临界与极值问题
临界与极值问题

例4、沙堆的形成测出了沙粒之间的动摩擦因数。研究的过 程如下:研究小组通过观察沙堆的形成过程可以发现,由 漏斗落下的细沙总是在地面上形成一个小圆锥体,继续下 落时,细沙沿圆锥体表面下滑,当圆锥体的母线与底面夹 角达到一定角度时,细沙不再下滑,如图所示。经过反复 实验,研究小组得出结论:沙堆的形成与沙粒之间的动摩 擦因数有关。该小组只用一把皮卷尺就测定了沙粒之间的 动摩擦因数(假定最大静摩擦力等于滑动摩擦力),则:
A.3 B.4 C.5 D.6
【解析】 以A为研究对象,根据平衡条件A对B有压力和摩擦力的作用, 以B为研究对象,B除受到A施加的压力和摩擦力外,还受到重力和斜面的支 持力作用,斜面与B之间可能存在摩擦力,也可能不存在摩擦力,故选B、C.
• 例4.如右图所示,斜面小车M静止在光滑水 平面上,一边紧贴墙壁.若再在斜面上加一
T2
5m, garct1an
2
,其中α是T2与水平方向的夹角。
令小球处在离开斜面的临界状态(N刚好为零)时, 斜面向右的加速度为a0,此时小球受力分析如下图所 示.
Tsin mg T cos ma0 a0 gcot 7.5m/s2
T
mg
所以:a10m/2sa0
由于 a10m/2sa0
所以小球会离开斜面,受力如下图
解析 整体分析可知A与墙之间无弹力,所以A仅受重力、 B对A的弹力及摩擦力3个力,应选B项.
例2、如图所示,竖直放置的轻弹簧一端固 定在地面上,另一端与斜面体P相连,P 与斜放在其上的固定档板MN接触且处于 静止状态,则斜面体P此刻受到的外力的 个数有可能是:
A.2
B.3
B.C.4 D、5
例3.如图所示,在水平力F作用下,A、B保持 静止,若A与B的接触面是水平的,且F≠0,则 关于B的受力个数可能为( )
高中物理中的临界与极值问题

高中物理中的临界与极值问题宝鸡文理学院附中何治博一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。
与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。
极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。
临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。
因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。
高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。
从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。
也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。
可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。
2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。
(4)速度达到最值的临界条件:加速度为0。
2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。
动力学中的临界与极值问题

考点二 动力学中的临界与极值问题动力学中的临界问题一般有三种解法:1.极限法在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.2.假设法有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法.3.数学法将物理过程转化为数学公式,根据数学表达式求解得出临界条件.命题点1 接触与脱离的临界条件3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2③ 由①式得x 1=(M +m )g k=0.15 m , 由②③式得a =6 m/s 2.F min =(M +m )a =72 N ,F max =M (g +a )=168 N.【答案】 F max =168 N F min =72 N命题点2 相对滑动的临界条件4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求:(1)小铅块相对木块滑动时小铅块的加速度大小;(2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小.【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma解得a =5 m/s 2.(2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg )解得n ≤3.33即小铅块最多只能带动3个木块运动设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12M (v 2-v 20) 解得v =6 m/s.【答案】 (1)5 m/s 2 (2)6 m/s命题点3 数学方法求解极值问题5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.求:(1)物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?【解析】 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at 2① v =v 0+at ②联立①②式,代入数据得a =3 m/s 2③v =8 m/s ④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma ⑤F sin α+F N -mg cos θ=0⑥又F f =μF N ⑦联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+ma cos α+μsin α⑧ 由数学知识得cos α+33sin α=233sin(60°+α)⑨ 由⑧⑨式可知对应F 最小的夹角α=30°⑩联立③⑧⑩式,代入数据得F 的最小值为F min =1335N. 【答案】 (1)3 m/s 2 8 m/s (2)30°1335N“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.。
时动力学中的临界与极值问题

因数为µ2。现突然以恒定加速度a将桌布抽离桌面,加
速度的方向是水平的且垂直于
A
AB边。若圆盘最后不从桌面掉下,
则加速度a满足的条件是什么? B
(以g表示重力加速度)
精品课件!
精品课件!
例7、如图所示,在倾角为θ的光滑斜面上端系一劲度系
数为k的轻弹簧,弹簧下端连有一质量为m的小球,球被
一垂直于斜面的挡板A挡住,此时弹簧没有形变,若手持
10 m.已知斜面倾角 θ=30°,物块与斜面之间的动摩擦因数 μ= 33. 重力加速度 g 取 10 m/s2. (1)求物块加速度的大小及到达 B 点时速度的大小. (2)拉力 F 与斜面夹角多大时,拉力 F 最小?拉力 F 的最小值是多少?
例5、如图所示,质量M=1 kg的木板静止在粗糙的水平地面上,木
当板A以加速度a(a<gsinθ)沿斜面匀加速下滑,求:
平向左的拉力F,认为最大静摩擦力等于滑动摩擦力,在图中画出 数为k的轻弹簧,弹簧下端连有一质量为m的小球,球被
(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点; (3)绳子断裂与松驰的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,
例1、m=10kg、θ=37°,M=2kg,斜面与物块的动摩擦因 数µ=0.2,地面光滑,要使物体m相对斜面静止,力F应多 大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g 取10m/s2)
m
F
M
θ
例2、斜面光滑、倾角α、小球质量m
①要使小球对斜面无压力,求斜
面体运动的加速度范围并说明其
方向。
a=10m/s2加速度向右匀加速运动时,
物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
物理临界和极值问题总结

物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。
下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。
- 临界问题常见于相变、相平衡和相变点等领域。
- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。
2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。
- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。
- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。
无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。
对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。
总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。
这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。
3、临界、极值问题

d
c
◆带电粒子在三角形磁场区域中的运动
例6.如图所示,在边长为2a的等边三角形△ABC内存 在垂直纸面向里磁感应强度为B的匀强磁场,有一带电 量为q、质量为m的粒子从距A点 3a 的D点垂直于AB方 向进入磁场。若粒子能从AC间离开磁场,求粒子速率 应满足什么条件及粒子从AC间什么范围内射出?
d
缩放圆:变化1:在上题中若电子的电量e,质量 m,磁感应强度B及宽度d已知,若要求电子不从 右边界穿出,则初速度V0有什么要求?
e B v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
变式、在真空中宽d的区域内有匀强磁场B,质量为 m,电量为e,速率为v的电子从边界CD外侧垂直 射入磁场,入射方向与CD夹角θ,为了使电子能从 磁场的另一侧边界EF射出,v应满足的条件是:B A.v>eBd/m(1+sinθ) C E B.v>eBd/m(1+cosθ) v C.v> eBd/msinθ θ O D.v< eBd/mcosθ
例题、如图所示.长为L的水平极板间,有垂直纸面向 内的匀强磁场,磁感强度为B,板间距离也为L,板不带 电,现有质量为m,电量为q的带正电粒子(不计重力), 从左边极板间中点处垂直磁感线以速度 v水平射入磁场, 欲使粒子不打在极板上,可采用的办法是: AB A.使粒子的速度v<BqL/4m; O2 B.使粒子的速度v>5BqL/4m; r2 C.使粒子的速度v>BqL/m; v D.使粒子速度BqL/4m<v<5BqL/4m。 r2
2R
M
2R
O
R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点综合专题四牛顿运动定律的综合应用热点一超重和失重问题超重、失重和完全失重的比较【典例】(2018·福建福州期末)广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a -t图象如下图所示.则下列相关说法正确的是()A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零[审题指导](1)判断超重与失重,仅看加速度方向即可,与加速度大小如何变化无关.(2)a-t图线与t轴所围的“面积”代表速度的变化量.[解析]利用a-t图象可判断:t=4.5 s时,电梯有向上的加速度,电梯处于超重状态,则A错误;0~5 s时间内,电梯处于超重状态,拉力>重力,5~55 s时间内,电梯处于匀速上升过程,拉力=重力,55~60 s时间内,电梯处于失重状态,拉力<重力,综上所述,B、C错误;因a-t图线与t轴所围的“面积”代表速度改变量,而图中横轴上方的“面积”与横轴下方的“面积”相等,则电梯的速度在t=60 s时为零,D正确.[答案]D判断超重和失重的方法[针对训练]1.(2018·吉林省白城市通榆一中考试)某运动员(可看成质点)参加跳台跳水比赛,t=0时,为其向上起跳离开跳台的瞬间,其速度与时间关系图象如图所示,不计空气阻力,则下列说法错误的是()A.可以求出水池的深度B.可以求出跳台距离水面的高度C.0~t2时间内,运动员处于失重状态D.t2~t3时间内,运动员处于超重状态[解析]跳水运动员在跳水过程中的v-t图象不能反映是否到达水底,所以不能求出水池的深度,故A错误;应用v-t图象中,图线与横轴围成的面积表示位移大小,可以求出跳台距离水面的高度,故B正确;t=0时刻是运动员向上起跳离开跳台的瞬间,速度是负值时表示速度方向向上,则知0~t1时间内运动员做匀减速运动,t1~t2时间内向下做匀加速直线运动,0~t2时间内,运动员一直在空中具有向下的加速度,处于失重状态,故C正确;由题图可知,t2~t3时间内,运动员向下做减速运动,则加速度的方向向上,处于超重状态,故D正确.[答案]A2.(多选)飞船绕地球做匀速圆周运动,宇航员处于完全失重状态时,下列说法正确的是()A.宇航员不受任何力作用B.宇航员处于平衡状态C.地球对宇航员的引力全部用来提供向心力D.正立和倒立时宇航员一样舒服[解析]飞船绕地球做匀速圆周运动时,飞船以及里面的宇航员都受到地球的万有引力,选项A错误;宇航员随飞船绕地球做匀速圆周运动,宇航员受到地球的万有引力提供其做圆周运动的向心力,不是处于平衡状态,选项B错误,选项C正确;完全失重状态下,重力的作用效果完全消失,正立和倒立情况下,身体中的器官都是处于悬浮状态,没有差别,所以一样舒服,选项D正确.[答案]CD热点四动力学中的临界和极值问题的分析方法(微专题)1.临界或极值条件的标志(1)有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点.(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度.2.解临界或极值问题的基本思路(1)认真审题,分析问题中变化的过程(包括分析整体过程中有几个阶段).(2)寻找过程中变化的物理量.(3)探索物理量的变化规律.(4)确定临界状态,分析临界条件,找出临界关系.3.常见临界(极值)问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是相互作用的弹力为零,加速度相等。
(2)是否相对滑动的临界条件:静摩擦力达到最大值。
(3)绳子是否断裂与张弛的临界条件:绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力;绳子张弛的临界条件是F T=0。
(4)滑块在滑板上滑下与不滑下的临界条件:滑块滑到滑板一端时,两者速度相同。
(5)加速度的极值条件:当所受合力最大时,具有最大加速度;合力最小时,具有最小加速度。
(6)速度最大的极值条件:应通过运动过程分析,很多情况下当加速度为零时速度最大。
4.求解临界极值问题的思维方法题型一“脱离”临界问题【典例1】(2017·海南卷)一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m的小物块a相连,如图所示.质量为35m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从t=0时开始,对b施加沿斜面向上的外力,使b始终做匀加速直线运动.经过一段时间后,物块a、b分离;再经过同样长的时间,b距其出发点的距离恰好也为x0.弹簧的形变始终在弹性限度内,重力加速度大小为g.求:(1)弹簧的劲度系数;(2)物块b加速度的大小;(3)在物块a、b分离前,外力大小随时间变化的关系式.[审题指导]第一步读题画图(形象过程)过程1:a 、b 紧贴在一起做匀加速直线运动,b 受外力. 过程2:a 、b 恰好分离后,b 继续做匀加速直线运动.第二步 审题分析(找突破口)(1)初始时“b 紧靠a 静止在斜面上,弹簧的压缩量为x 0”,可直接求得弹簧的劲度系数.(2)“物块b 始终做匀加速直线运动”;物块b 的加速度在整个过程中是没有改变的.(3)过程1和过程2的时间是相等的.[解析] (1)物块a 、b 静止在斜面上,由平衡条件有⎝⎛⎭⎪⎫m +35m g sin θ=kx 0,解得k =8mg sin θ5x 0. (2)设物块b 加速度的大小为a ,a 、b 分离时b 运动的位移为x 1,由运动学公式有x 1=12at 21,x 0=12a (2t 1)2, 分离瞬间,对物块a 进行受力分析,由牛顿第二定律有k (x 0-x 1)-mg sin θ=ma ,联立以上各式解得a =15g sin θ.(3)设外力为F ,经过时间t 弹簧的压缩量为x ,在物块a 、b 分离前,对物块a 、b 整体,由牛顿第二定律有F +kx -⎝ ⎛⎭⎪⎫m +35m g sin θ=⎝ ⎛⎭⎪⎫m +35m a , 由运动学公式有x 0-x =12at 2, 联立以上各式解得F =4mg 2sin 2θ25x 0t 2+8mg sin θ25. [答案] (1)8mg sin θ5x 0 (2)15g sin θ (3)4mg 2sin 2θ25x 0t 2+8mg sin θ25动力学中极值问题的处理方法“四种”典型的数学处理方法①三角函数法;②根据临界条件列不等式法;③利用二次函数的判别式法;④极限法.[针对训练]1.(2018·安徽六校二联)一弹簧一端固定在倾角为37°的光滑斜面的底端,另一端拴住质量m 1=4 kg 的物块P ,Q 为一重物,紧靠P 放置,已知Q 的质量m 2=8 kg ,弹簧的质量不计,劲度系数k =600 N/m ,系统处于静止状态,如图所示.现给Q 施加一个沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2 s 时间内,F 为变力,0.2 s 以后,F 为恒力.求此过程中力F 的最大值与最小值.(sin37°=0.6,g =10 m/s 2)[解析] 从受力角度看,两物块分离的条件是两物块间的正压力为0.从运动学角度看,一起运动的两物块恰好分离时,两物块在沿斜面方向上的加速度和速度仍相等.设刚开始时弹簧压缩量为x 0,则(m 1+m 2)g sin θ=kx 0①因为在前0.2 s 时间内,F 为变力,0.2 s 以后,F 为恒力,所以在0.2 s 时,P 对Q 的作用力为0,设此时弹簧压缩量为x 1,由牛顿第二定律知kx 1-m 1g sin θ=m 1a ②前0.2 s 时间内P 、Q 向上运动的距离为x 0-x 1=12at 2③ 联立①②③式解得a =3 m/s 2P 、Q 刚开始运动时拉力F 最小,此时有F min =(m 1+m 2)a =36 N当P 、Q 分离时拉力最大,此时有F max =m 2(a +g sin θ)=72 N.[答案] 72 N 36 N2.小车内固定一个倾角为37︒的光滑斜面,用一根平行于斜面的细线系住一个质量为2m kg =的小球,如图所示。
(1)当小车以加速度215/a m s =向右匀加速运动时,细线上的拉力为多大?(2)当小车的加速度2215/a m s =向右匀加速运动时,细线上的拉力为多大?(g 取210/)s s【解答】解:(1)当支持力为零时,小球受拉力和重力两个力作用,根据cot37mg ma ︒=得, 解得240cot37/3a g m s =︒=, 因为1a a <,知小球未离开斜面,受重力、支持力和拉力作用,受力如图所示,竖直方向上有:cos37sin37N T mg ︒+︒=,水平方向上有:1cos37sin37T N ma ︒-︒=,代入数据解得20T N =。
(2)2a a >,可知小球离开斜面,根据平行四边形定则知,拉力T 。
题型二 “相对滑动”临界问题【典例2】(多选)(2018·河北五校联盟)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力,则( )A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg[审题指导] (1)注意B 与地面有摩擦力.(2)逐渐增大拉力时,B 先与地面发生相对滑动,然后才是AB 发生相对滑动.[解析] A 、B 间的最大静摩擦力f A m =2μmg ,B 与地面间的最大静摩擦力f B m =32μmg .逐渐增大拉力F ,当F =32μmg 时,A 、B 间相对静止,B 与地面开始相对滑动,A 错误.当A 、B 间相对滑动时,由牛顿第二定律,对物块A 有F -2μmg =2ma ,对物块B 有2μmg -32μmg =ma ,联立两式得F =3μmg ,也就是当F ≥3μmg 时,物块A 、B 开始相对滑动,因此F =52μmg 时,A 、B 相对静止,整体应用牛顿第二定律可得此时的加速度为a A =F -32μmg 3m=13μg ,B 、C 正确.物块A 、B 间和物块B 与地面间都相对滑动时,B 的加速度为a B =2μmg -32μmgm=12μg ,此后无论F 为何值,只要A 、B 间相对滑动,B 的加速度就是12μg ,所以B 的加速度不会超过此值,D 正确.[答案] BCD叠加体系统临界问题的求解思路[针对训练]1. (2018·河南六市一联)如图所示,光滑水平面上放置着质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为μmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )A .μmgB .2μmgC .3μmgD .4μmg[解析] 当A 、B 之间恰好不发生相对滑动时力F 最大,此时A 物体所受的合外力为μmg ,由牛顿第二定律知a A =μmgm =μg ;对于A 、B 整体,加速度a =a A =μg ,由牛顿第二定律得F =3ma =3μmg .选项C 正确.[答案] C2.如图所示,质量为1 kg 的木块A 与质量为2 kg 的木块B 叠放在水平地面上,A 、B 间的最大静摩擦力为2 N ,B 与地面间的动摩擦因数为0.2.用水平力F 作用于B ,则A 、B 保持相对静止的条件是(g 取10 m/s 2)( )A .F ≤12 NB .F ≤10 NC .F ≤9 ND .F ≤6 N[解析] 当A 、B 间有最大静摩擦力(2 N)时,对A 由牛顿第二定律知,加速度为2 m/s 2,对A 、B 整体应用牛顿第二定律有:F -μ(m A +m B )g =(m A +m B )a ,解得F =12 N ,A 、B 保持相对静止的条件是F ≤12 N ,A 正确,B 、C 、D 错误. [答案] A题型三 极值问题2.如图所示,一质量0.4m kg =的小物块,以02/v m s =的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经2t s =的时间物块由A 点运动到B 点,A 、B 之间的距离10L m =。