专题临界和极值问题

合集下载

2025高考物理总复习圆周运动中的临界极值问题

2025高考物理总复习圆周运动中的临界极值问题
2
2
对 a 有 kmg-FT=ml2 ,对 b 有 FT+kmg=m·
2l2 ,解得 ω2=
2

3
拓展变式 2
把典题1中装置改为如图所示,木块a、b用轻绳连接(刚好拉直)。(1)当ω为
多大时轻绳开始有拉力?(2)当ω为多大时木块a所受的静摩擦力为零?
答案 (1)

2
(2)


解析 (1)在 b 的静摩擦力达到最大时,轻绳刚要产生拉力,对 b 有
的间隙可忽略不计。已知放置在圆盘边缘的小物体与圆盘的动摩擦因数
为μ1=0.6,与餐桌的动摩擦因数为μ2=0.225,餐桌离地高度为h=0.8 m。设小
物体与圆盘以及餐桌之间的最大静摩擦力等于滑动摩擦力,重力加速度g
取10 m/s2。
(1)为使小物体不滑到餐桌上,圆盘的角速度ω的最大值为多少?
(2)缓慢增大圆盘的角速度,小物体从圆盘上甩出,
滑动的末速度 vt',由题意可得 vt'2-0 2 =-2ax'
由于餐桌半径为 R'= 2r,所以 x'=r=1.5 m
解得 vt'=1.5 m/s
设小物体做平抛运动的时间为 t,则
1 2
h=2gt ,解得
t=
小物体做平抛运动的水平位移为 x1=vt't=0.6 m。
2ℎ
=0.4

s
审题指导
关键词句
在圆周运动最高点和最低点的临界条件分析。
题型一
水平面内圆周运动的临界问题
1.水平面内圆周运动的临界、极值问题通常有两类,一类是与摩擦力有关
的临界问题,一类是与弹力有关的临界问题。
2.解决此类问题的一般思路

微专题2 平衡中的临界与极值问题

微专题2 平衡中的临界与极值问题

(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小。
考点二
栏目索引
答案 (1) (2)60° 解析 (1)物体沿斜面匀速下滑时,物体受力平衡。 对物体进行受力分析,由平衡条件得 mg sin 30°=μmg cos 30°
3 解得μ=tan 30°= 。 3
3 3
(2)设斜面倾角为α时,物体沿斜面匀速向上滑行,其受力情况如图所示, 由平衡条件得: F cos α=mg sin α+Ff FN=mg cos α+F sin α Ff=μFN
B.μ≥
1 tan θ
D.μ≥ cos θ
考点二
栏目索引
答案 B 滑块的受力如图所示,建立直角坐标系,将力F正交分解,由物 体的平衡条件可知,竖直方向有FN=mg+F sin θ,水平方向有F cos θ=Ff≤ μFN。由以上两式联立解得F cos θ≤μmg+μF sin θ。因为力F很大,所以 上式可以写成F cos θ≤μF sin θ,故应满足的条件为μ≥ ,B项正确。
界条件为绳中张力为0。 3.极值问题
平衡物体的极值问题,一般指在力的变化过程中的最大值和最小值问 题。一般用图解法或解析法进行分析。
考点一
栏目索引
例1 物体A的质量为2 kg,两根轻细绳b和c的一端连接于竖直墙上,另 一端系于物体A上,在物体A上另施加一个方向与水平面成θ角的拉力F, 相关几何关系如图所示,θ=60°。若要使两绳都能伸直,求拉力F的大小 范围。(g取10 m/s2)
1 tan θ
考点二
栏目索引
方法技巧 临界与极值问题的分析技巧 (1)求解平衡状态下的临界问题和极值问题时,首先要正确地进行受力 分析和变化过程分析,找出平衡中的临界点和极值点。 (2)临界条件必须在变化过程中寻找,不能停留在一个状态来研究临界 问题,而是要把某个物理量推向极端,即极大或极小,并依此做出科学的 推理分析,从而给出判断或结论。

临界极值问题(解析版)--动力学中九类常见问题

临界极值问题(解析版)--动力学中九类常见问题

动力学中的九类常见问题临界极值问题【问题解读】1.题型概述在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态即临界问题。

问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都会涉及临界问题,隐含相应的临界条件。

2.临界问题的常见类型及临界条件(1)接触与分离的临界条件:两物体相接触(或分离)的临界条件是弹力为零且分离瞬间的加速度、速度分别相等。

临界状态是某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态,有关的物理量将发生突变,相应的物理量的值为临界值。

(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力。

(3)绳子断裂与松弛的临界条件:绳子断与不断的临界条件是实际张力等于它所能承受的最大张力;绳子松弛的临界条件是绳上的张力恰好为零。

(4)出现加速度最值与速度最值的临界条件:当物体在变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度。

当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值。

【方法归纳】求解临界、极值问题的三种常用方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学方法将物理过程转化为数学公式,根据数学表达式解出临界条件解题此类题的关键是:正确分析物体的受力情况及运动情况,对临界状态进行判断与分析,挖掘出隐含的临界条件。

【典例精析】1(2024河北安平中学自我提升)如图所示,A、B两个木块静止叠放在竖直轻弹簧上,已知m A=m B =1kg,轻弹簧的劲度系数为100N/m。

若在木块A上作用一个竖直向上的力F,使木块A由静止开始以2m/s2的加速度竖直向上做匀加速直线运动,从木块A向上做匀加速运动开始到A、B分离的过程中。

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。

1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。

2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。

(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。

【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q(q>0)。

粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。

则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。

物理临界和极值问题总结

物理临界和极值问题总结

物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。

下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。

- 临界问题常见于相变、相平衡和相变点等领域。

- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。

2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。

- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。

- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。

无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。

对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。

总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。

这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。

高中物理课件(人教版2019必修第一册)专题 临界(极值)问题(课件)

高中物理课件(人教版2019必修第一册)专题  临界(极值)问题(课件)

F2
F1
AB
解 :由题意分析可得两物体分离的临界条件是:两物体之间刚好无相互作用的
弹力,且此时两物体仍具有相同的加速度。 分别以A、B为研究对象,水平方向受力分析如图
由牛顿第二定律得
a
F1 BBB
F1=ma
F2=2ma
则 F2=2 F1
a
F2 A
即(40-4t) =2(10+4t)
解得 t=5/3 (s)
向右运动时,绳对小球的拉力及斜面对小球的弹力各为多大?
a
解:小球即将脱离斜面支持力FN =0 对小球进行受力分析,得合力: F=mgcotθ =ma a=gcotθ= 4g/3
θG
FT F=ma
因为a1=g< 4g/3,所以斜面对小球有弹力
则沿x轴方向 沿y轴方向
FTcosθ-FNsinθ=ma FTsinθ+FNcosθ=mg
第四章 运动和力的关系
专题 临界(极值)问题
人教版(2019)
目录
contents
01 临界问题
02
实例分析
03 典例分析
01
临界问题
1、动力学中临界问题的特征 在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转
折状态即为临界问题。问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都 会涉及临界问题,隐含相应的临界条件。(涉及临界状态的问题叫做临界问题)
假设法 中可能出现临界条件,也可能不出现临界条件时,往往用假设法解 决问题
数学方法 将物理过程转化为数学表达式:三角函数式、二次函数的判别 式,根据数学表达式解出临界条件
解决临界问题的基本思路
(1)认真审题,仔细分析研究对象所经历的变化的物理过程, 找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题。

3、临界、极值问题

3、临界、极值问题
O V0
d
c
◆带电粒子在三角形磁场区域中的运动
例6.如图所示,在边长为2a的等边三角形△ABC内存 在垂直纸面向里磁感应强度为B的匀强磁场,有一带电 量为q、质量为m的粒子从距A点 3a 的D点垂直于AB方 向进入磁场。若粒子能从AC间离开磁场,求粒子速率 应满足什么条件及粒子从AC间什么范围内射出?
d
缩放圆:变化1:在上题中若电子的电量e,质量 m,磁感应强度B及宽度d已知,若要求电子不从 右边界穿出,则初速度V0有什么要求?
e B v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
变式、在真空中宽d的区域内有匀强磁场B,质量为 m,电量为e,速率为v的电子从边界CD外侧垂直 射入磁场,入射方向与CD夹角θ,为了使电子能从 磁场的另一侧边界EF射出,v应满足的条件是:B A.v>eBd/m(1+sinθ) C E B.v>eBd/m(1+cosθ) v C.v> eBd/msinθ θ O D.v< eBd/mcosθ
例题、如图所示.长为L的水平极板间,有垂直纸面向 内的匀强磁场,磁感强度为B,板间距离也为L,板不带 电,现有质量为m,电量为q的带正电粒子(不计重力), 从左边极板间中点处垂直磁感线以速度 v水平射入磁场, 欲使粒子不打在极板上,可采用的办法是: AB A.使粒子的速度v<BqL/4m; O2 B.使粒子的速度v>5BqL/4m; r2 C.使粒子的速度v>BqL/m; v D.使粒子速度BqL/4m<v<5BqL/4m。 r2
2R
M
2R
O
R

3-3-3-专题突破:三 动力学中的临界和极值问题的分析方法

3-3-3-专题突破:三 动力学中的临界和极值问题的分析方法

素养提升
模型1 斜面中的“平衡类模型” 【典例1】 (多选)如图所示,质量为m的物体A放在质量为M 、倾角为θ的斜面B上,斜面B置于粗糙的水平地面上,用平行于 斜面的力F拉物体A,使其沿斜面向下匀速运动,斜面B始终静止 不动,重力加速度为g,则下列说法中正确的是( ) A.斜面B相对地面有向右运动的趋势 B.地面对斜面B的静摩擦力大小为Fcos θ C.地面对斜面B的支持力大小为(M+m)g+Fsin θ D.斜面B与物体A间的动摩擦因数为tan θ 思路点拨 由于A在斜面上匀速下滑,B静止不动,故A和B均处 于平衡状态。因此,在分析B与地面间的相互作用时,可将A、B 看成一个整体进行分析;由A在斜面上匀速下滑可知,A在斜面 方向上受力平衡,由此可计算出A、B之间的动摩擦因数。
突破三
动力学中的临界和极值问题 的分析方法
课堂互动
01 02
03
多维训练
素养提升
04
备选训练
课堂互动
1.临界或极值条件的标志 (1)有些题目中有“刚好”“恰好”“正好”等字眼,即表明题 述的过程存在着临界点。 (2)若题目中有“取值范围”“多长时间”“多大距离”等词语, 表明题述的过程存在着“起止点”,而这些起止点往往对应临界 状态。 (3)若题目中有“最大”“最小”“至多”“至少”等字眼,表 明题述的过程存在着极值,这个极值点往往定速度”等,即是求收尾加 速度或收尾速度。
转到解析
)
多维训练
3 2.如图所示,一足够长的木板,上表面与木块之间的动摩擦因数为 μ= ,重 3 力加速度为 g,木板与水平面成 θ 角,让小木块从木板的 底端以大小恒定的初速率 v0 沿木板向上运动。随着 θ 的改 变,小木块沿木板向上滑行的距离 x 将发生变化,当 θ 角 为何值时,小木块沿木板向上滑行的距离最小,并求出此 最小值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档