岩体分类与方法
岩体工程分类方法及应用研究

经验来对岩体进行归类的方法 , 形成了以定性描述
★基 金项 目: 西省 交通厅 科技 项 目(0 0 00 5 江 2 1C 0 6 )
方 法
及
王 燕 易萍华 时 宁
W a gYa ig u h n n h Yi n h a S i P Ni g
应
用
研
究
(. 1 东华理工大学 , 江西 南 昌 30 1 ; . 3 03 2江西省交通科学研究 院, 江西 南 昌 3 03 ) 3 0 8
( .at hn stt f eh oo y J n x Na c a g 3 0 3 2J n x rvn i a e f rfc 1 sC ia ntue T cn lg , i g i n h n 0 1 ; . ag i o ica Acdmyo T a E I i o a 3 i P l i
0 引 言 工 程 岩 体 分 类 是 岩 体 力 学 的一 个 重 要 研 究 课
为主 和定量 指标 为 辅对 工程 岩 体综合 评 价 的分 类方 法。 因此 , 岩体工 程 分类对 正确 认识 岩 体 的基本 质量
题, 是工程岩体稳定分析的基础 , 也是岩体工程地质 条件定量化的一个重要途径。工程岩体分类是根据 实际工程的需求 ,对工程建筑物基础或围岩体进行 分类的一种方法。而岩体分类经历了早期较为简单 的岩石分类到多参数分类 ,从定性分类到定量半定 量分类 的发展过程。 目 , 前 在国际上 , 工程岩体分类 采用的是根据各种手段获取 的“ 综合特征值” 来反映 岩体的工程特性 ,把它作为工程岩体分类的基本定 量指标[ 并与岩体的一些简单 、 1 J , 实测的指 标 、 工程 岩体地质条件和岩体力学参数联系起来 ,借鉴 已建 和完工的工程的设计 、施工和处理 的成功和失败的
岩体的分类分级与隧道支护及其案例分析

岩体的分类分级与隧道支护及其案例分析J09220210 09土木2班冯博一、岩石开挖分级与围岩工程地质分类的依据开挖分级:开挖分级依据岩石类型、天然湿度下的平均容重、凿岩机钻孔(每米耗时)、坚固系数 f,将岩石划分为Ⅴ~ⅩⅥ级。
其中,对应的坚固系数 f为1.5~ 2,2~ 4, 4~ 6, 6~ 8, 8~ 10, 10~ 12, 12~ 14, 14~ 16,16~ 18,18~ 20, 20~ 25, 25 以上。
这种划分方法主要考虑了岩石的强度和开挖的难易程度,开挖级别越高,强度越大、开挖难度越大,相应的开挖成本也越高。
这实际上是一种工程技术经济分类。
2.2 围岩工程地质分类围岩工程地质分类是从评价地下洞室围岩稳定性的角度出发,为选择地下工程临时和永久支护方案服务的,是地下洞室稳定性研究的基础。
其分类思路是对岩体的质量进行评价,考虑的因素主要是岩体的坚固性、完整性和含水性3 个方面。
国内外有关分类方案不下数十种,目前尚未统一,比较流行的有Q系统和RMR分类法。
“ 六五” 期间,原水电部将“ 水电地下工程围岩分类” 这个课题列入国家科技攻关内容进行了深入的专题研究,积累了宝贵的资料,并吸取国内外众多围岩分类方案的优点,形成了一套较为完善的围岩分类体系。
该体系主要从控制工程岩体稳定性的岩石强度、岩体完整程度、结构面状态、地下水活动程度、主要结构面产状(由结构面走向、倾向和倾角三要素决定)五个方面分别对岩体进行定量评分,根据五项得分总和并考虑围岩强度应力比,将工程岩体划分为Ⅰ~Ⅴ类。
后来,通过各方面的不断探索和完善,逐渐发展成为水利水电行业标准,并在GB 50287—99《水利水电工程地质勘察规范》附录P中列出。
Ⅰ~Ⅴ类围岩特征见表 1。
二、几种隧道围岩类别支护方法1. 浅埋Ⅰ类围岩浅埋Ⅰ类围岩大部分是强风化花岗岩,由于围岩早起压力增长快,处理不当会出现大坍塌,尤其浅埋地段还会产生地表下沉等恶性事故。
工程岩体分类方案中RMR分类

工程岩体分类方案中RMR分类引言岩石是地球表面的重要成分,地下工程如隧道、水坝、地下室等都需要对岩体进行分类和评价。
RMR(岩体强度分类系统)是目前国际上比较成熟的岩体分类方法之一。
通过对岩体参数的测量和分析,可以对岩体质量进行评价,为工程设计和施工提供依据。
岩体分类的目的岩体分类的主要目的是为了对不同类型的岩石进行定量化的评估和分类。
这有助于工程师和设计人员更好地了解并理解地下岩体的特性,为工程设计和施工提供参考。
通过对岩体分类的研究,可以更好地预测地下工程的稳定性和安全性,减少施工风险,提高工程质量。
RMR分类的主要内容RMR分类系统是根据岩体参数的测量和分析,将岩体分为若干个不同的等级。
其主要包括以下几个方面的参数:1. 岩体强度:包括岩石的抗压强度、固体硬度等;2. 节理间距和方向:节理的间距、长度和角度对岩石的稳定性有着重要的影响;3. 岩石的地下水:地下水的压力和含水量是岩石稳定性的一大影响因素;4. 岩石的地下应力状态:岩石应力状态的不同会对岩石的稳定性产生不同的影响;5. 岩体的均匀性:岩体结构的均匀性直接影响着岩石的稳定性。
RMR分类的具体方法RMR分类系统主要是根据岩体参数的测定和分析,将岩体分为5个不同等级,分别是I、II、III、IV和V级。
具体的划分标准如下:1. I级:岩体强度高,节理开裂少,长度短,倾角小,水文地质条件较好,地应力状态较小,岩体均匀性好;2. II级:岩体强度中等,节理较多,长度和倾角较大,地下水条件较好,地应力状态略大,岩体均匀性一般;3. III级:岩体强度较低,节理发育,长度和倾角较大,地下水条件一般,地应力状态较大,岩体均匀性差;4. IV级:岩体强度很低,节理发育且较密,长度和倾角较大,地下水条件差,地应力状态很大,岩体均匀性很差;5. V级:岩体强度极低,节理非常发育,长度和倾角极大,地下水条件非常差,地应力状态很大,岩体均匀性极差。
RMR分类系统的应用RMR分类系统可以广泛应用于地下工程的设计与施工中。
岩土分类1

一、岩石的分类(一)岩石按成因分类(岩浆岩沉积岩变质岩)1、岩浆岩:花岗岩—花岗斑岩—流纹岩(酸性岩);正长岩—正长斑岩—粗面岩(中酸性岩);闪长岩—闪长玢岩—安山岩(中性岩);辉长岩—辉绿岩—玄武岩(基性岩);橄榄岩(辉岩)—苦橄玢岩—苦橄岩(金伯利岩)—(超基性岩)。
2、沉积岩:碎屑沉积岩(砾岩、砂岩、泥岩、页岩、粘土岩、灰岩、集块岩);化学沉积岩(硅华、遂石岩、石髓岩、泥铁石、灰岩、石钟乳、盐岩、石膏);生物沉积岩(硅藻土、油页岩、白云岩、白垩土、煤碳、磷酸盐岩)。
3、变质岩:片状类(片麻岩、片岩、千枚岩、板岩);块状类(大理岩、石英岩);(二)岩石按坚硬程度分类 [极破碎时可不进行坚硬程度划分]>60(未风化~微风化的花岗岩、闪长岩、辉长岩、片麻岩、石英岩、石英1、坚硬岩fr>30(微风化的坚硬岩;未风化~微砂岩、硅质砾岩、硅质石灰岩等);2、较硬岩60≥fr>15(中风化~强风化的大理岩、板岩、石灰岩、白云岩、钙质砂岩);3、较软岩30≥fr风化的坚硬岩;未风化~微风化的凝灰岩、千枚岩、泥灰岩、砂质泥岩);4、软岩15≥fr >5(强风化的坚硬岩;中风化~强风化的较软岩;未风化~微风化的页岩、泥岩、泥质砂岩);5、极软岩f≤5(全风化;半成岩);r(三)岩体按完整程度分类 [岩体完整性指数K v=(V岩体/V岩石压缩波)2] 1、完整K>0.75,整体状或巨厚层状结构;2、较完整0.75~0.55,块状或厚层状结构、v块状结构;3、较破碎0.55~0.350,裂隙块状或中厚层状结构、镶嵌碎裂结构,中、薄层状结构;4、破碎0.35~0.15,裂隙块状结构、碎裂结构;5、极破碎<0.15,散体状结构。
(四)岩石按风化程度分类 [波速比K v=(V岩体/V岩石压缩波)] [风化系数K f=(f r风化岩石/f r新鲜岩石单轴抗压强度)] [泥岩和半成岩可不进行风化程度划分]1、未风化Kv =0.9~1.0,Kf=0.9~1.0,岩质新鲜,偶见风化痕迹;2、微风化Kv=0.8~0.9,Kf=0.8~0.9,结构基本未变,仅节理面有宣染或略有变色,有少量风化裂隙;3、中等风化Kv =0.6~0.8,Kf=0.4~0.8,结构部分破坏,沿节理面有次生矿物、风化裂隙发育,岩体被切割成岩块。
工程岩体分类方法及其意义的探讨

摘要工程岩体分类是岩石力学研究的一个重要内容。
本文对国内外较具影响力的工程岩体分类方法及相应的岩体质量指标进行了归纳介绍,并对其中个别分类方法的优缺点进行了探讨,最后指出了工程岩体分类在对可利用岩体作出判别、工程优化设计过程中的重要作用,指出了工程岩体分类的指导意义。
关键词:岩体分类;质量指标;工程优化设计第1章诸论工程岩体指各类岩石工程周围的岩体,这些岩石工程包括地下工程、边坡工程及与岩石有关的地面工程,即为工程建筑物地基、围岩或材料的岩体。
而工程岩体分类是指通过岩体的一些简单和容易实测的指标,把地质条件和岩体力学性质参数联系起来,并借鉴已建工程设计、施工和处理等成功与失败方面的经验教训,对岩体进行归类的一种工作方法[ 1 ]。
一个工程项目在可行性研究阶段和初步设计阶段,如果缺少岩体具体而详细的强度和水文地质资料时,工程岩体分类系统就会成为一个很有用的工具。
选择合适的分类系统能帮助我们更好地了解岩体的质量好坏,预测可能出现的岩体力学问题,从而为工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。
从这个角度而言,考虑岩块强度、结构面强度等诸多因素,以工程实用为目的的岩体分类,不仅是岩石力学研究的一个重要内容,而且对实际工程具有重要意义。
从Ritter(1879)谋求将经验方法公式化用于隧洞设计,尤其是决定支护形式开始,岩体分类系统的发展已有100多年历史。
其间,国外许多学者作了大量的研究工作,如早期的太沙基(Terzaghi,1946)、劳弗尔(Lauffer,1958)和迪尔(Deere,1964)等。
20世纪70年代以后,随着岩体工程建设的不断发展,工程岩体分类方法的研究取得了显著的进展,如威克汉姆(Wikham,1972)等提出了RSR 分类法,宾尼奥斯基(Bieniawski,1973)提出了 RMR分类法,巴顿(Barton,1974)等提出了Q系统分类法等。
随后,霍顿(1975)、宾尼奥斯基(1976)、巴顿(1976)和拉特利奇(1978)等分别对各种分类方法进行了一系列的比较研究。
工程岩土与测试:我国常用的岩体分类

岩体工程分类
附录:地下工程岩体自稳能力的确定
注:小塌方:塌方高度<3m,或体积<30m3; 中塌方:塌方高度3~6m,或体积30~100m3; 大塌方:塌方高度>6m,或体积>100m3;
按岩体的基本质量指标BQ进行 初步分级
对BQ值进行修正
按修正后的BQ值进行详细分级
地应力 地下水 结构面
岩体工程分类
1)岩体基本质量分级:
• 认为岩石的坚硬程度和岩体完整程度所决定的岩体基本质 量,是岩体固有的属性,是有别于工程因素的共性。岩体 基本质量好,则稳定性也好;反之则差。
• 岩石的坚硬程度和岩体的完整程度,应采用定性划分和定 量指标两种方法确定。
较软岩,岩体破碎; 软岩,岩体较破碎或破碎; 全部极软岩及全部极破碎岩
>550 550~451 450~351
350~251
<250
岩体工程分类 2)工程岩体质量指标BQ的修正与分级
• 工程岩体的稳定性,除与岩体基本质量的好坏有关外,还 受地下水、主要软弱结构面、初始地应力场的影响。结合工 程特点,考虑各种影响因素来修正岩体基本质量指标BQ值, 作为不同工程岩体分级的定量依据。
软岩
<5 极软岩
• 岩体完整程度的定量指标:采用实测岩体完整性指数Kv来确定,而岩体完整性 指数是用弹性波试验资料确定。
岩体完整程度划分表
岩体完整性系数(Kv) >0.75
0.75~0.55 0.55~0.35 0.35~0.15
工程岩体质量分类的三种方法

工程岩体质量分类的三种方法
工程岩体质量分类是岩石工程中的一个重要环节。
在工程设计和工程施工中,不同质量等级的岩体需要采取不同的措施。
本文介绍了三种常用的工程岩体质量分类方法。
1. 大地质量法
大地质量法是最常用的岩体质量分类方法之一。
该方法根据岩体的结构、岩性、断裂、节理、褶皱等的分布情况,将岩体分为优、良、中、差四个等级。
其中,优质岩体具有完整的结构、均匀的岩性、少量的裂缝和节理,且裂缝和节理的发育程度较低;良质岩体结构较好,岩性均匀,裂缝和节理发育程度中等;中质岩体结构不太完整,岩性不太均匀,裂缝和节理发育程度较高;差质岩体结构不完整,岩性不均匀,裂缝和节理发育程度很高。
2. Kirsch法
Kirsch法是一种基于岩体中单轴压缩强度的分类方法。
通过实验测定岩体的单轴压缩强度,将岩体分为超硬岩、硬岩、半硬岩、半软岩和软岩等五个等级。
其中,超硬岩的单轴压缩强度大于300MPa,硬岩的单轴压缩强度在150-300MPa之间,半硬岩的单轴压缩强度在75-150MPa之间,半软岩的单轴压缩强度在30-75MPa之间,软岩的单轴压缩强度小于30MPa。
3. RMR法
RMR法是Rock Mass Rating的缩写,是一种基于岩体强度、岩体结构、地应力、地下水等因素的分类方法。
通过实地调查和测量,
将岩体分为六个等级。
其中,RMR等级越高,表示岩体质量越好。
RMR 等级分别为0-20、21-40、41-60、61-80、81-100、101-120。
以上三种工程岩体质量分类方法各有优缺点,需要根据实际情况选择合适的方法进行分类。
岩石、岩体、土的分类

岩石、岩体、土的分类一、岩土的分类原则1、岩土分类应与工程目的相一致,按钻探的不同目的采用不同的系统定名。
2、按工程需要以岩土组成为主要定名依据,并结合其成因年代及结构、构造特征综合定名。
二、岩石的分类原则岩石是天然形成的具有一定结构、构造的由一种或多种矿物组成的集合体,岩体是指包括各种结构面的原位岩石的综合体。
岩石作为工程地基和环境可按下列原则分类:1、岩石按成因分为岩浆岩、沉积岩和变质岩。
2、岩石根据强度按(表1)分3、岩石根据风化程度按(表2)分未风化、微风化、中等风化、强风化、全风化岩石。
表2 岩石按风化程度分类4、岩石按软化系数(KR)分为软化岩石(KR≤0.75)和不软化岩石(KR>0.75)。
三、岩体的分类1、岩体根据结构类型分为整体状、块状、层状、碎裂状、散体状结构。
2、岩层厚度可按(表3)分四、岩石和岩体的描述1、岩石的描述包括:成因、年代、名称、颜色、主要矿物含量结构、构造和风化程度。
对沉积岩尚要描述沉积物的颗粒大小、形状、胶结成分和胶结程度;对岩浆岩和变质岩尚要描述矿物结晶大小和结晶程度。
2、岩体的描述应包括成因、年代、岩石名称、颜色、结构面、结构体和岩层厚度等。
(1)结构面的描述应包括:类型、性质、产状组合形式、发育程度、延展程度、闭合程度、粗糙程度、充填情况和充填物性质及充水性质等。
(2)结构体的描述应包括:类型、形状、大小、结构体在围岩中的受力情况等。
五、土的分类原则1、土根据地质成因可分为残积土、坡积土、洪积土、冲积土、淤积土、冰积土和风积土。
土根据有机质含量可分为无机土、有机土、泥炭质土和泥炭。
(表4)2、土按颗粒级配或塑性指数分为碎石土、砂土、粉土和粘性土。
各类土的分类应符合下列规定。
(1)碎石土:粒径大于2mm的颗粒质量超过总质量50%的土。
根据颗粒级配和颗粒形状可细分为漂石、块石、卵石、碎石、圆砾和角砾(表5)。
(2)砂土:粒径大于2mm的颗粒质量不超过总质量50%,且粒径大于0.075mm的颗粒质量超过50%的土。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规定:内径56mm 金刚石钻头 RQD是选用坚固完整的、其长度大于等于10cm的岩芯总长度与钻孔长 度的比,百分数表示为:
RQD
l
L钻孔总长
2
3.2.2. 分类原则
(1)有明确的类级和适用对象(专题性的、综合性的)。 (2)根据适用对象,选择考虑因素(单因素、多因素)。
(3)有定量的指标。
(4)类级一般分五级为宜。 (5)分类方法简单明了、数字便于记忆和应用。 发展趋势:“多因素、综合特征值”分类法
3
3.2.3 分类的独立因素
(1)岩石材料的质量(强度指标)。
RMR
R
i 1
6
i
式中:R1-岩石抗压强度评分,R2-RQD评分,R3-节理间距评分, R4-节理状态评分, R5-地下水状态评分,
R6-节理的方向对工程的影响修正评分,
这6个指标分别由如下各表来确定。
12
1)与岩石强度相关的岩体评分值R1可以用标准试 件进行单轴压缩来确定,也可由点荷载试验确定。
13
2)岩石质量指标RQD评分R2
3)对应于节理组间距的岩石评分值R3 节理间距评分值R3 节理间距/cm R3 评分值 ≥200 20 60~200 15 20~60 10 6~20 8 <6 5
14
4)与节理状态相关的岩体评分值R4
15
5)与地下水状态相关的岩体评分值R5
16
@ 1973,南非科学和工业委员会 (CSIR)
i
10cm
100 %
工程实践说明,RQD是一种比岩芯采取率更好的指标。
6
用RQD值来描述岩石的质量分级
7
例 某钻孔的长度为250cm,其
中岩芯采取总长度为200cm,而
大于10cm的岩芯总长度为
157cm(如图所示),
则岩芯采取率:
200/250=80%
RQD=157/250=63% 岩体分类为:Ⅲ类、中等岩体
(2)岩体的完整性,密集度、切割度、连续性等。 (3)岩体结构面产状与岩体工程的相对空间位置关系等。 (4)地下水(软化、冲蚀、降低有效正应力、c、φ) (5)地应力(大小、最大主应力方向)
(6)其它因素(自稳时间、位移率)
其中(1)(2)是岩石基本质量,(3)-(6)是考虑工 程岩体特点的其它因素
0.2~0 Ⅴ 非常不好
9
② 中科院地质所根据岩体结构的分类,列出了 弹性波在各类岩体中传播特性。
10
③
日本,池田和彦,1969年提出了日本铁路隧道围岩分类;
先将岩质分6类,再根据弹性波在岩体中的速度,将围岩分为7类
11
3.按岩体综合指标分类-1
① 岩体的地质力学分类(CSIR分类) 毕昂斯基(Bieniaski,1973)提出RMR(Rock Mass Rating)值分类法 南非科学和工业委员会(CSIR)
4
3.2.4 几种典型岩体分类理论和方法 1.按岩石的单轴抗压强度σ c分类 岩石普氏系数(f=σ c/10)分类法
(M.M.Продотьяконов ,1907 ) 极硬(f=20)、 较硬(f=5~6)、 很硬(f=15)、 普通(f=3~4)、 坚硬(f=8~10)、 较软(f=1.5~2)、
8
b. 以弹性波(纵波)速度分类 依据:弹性波速变化来反映岩体结构特性和完整性。 ①梅里特(Merritt)提出龟裂系数(Kv):
Kv (Vpm / Vpr )
Merritt的龟裂系数岩体分类
Kv 级次 岩体类别 0.8~1 Ⅰ 非常好 0.8~0.6 Ⅱ 好
2
0.6~0.4 Ⅲ 较好
0.4~0.2 Ⅳ 不好
19
€ 根据6个参数之和RMR值,把岩体的质量划分为五类
RMR
R
i 1
6
i
20
@本分类还给出了对岩体稳定性(隧洞岩 体自稳时间)以及对应的岩体c,φ 值
适用:坚硬、节理岩体,浅埋隧道 不适用:挤压、膨胀、涌水的及软岩体。
21
3.按岩体综合指标分类-2
② 巴顿岩体质量分类(Q分类) 巴顿(Barton,1974)提出Q值分类法 挪威岩土工程研究所(Norwegian Geotechnical Institute) (NGI)
24
3.按岩体综合指标分类-3
③ 我国工程岩体分级标准 (GB50218-94) 分两步计算:
1)岩体基本质量分级--计算BQ
2)岩体稳定性分级--计算[BQ],判断分类。
3.2 岩体分类理论与方法-主要内容
• 1 岩体分类的目的和意义
• 2 岩体分类的原则 • 3 分类的独立因素 • 4 几种典型的分类理论和方法
1
3.2 岩体分类的理论与方法
3.2.1 分类的目的与意义
(1)分析、评价工程岩体稳定性的需要。
(2)为岩石工程建设的勘察、设计、施工和编制定额和概预 算提供必要的基本依据。 (3)便于设计、施工方法的总结,交流,推广。 (4)为便于行业内技术改革和管理。 体现:安全、经济、发展的思想,岩体分类是岩石力学研究 领域的重要基础性课题。 举例说明
毕昂斯基(Bieniaski)提出RMR计算式
RMR Ri
i 1
6Leabharlann 5@ 1979年,提出修正RMR计算式
RMR Ri
i 1
@ 为什么要考虑节理方向对工程是否 有利(R6 )修正前五个评分之和 ? @ 看下面的几幅图的情况,如何?
17
18
6)考虑节理方向对工程是否有利来修正前五个评分之和R6
软层(f=0.8~1)、 松软(f<1)等8类。 优点:简单方便、工程早期,普氏系数在我国现行设计手册、工程定额、 概预算仍沿用。 缺点:小尺寸试件不能反映岩体强度,应予淘汰。由此可推按单轴抗压强 度进行分类的方法均应予淘汰。
5
2.按岩体完整性分类
a.按岩石质量指标 RQD 分类 (Rock Quality Designation)
Jw RQD J r Q Jn J a S RF
式中:RQD-岩石质量指标,Jn-节理组数,Jr-节理粗糙系数, Ja-节理蚀变系数, Jw-节理水折减系数,
SRF-应力折减系数,
22
23
Q分类的优点: 1)考虑因素相对全面; 2)适用于各种岩石(软、硬);
Q分类的缺点: 没有考虑节理方位(怕失去简单的特点,影响通用性)