
24 11
5.3,
2 7
整数集合{ … } 分数集合{ … }
正数集合{ … } 负数集合{ … }
非正数集合{ … }非负数集合{ … }
2.把下列数填在相应的集合里。
18, 32, 6.3, 5.1,1, 5 , 9.5, 1 , , 0.9
12
4
…… 整数集合
…… 偶数集合
…… 有理数集合
…… 非负数数集合
3.下面两个圈中分别表示正数集合和整数集合, 请在每个圈中填6个数,其中3个数既是正数又是 整数,这3个数应填在哪?你能说出着两个圈的 重叠部分表示什么数的集合吗?
正数集
整数集
m
我们把能够写成分数形式
n
的数叫 有理数
(m、n是整数且 n 0
负分数:如

1 5
,-3.5,-
56 ,L
思考: 还有没有别的分类方法?
能否将有理数按照是否正有理数或是 否负有理数来分类?
我们说:自然数的全体组成自然数集.
同样的,整数的全体组成整数集。
本校初一学生组成一个集合。
我们把具有某一特征的一类事物的全 体叫集合.
含有无限个元素的集合我们称为无限集, 例如:自然数集,整数集;含有有限个元素 的集合叫有限集,例如:本校全体初一学生 组成的集合等等。
❖ 结论:
❖ C=1.25992105…它也是一个无限不循环小数
定义
❖ 有理数总可以用有限小数或无限循环小数表示。 ❖ 反之,任何有限小数或无限循环小数也都是有理数。
❖ 无限不循环小数叫做无理数
更多无理数
❖ a=1.41421356… ❖ b=2.2360679…
❖π=3.14159265…
❖ 0.58588588858888…(相邻两个5之间8的 个数逐次加1)
正整数:如 1,2,3,L
正数
正分数:如
1 2
,5.3,8 3
,L
零: 0
负整数:如-1,-2,-3,L
负数
负分数:如

1 ,-3.5,5
5 6
,L
正整数:如 1,2,3,L
正有理数
正分数:如
1 ,5.3,8
2
3
,L
零: 0
负整数:如-1,-2,-3,L
负有理数
❖ 把下列各数表示成小数,你发现了什么?
❖ 3 , 4/5, 5/9, -8/45, 2/11
❖ 4/5=0.8 ❖ 5/9=0.555555555555555… ❖ -8/45=-0.177777777777… ❖ 2/11=0.18181818181818…
0.8 有限小数 0.555555555555555… -0.177777777777… 0.18181818181818…
2 3
-5.232323…
..
4.96
π
3
3.14159…
0.1234567891011…(由相继的正整数组成)
❖ 判断对错 ❖ (1)有限小数是有理数; ❖ (2)无限小数都是无理数; ❖ (3)无理数都是无限小数; ❖ (4)有理数是有限小数.
我们把一些数放在一起,就组成一个数的集合, 简称数集。
所有有理数的集合,称为有理数集。 所有整数的集合,称为 所有分数的集合,称为 所有正数的集合,称为 所有负数的集合,称为 所有正整数的集合,称为
那非负数集是什么数的集合?
非正数集呢?非整数集?非分数集?非正整 数集?非负整数集?非正分数集?非负分数 集?
无限循环小数 无限循环小数 无限循环小数
有限小数、无限循环小数都可以化成分数,因此它
们都是 有理数
❖ 面积为2的正方形,边长a究竟是多少? ❖ 即a2=2时,a是多少?
❖ 3个正方形的边长之间有怎样的大小关系?
❖ 边长a的整数部分是几? 十分位是几?百分 位呢?千分位呢?......借助计算器进行探索
7
4
大家有没有观察到:刚才老师把小数也分进 分数里去了。那上面的那些小数能不能说它 们是分数?为什么?那它们是不是有理数?
说明:我们把有限小数和无限循环小数统称为分数
是不是所有的小数都是分数?都是有理数?你能 举个例子吗?
• 注意: • 现在我们学的数中,除了含∏的数,都是有
理数.
• 小数属于分数.
例1 下列各数中,哪些是有理数?哪些是无理 数? 3.14 , -4/3, 0.57, 0.101000100 0001…(相邻 两个1之间0的个数逐次加2)
解:有理数有: 3.14 , -4/3, 0.57
无理数有: 0.101000100 0001…
随堂练习
❖ 哪些是有理数?哪些是无理数?
0.351
讨论
❖ 还可以继续计算下去么?
❖ a可能是有限小数么? 结论: a=1.41421356……,它是一个无限不循环小数
❖ 估计面积为5的正方形的边长b的值,(结果精 确到十分位),并用计算器验证你的估计.
❖ 探索:b=? 精确到百分位 ❖结论: ❖b=2.2360679…它也是一个无限不循环小数
同样,对于体积为2的立方体,借助计算器, 求它的棱长
相关文档
最新文档