大学物理第3章刚体力学习题解答
大学物理刚体力学习题讲解

(A) 只有(1)是正确的.
(B)
(B) (1) 、(2)正确,(3) 、(4) 错误. (C) (1)、(2) 、(3) 都正确,(4)错误. (D) (1) 、(2) 、(3) 、(4) 都正确.
M=L×F |M|=|L|×|F|sinθ
2. 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下
4. 一作定轴转动的物体,对转轴的转动惯量J= 3.0 kg·m2,角速度0=6.0 rad/s.现对物体加一 恒定的制动力矩M =-12 N·m,当物体的角速度 减慢到=2.0 rad/s时,物体已转过了角度 =
4.0rad
M=Jβ
2as=v`2-v2 2βθ= 2 -02
5. 质量为m1, m2 ( m1 > m2) 的两物体,通过一定滑轮用绳
6. 一长为1 m的均匀直棒可绕过 其一端且与棒垂直的水平光滑固 定轴转动.抬起另一端使棒向上 与水平面成60°,然后无初转速 地将棒释放.已知棒对轴的转动
惯量为1/3ml3,其中m和l分别为
棒的质量和长度.求: (1) 放手时棒的角加速度; (2) 棒转到水平位置时的角
加速度.
l m g
O 60°
端挂一物体.物体所受重力为P,滑轮的角加速度为.若将物体
去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度将
(A) 不变. (B) 变小.
(C) 变大. (D) 如何变化无法判断.
[ C]
①物体状态at=rβ (P-atm)r=Jβ ②拉力情况下Pr=Jβ
挂重物时,mg-T= ma =mRβ, TR =J, P=mg
5. 解:由人和转台系统的角动量守恒
J11 + J22 = 0 其中 J1=75×4 kg·m2 =300 kg·m2,1=v/r =0.5 rad / s J2=3000 kg•m2
《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。
然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。
大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。
注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。
分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。
分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。
解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。
大学物理练习册习题及答案4

习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
其中a ,b 为矩形板的长,宽。
证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。
解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
刚体力学习题答案.docx

连,m1和m2则挂在圆柱体的两侧,如3-8图所示.设R=0.20m,r=0.10m,m=4 kg,M=10
kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
2
1( J
2mr
2)
0
2
0
2
2
0
1
1
(5
2 4
0.22)
122
(5 2
4 0.82)
(2 )2
2
2
=183J
3-18如3-20图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上. 现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂
直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.
L2
m2
vr sin 30
1m1r2
2
2
v
1
2
故有
m2vr sin60 m22r sin30
2m1r
可解得:
(2 3 1)m2v
2m1r
3-16
一人站在一匀质圆板状水平转台的边缘
,转台的轴承处的摩擦可忽略不计
,人的质量
为m',转台的质量为
10m',半径为R.最初整个系统是静止的,这人把一质量为
m的石子
2
mv
6m'R
人的线速度为vR
mv
6m'
其中负号表示转台角速度转向和人的线速度方向与假设方向相反-
3-17一人站在转台上,两臂平举,两手各握一个m
第03章(刚体力学)习题答案

轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 310 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]
大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。
先使小球以速度0v 。
绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。
(2)由r D 缩到r 1过程中,力F 所作的功。
解 (1)绳子作用在小球上的力始终通过中心O ,是有心力,以小球为研究对象,此力对O 的力矩在小球运动过程中始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即10L L =小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 100r r v v =(2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ⎥⎦⎤⎢⎣⎡-=-=-=1)(21 21)(21 21212102020210202021r r mv mv r r mv mv mv W2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。
物体置于倾角为θ的光滑斜面上。
开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下滑,求物体下滑距离l 时,物体速度的大小。
解 把物体、滑轮、弹簧、轻绳和地球为研究系统。
在物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。
设物体下滑l 时,速度为v ,此时滑轮的角速度为ω则 θωsin 2121210222mgl mv J kl -++= (1)又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22sin 2θ本题也可以由刚体定轴转动定律和牛顿第二定律求得,读者不妨一试。
3 如右图所示,一长为l 、质量为m '的杆可绕支点O 自由转动,一质量为m 、速率为v 的子弹射入杆内距支点为a 处,使杆的偏转为︒30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:大圆盘对过圆盘中心o 且与盘面垂直的轴线(以下简称o 轴)的转动惯量为221MR I =.由于对称放置,两个小圆盘对o 轴的转动惯量相等,设为I’,圆盘质量的面密度σ=M/πR 2,根据平行轴定理,2412222222124))(()('r M r r r I Rr M R +=+=πσπσ 设挖去两个小圆盘后,剩余部分对o 轴的转动惯量为I”)/2('2"24222122122124R r r R M Mr MR I I I R r M --=--=-= 3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s ,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为r=0.4m ,问从开始制动到静止需多长时间?解:由转动定理:,M I α=20.43920.415.68/8.0M rad s I α⨯⨯⨯===制动过程可视为匀减速转动,/t αω=∆∆ /41.9/15.68 2.67t s ωα∆=∆==3.20一轻绳绕于r=0.2m 的飞轮边缘,以恒力 F=98N 拉绳,如题3-20图(a )所示。
已知飞轮的转动惯量 J=0.5kg.m 2,轴承无摩擦。
求 (1)飞轮的角加速度。
(2)绳子拉下5m 时,飞轮的角速度和动能。
(3)如把重量 P=98N 的物体挂在绳端,如题3-20图(b )所示,再求上面的结果。
解 (1)由转动定理得:20.29839.20.5M r F rad s I I α-⋅⨯====⋅(2)由定轴转动刚体的动能定理得:212k A E I ω==k E F h =⋅=490J 12249044.270.5kE rad s Iω-⨯===⋅ (3)物体受力如图所示:P T ma rT J a r T T αα⎧-=⎪⎪'=⎨⎪'==⎪⎩解方程组并代入数据得: 222989802217898020598Pr g ...rad s Pr Jg ...α-⨯⨯===⋅+⨯+⨯ 22222111222k P P A E J r J r Ph g g ωωω⎛⎫==+=+= ⎪⎝⎭12222*98*533.150.59.8*0.2Ph rad s P J r gω-===⋅++ 22110533********k E J *.*..J ω=== 3.21现在用阿特伍德机测滑轮转动惯量。
用轻线且尽可能润滑轮轴。
两端悬挂重物质量各为m 1=0.46kg ,m 2=0.5kg ,滑轮半径为0.05m 。
自静止始,释放重物后并测得0.5s 内m 2下降了0.75m 。
滑轮转动惯量是多少? 解:隔离m 2、m 1及滑轮,受力及运动情况如图所示。
对m 2、m 1分别应用牛顿第二定律:)2();1(111222a m g m T a m T g m =-=-对滑轮应用转动定理:R Ia I R T T /)(12==-β (3)质点m 2作匀加速直线运动,由运动学公式:221at y =∆, 222/06.00.5/75.02/2s m t y a =⨯=∆=∴由 ⑴、⑵可求得 a m m g m m T T )()(121212+--=-,代入(3)中,可求得21212)](/)[(R m m a g m m I +--=,代入数据:2221039.105.0)96.006.0/8.904.0(kgm I -⨯=⨯-⨯=3.22质量为m ,半径为的均匀圆盘在水平面上绕中心轴转动,如题3-22图所示。
盘与水平面的动摩擦因数为,圆盘的初角速度为0ω,问到停止转动,圆盘共转了多少圈?解: 221mR I =如图所示:rdr dm πσ2= gdm r dM μ-=R mg dr r g gdm r dM M R μπσμμ32202-=-=-==⎰⎰⎰由转动定律:M=d d d d JJ J dt d dt d ωωθωωθθ== 得: 00201223mR d mgR d θωωωμθ∆=-⋅⎰⎰积分得: 2038R gωθμ∆=所以从角速度为0ω到停止转动,圆盘共转了20316R gωπμ圈。
3.23如图所示,弹簧的倔强系数k=2N/m,可视为圆盘的滑轮半径r=0.05m ,质量m 1=80g ,设弹簧和绳的质量可不计,绳不可伸长,绳与滑轮间无相对滑动,运动中阻力不计,求1kg 质量的物体从静止开始(这时弹簧不伸长)落下1米时,速度的大小等于多少(g 取10m/s 2)解:以地球、物体、弹簧、滑轮为系统,其能量守恒物体地桌面处为重力势能的零点,弹簧的原长为弹性势能的零点,则有:22212111022212m v J kx m gh v r J mr x hωω⎧++-=⎪⎪⎨⎪===⎪⎩解方程得:21122m gh kh v m m /-=+代入数据计算得:v=1.48m/s 。
即物体下落0.5m 的速度为1.48m/s3.24如题3-24图所示,均质矩形薄板绕竖直边转动,初始角速度为0ω,转动时受到空气的阻力。
阻力垂直于板面,每一小面积所受阻力的大小与其面积及速度平方的乘积成正比,比例常数为k 。
试计算经过多少时间,薄板角速度减为原来的一半,设薄板竖直边长为b ,宽为a ,薄板质量为m 。
解;如图所示,取图示的阴影部分为研究对象v x ω= 222df kv dS kx bdx ω==23dM x df k bx dx ω=⋅=23240014a aM dM k bx dx k ba ωω===⎰⎰d M J dt ω= 244d Jdt J d M k ba ωωω== 024242004443/J d J mt kba kba kba ωωωωωω===⎰所以经过2043mkba ω的时间,薄板角速度减为原来的一半。
3-25一个质量为M ,半径为 R 并以角速度ω旋转的飞轮(可看作匀质圆盘),在某一瞬间突破口然有一片质量为m 的碎片从轮的边缘上飞出,见题3-25图。
假定碎片脱离飞轮时的瞬时速度方向正好竖直向上, (1)问它能上升多高?(2)求余下部分的角速度、角动量和转动动能。
解:(1)碎片以R ω的初速度竖直向上运动。
上升的高度:222022v R h g gω== (2)余下部分的角速度仍为 ω角动量 212L J (M m )R ωω==-转动动能 221122k E (M m )R ω=-3.26两滑冰运动员,在相距1.5m 的两平行线上相向而行。
两人质量分别为m A =60kg ,m B =70kg ,他们的速率分别为v A =7m.s -1, v A =6m.s -1,当二者最接近时,便拉起手来,开始绕质心作圆运动,并保持二者的距离为1.5m 。
求该瞬时: (1)系统对通过质心的竖直轴的总角动量; (2)系统的角速度;(3)两人拉手前、后的总动能。
这一过程中能量是否守恒? 解:如图所示, (1)60159607013A A B m l .x m m m ⨯===++ 921151326l x .m -=-=221607913706212663010A A B B L m v (l x )m v x //.kgm s -=-+=⨯⨯+⨯⨯=⨯⋅(2)L J ω= 22c c c c B A L L J m x m (l x )ω==+-,代入数据求得:1867c .rad s ω-=⋅ (3)以地面为参考系。
拉手前的总动能:2211122k A A B BE m v m v =+,代入数据得12730k E J =, 拉手后的总动能:包括括个部分:(1)系统相对于质心的动能(2)系统随质心平动的动能222222211112222A A B B k c A B c c A B A B m v m v E J (m m )v J (m m )m m ωω⎛⎫+=++=++ ⎪+⎝⎭动能不守恒,总能量守恒。
3.27一均匀细棒长为 l ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点 O 发生完全非弹性碰撞,碰撞点位于离棒中心一方l/4处,如题3-27图所示,求棒在碰撞后的瞬时绕过O 点垂直于杆所在平面的轴转动的角速度0ω。
解:如图所示:碰撞前后系统对点O 的角动量守恒。
碰撞前后: 104L mv l /=碰撞前后:2220001124l L J ml m ωω⎡⎤⎛⎫==+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦由12L L =可求得:200127v rad s lω-=⋅3.28如题3-28图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在无摩擦的水平面上,作半径为r 0 的圆周运动.如果在绳的另一端作用一竖直向下的拉力,使小球作半径为r 0/2 的圆周运动.试求:(1) 小球新的角速度;(2) 拉力所作的功. 解:如图所示,小球对桌面上的小孔的角动量守恒(1)初态始角动量 2100L mr ω=;终态始角动量 22014L mr ω=由12L L =求得:04ωω= (2)拉力作功:2222110000113222W J J mr ωωω=-=3.29质量为0.50 kg ,长为0.40 m 的均匀细棒,可绕垂直于棒的一端的水平轴转动.如将此棒放在水平位置,然后任其落下,如题3-29图所示,求:(1) 当棒转过60°时的角加速度和角速度;(2) 下落到竖直位置时的动能;(3) 下落到竖直位置时的角速度. 解:设杆长为l ,质量为m(1) 由同转动定理有:232123lmg sin g sin MJml lθθα===代入数据可求得:21838.rad s α-=⋅由刚体定轴转动的动能定理得:2211223l mg cos ml θω=3g cos lθω=,代入数据得:17978.rad s ω-=⋅(也可以用转动定理求得角加速度再积分求得角速度)(2)由刚体定轴转动的动能定理得:k W E =∆ 059802098k E mgh ....J ==⨯⨯= (3)12220988573105043kE ..rad s J..ω-⨯===⋅⨯⨯3-30 如题3-30图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮的转动惯量J 1 =10.0 kg· m 2 ,开始时B 轮静止,A 轮以n 1 =600 r· min -1 的转速转动,然后使A 与B 连接,因而B 轮得到加速而A 轮减速,直到两轮的转速都等于n =200 r· min -1 为止.求:(1)B 轮的转动惯量;(2) 在啮合过程中损失的机械能.解:研究对象:A 、B 系统在衔接过程中, 对轴无外力矩作用,故有常矢=L ϖ()121122J J J J ωωω⇒+=+即: 1122J ()J ωωωω-=-代入数据可求得:2220J kg m =⋅(2)()2221122121122k E (J J )J J ωωω∆=+-+ 代入数据可求得:413210k E .J ∆=-⨯,负号表示动能损失(减少)。