六临界与极值问题

合集下载

高中物理中的临界与极值问题

高中物理中的临界与极值问题

高中物理中的临界与极值问题宝鸡文理学院附中何治博一、临界与极值概念所谓物理临界问题是指各种物理变化过程中,随着条件的逐渐变化,数量积累达到一定程度就会引起某种物理现象的发生,即从一种状态变化为另一种状态发生质的变化(如全反射、光电效应、超导现象、线端小球在竖直面内的圆周运动临界速度等),这种物理现象恰好发生(或恰好不发生)的过度转折点即是物理中的临界状态。

与之相关的临界状态恰好发生(或恰好不发生)的条件即是临界条件,有关此类条件与结果研究的问题称为临界问题,它是哲学中所讲的量变与质变规律在物理学中的具体反映。

极值问题则是指物理变化过程中,随着条件数量连续渐变越过临界位置时或条件数量连续渐变取边界值(也称端点值)时,会使得某物理量达到最大(或最小)的现象,有关此类物理现象及其发生条件研究的问题称为极值问题。

临界与极值问题虽是两类不同的问题,但往往互为条件,即临界状态时物理量往往取得极值,反之某物理量取极值时恰好就是物理现象发生转折的临界状态,除非该极值是单调函数的边界值。

因此从某种意义上讲,这两类问题的界线又显得非常的模糊,并非泾渭分明。

高中物理中的临界与极值问题,虽然没有在教学大纲或考试说明中明确提出,但近年高考试题中却频频出现。

从以往的试题形式来看,有些直接在题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,要抓住这些特定的词语发掘其内含的物理规律,找出相应的临界条件。

也有一些临界问题中并不显含上述常见的“临界术语”,具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,周密讨论状态的变化。

可用极限法把物理问题或物理过程推向极端,从而将临界状态及临界条件显性化;或用假设的方法,假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,最后再根据实际情况进行处理;也可用数学函数极值法找出临界状态,然后抓住临界状态的特征,找到正确的解题方向。

临界极值问题(解析版)--动力学中九类常见问题

临界极值问题(解析版)--动力学中九类常见问题

动力学中的九类常见问题临界极值问题【问题解读】1.题型概述在动力学问题中出现某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态即临界问题。

问题中出现“最大”“最小”“刚好”“恰能”等关键词语,一般都会涉及临界问题,隐含相应的临界条件。

2.临界问题的常见类型及临界条件(1)接触与分离的临界条件:两物体相接触(或分离)的临界条件是弹力为零且分离瞬间的加速度、速度分别相等。

临界状态是某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态,有关的物理量将发生突变,相应的物理量的值为临界值。

(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力。

(3)绳子断裂与松弛的临界条件:绳子断与不断的临界条件是实际张力等于它所能承受的最大张力;绳子松弛的临界条件是绳上的张力恰好为零。

(4)出现加速度最值与速度最值的临界条件:当物体在变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度。

当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值。

【方法归纳】求解临界、极值问题的三种常用方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学方法将物理过程转化为数学公式,根据数学表达式解出临界条件解题此类题的关键是:正确分析物体的受力情况及运动情况,对临界状态进行判断与分析,挖掘出隐含的临界条件。

【典例精析】1(2024河北安平中学自我提升)如图所示,A、B两个木块静止叠放在竖直轻弹簧上,已知m A=m B =1kg,轻弹簧的劲度系数为100N/m。

若在木块A上作用一个竖直向上的力F,使木块A由静止开始以2m/s2的加速度竖直向上做匀加速直线运动,从木块A向上做匀加速运动开始到A、B分离的过程中。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

高考复习专题四—求极值的六种方法(解析版)

高考复习专题四—求极值的六种方法(解析版)

微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。

动态平衡问题平衡中的临界、极值问题课件59

动态平衡问题平衡中的临界、极值问题课件59

问题解决能力
02
学生能够独立分析和解决一些复杂的动态平衡问题,具备了一
定的问题解决能力。
创新思维Байду номын сангаас养
03
课程鼓励学生提出新的想法和解决方案,培养了学生的创新思
维和解决问题的能力。
未来研究方向展望
更复杂的动态平衡问题
研究更复杂的动态平衡问题,如非线性、时变等条件下的临界、 极值问题。
临界、极值问题的优化算法
不等式法
通过构建不等式并求解,找到物体 的极值状态。
数值模拟法
通过计算机模拟物体的运动过程, 找到极值状态和对应的物理量。
03
CATALOGUE
平衡中的极值问题
极值条件的确定
确定平衡状态
首先分析物理系统或数学 模型的平衡状态,明确平 衡条件。
寻找极值条件
在平衡状态下,寻找使某 一物理量达到极值的条件 ,如最小势能、最大承载 力等。
动态平衡
物体在受到外力作用下,通过内部调节保持平衡状态,如人 体在行走中的平衡。
临界条件的确定
临界状态
物体处于平衡与不平衡之间的临界状态,稍微偏离平衡就会导致失稳。
临界条件
使物体保持平衡的最小条件,如支撑面的大小、摩擦系数等。
临界问题的求解方法
01
02
03
解析法
通过建立数学模型和方程 ,求解临界条件下的物理 量。
结果讨论
结合已有知识和文献资料,对实验结果进行深入 分析和讨论,解释实验现象的原因和机制。
结果应用
将实验结果应用于实际问题中,提出针对性的建 议和措施。
06
CATALOGUE
课程总结与展望
课程重点回顾
1 2 3

物理临界和极值问题总结

物理临界和极值问题总结

物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。

下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。

- 临界问题常见于相变、相平衡和相变点等领域。

- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。

2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。

- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。

- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。

无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。

对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。

总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。

这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题1.动力学中的典型临界问题1接触与脱离的临界条件两物体相接触或脱离的临界条件是接触但接触面间弹力F N=0.2相对静止或相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对静止或相对滑动的临界条件是:静摩擦力达到最大值.3绳子断裂与松弛的临界条件绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力.绳子松弛的临界条件是F T=0.4速度最大的临界条件在变加速运动中,当加速度减小为零时,速度达到最大值.2.解决临界极值问题常用方法1极限法:把物理问题或过程推向极端,从而使临界现象或状态暴露出来,以达到正确解决问题的目的.2假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.3数学法:将物理过程转化为数学公式,根据数学表达式解出临界条件.题型一:接触与脱离类的临界问题例1: 如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动a<g,试求托盘向下运动多长时间能与物体脱离例2: 如图,竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为 kg的物块B相连接;另一个质量为 kg的物块A放在B上;先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为 m,取g=10 m/s2, 求刚撤去F时弹簧的弹性势能例3:如图所示,质量均为m 的A 、B 两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg 21的恒力F 向上拉A,当运动距离为h 时A 与B 分离;则下列说法正确的是A .A 和B 刚分离时,弹簧为原长B .弹簧的劲度系数等于hmg 23 C .从开始运动到A 和B 刚分离的过程中,两物体的动能先增大后减小D .从开始运动到A 和B 刚分离的过程中,A 物体的机械能一直增大例4:如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k,一端固定在倾角为θ的斜面底端,另一端与物块A 连接;两物块A 、B 质量均为m,初始时均静止;现用平行于斜面向上的力F 拉动物块B,使B 做加速度为a 的匀加速运动,A 、B 两物块在开始一段时间内的v-t 关系分别对应图乙中A 、B 图线t 1时刻A 、B 的图线相切,t 2时刻对应A 图线的最高点,重力加速度为g,则A .t 1和t 2时刻弹簧形变量分别为kma mg +θsin 和0 B .A 、B 分离时t 1()akma mg +=θsin 2 C .拉力F 的最小值ma mg +θsinD .从开始到t 2时刻,拉力F 逐渐增大题型二:相对静止或相对滑动的临界问题例1:如图所示,质量分别为15kg和5kg的长方形物体A和B静止叠放在水平桌面上;A与桌面以及A、B 间动摩擦因数分别为μ1=和μ2=,设最大静摩擦力等于滑动摩擦力;问:1水平作用力F作用在B上至少多大时,A、B之间能发生相对滑动2当F=30N或40N时,A、B加速度分别各为多少跟踪训练:多选如图甲所示,一质量为M的长木板静置于光滑水平面上,其上放置一质量为m小滑块.木板受到随时间t变化的水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,取g=10m/s2,则A.小滑块的质量m=2kgB.当F=8N时,滑块的加速度为1m/s2C.滑块与木板之间的动摩擦因数为D.力与加速度的函数关系一定可以表示为F=6aN例2:如图所示,两个质量均为m的小木块A和B放在转盘上,且木块A、B与转盘中心在同一条直线上,两木块用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的k倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动;开始时,绳恰好伸直但无弹力,现让该装置从静止转动,使角速度ω缓慢增大;为使细绳有弹力,而木块A和B又能相对转盘保持静止,求角速度ω的取值范围和细绳张力的最大值;例3:如图所示的水平转盘可绕竖直轴OO′旋转,盘上水平杆上穿着两个质量均为m=2kg的小球A和B;现将A和B分别置于距轴r A=和r B=1m处,并用不可伸长的轻绳相连;已知两球与杆之间的最大静摩擦力都是f m=1N;试分析转速ω从零缓慢逐渐增大短时间内可近似认为是匀速转动,两球对轴保持相对静止过程中,在满足下列条件下,ω的大小;1绳中刚要出现张力时的ω1;2A、B中某个球所受的摩擦力刚要改变方向时的ω2,并指明是哪个球的摩擦力方向改变;3两球对轴刚要滑动时的ω3;跟踪训练:多选圆形转盘上的A、B、C三个物块如图放置,A、O、B、C在一条直线上,A、B间用一轻质细线相连开始细线刚好伸直,三个物块与转盘间的动摩擦因数均为μ,A、B、C三个物块的质量分别为m、m、2m,到转盘中心O的距离分别为3r、r、2r,现让转盘以角速度ω可调匀速转动,重力加速度为g,最大静摩擦力等于滑动摩擦力,则A、当物块C相对转盘刚要滑动时,物块B所受摩擦力为μmgB、当物块C相对转盘刚要滑动时,细线张力为μmgC、当细线内刚出现张力时,物块C所受摩擦力为μmgD、当细线内刚出现张力时,A、B、C所受摩擦力大小之比为3:1:4题型三:绳子断裂与松弛的临界问题例5.如图所示,在竖直的转动轴上,a、b两点间距为40 cm,细线ac长50 cm,bc长30 cm,在c点系一质量为m的小球,在转动轴带着小球转动过程中,下列说法不正确的是A.转速小时,ac受拉力,bc松弛B.bc刚好拉直时,ac中拉力为C.bc拉直后转速增大,ac拉力不变D.bc拉直后转速增大,ac拉力增大例6.如图所示,将两物块A、B用一轻质细绳沿水平方向连接放在粗糙的水平面上,已知两物块A、B的质量分别为m1=8kg,m2=2kg,滑块与地面间的动摩擦因数均为μ=,g=10m/s2,细绳的最大拉力为T=8N.今在滑块A上施加一水平向右的力F,设最大静摩擦力等于滑动摩擦力;为使两滑块共同向右运动,则拉力F多大题型四:速度最大的临界问题例7.如图所示,在磁感应强度为B的水平匀强磁场中,有一足够长的绝缘细棒OO′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m、带电荷量为+q的圆环A套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A由静止开始下滑.试问圆环在下滑过程中:1圆环A的最大加速度为多大获得最大加速度时的速度为多大2圆环A能够达到的最大速度为多大跟踪练习:1.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m;现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=内F是变力,在以后F是恒力,g=10m/s2,则F的最小值是 ,F的最大值是 ;思维拓展:若上题中秤盘质量m1=1.5kg,盘内物体P质量为m2=10.5kg,弹簧的劲度系数 k=800N/m,其他条件不变,则F的最小值是 ,F的最大值是 ;2. 如图所示,细线的一端固定于倾角为450的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球;当滑块至少以多大的加速度a向左运动时,小球对滑块的压力等于零,当滑块以a=2g的加速度向左运动时,球此时线中拉力T大小3. 一个带负电荷q ,质量为m 的小球,从光滑绝缘的斜面轨道的A 点由静止下滑,小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动.现在竖直方向上加如图所示的匀强电场,若仍从A 点由静止释放该小球,则A .小球不能过B 点 B .小球仍恰好能过B 点C .小球能过B 点,且在B 点与轨道之间压力不为0D .以上说法都不对5.如图,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N,A受到的水平力FA =9-2tN,t 的单位是s;从t =0开始计时,则:A .A物体在3s 末时刻的加速度是初始时刻的5/11倍;B .t >4s 后,B物体做匀加速直线运动;C .t =时,A物体的速度为零;D .t >后,AB的加速度方向相反;6.如图所示,在光滑水平面上有一辆小车A ,其质量为m A = kg,小车上放一个物体B ,其质量为m B = kg.如图甲所示,给B 一个水平推力F ,当F 增大到稍大于 N 时,A 、B 开始相对滑动.如果撤去F ,对A 施加一个水平推力F ′,如图乙所示.要使A 、B 不相对滑动,求F ′的最大值F m . a A P450。

高考物理解题方法指导:临界和极值问题

高考物理解题方法指导:临界和极值问题

临界和极值问题当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件.解答临界问题的关键是找临界条件许多临界问题,题目中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,也有一些临界问题中并不显含上述常见的“临界术语”,但审题时会发现某个物理量在变化过程中会发生突变,则该物理量突变时物体所处的状态即为临界状态审题时,一定要抓住这些特定的词语挖掘内涵,找出临界条件.解答临界问题的方法一般有两种,一是以定理、定律为依据,先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件,同时要特别注意可能出现的多种情况.互动探究例1、如图所示,跨过定滑轮的轻绳两端,分别系着物体A和B,物体A放在倾角为α的斜面上,已知物体A的质量为m,物体B和斜面间动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体静止在斜面上,求物体B质量的取值范围.例2、一车处于静止状态,车后相距x0=25m处有一个人,当车开始启动以a=1m/s2的加速度前进的同时,人以v=6m/s的速度匀速追车,能否追上?若追不上,人车间最小距离为多少?例3、一个质量为0.2kg的小球用细绳吊在底角为53º的光滑斜面顶端,如图所示,斜面静止时,球靠在斜面上,绳与斜面平行.当斜面以10m/s2的加速度向右做加速运动时,求绳子的拉力及斜面对小球的弹力.例4、如图所示,用细线悬挂于O点的摆球在小锤两次打击下才能通过以O为圆心,以线长为半径的圆周的最高点,设两次打击时作用时间相等,摆球运动中悬线始终拉直,求两次打击力之比F II:F I的最小值.例5、如图所示,倾角θ =30°、高为h的三角形木块B,静止放在一水平面上,另一滑块A以初速度v0从B的底端开始沿斜面上滑,若B的质量为A的质量的2倍,当忽略一切摩擦的影响时,要使A能够滑过木块B的顶端,求v0应为多大?例6、如图所示,带正电小球质量为m= 1×10-2kg,带电量为q=l×10-6C,置于光滑绝缘水平面上的A点.当空间存在着斜例4例5例6向上的匀强电场时,该小球从静止开始始终沿水平面做匀加速直线运动,当运动到B点时,测得其速度v B=1.5m/s,此时小球的位移为s=0.15m.求此匀强电场场强E的取值范围.(g=10m/s2)某同学求解如下:设电场方向与水平面之间夹角为θ,由动能定理qEs cosθ=-0,得= V/m.由题意可知θ>0,所以当E>7.5×104V/m时小球将始终沿水平面做匀加速直线运动.经检查,计算无误.该同学所得结论是否有不完善之处?若有请予以补充.例7、如图所示,磁场方向垂直纸面向里,磁感应强度大小为B,AB、AC、BD为磁场的边界,AB长为L,AC、BD足够长.位于AB的中点O是一个能向纸面内发射质量为m、电量为q的正粒子的粒子源,粒子的速度方向与AB成30º角.要使粒子能从AC边射出磁场,粒子从粒子源射出的速率必须满足什么条件.例8、如图所示,ABC是一块玻璃直角三棱镜的主截面,已知光从该玻璃到空气的临界角C=55°.当一束光垂直于BC面射到棱镜上时,画出在各个面上反射、折射的光路图.例8 课堂反馈反馈1、在原子物理学中,常用电子伏特(符号是eV)作为能量的单位.当γ光子能量大于E0(E0=1.022MeV)时,就可能有电子对生成,其中E0的能量转化为一对正负电子,余下的能量变成电子对的动能.已知普朗克常量h = 6.63×10-34J·s.求:(1)求电子的质量m?(2)要能生成电子对,γ光子的频率必须大于多少(结果保留两位有效数字)?(3)若γ光子的频率为f,生成的电子速度v为多大?(结果用m,h,E0,f表示)反馈2、在天体演变的过程中,红色巨星发生“超新星爆炸”后,可能形成中子星(电子被迫同原子核中的质子相结合而形成中子),中子星具有极高的密度.(1)若已知某中子星的密度为1017kg/m3,该中子星的卫星绕它做圆轨道运动,试求该中子星的卫星运行的最小周期.(2)中子星也在绕自转轴自转,若某中子星的自转角速度为6.28×30r/s,为了使该中子星不因自转而被瓦解,则其密度至少应为多大?(假设中子星是通过中子间的万有引力结合成球状星体,引力常量G=6.67×10-11N·m2/kg2)达标练习1、电子中微子可以将一个氯核转变为一个氩核,其核反应方程式为,已知核的质量为36.95658u,核的质量为36.95691u,的质量为0.00055u,1u质量对应的能量为931.5MeV.根据以上数据,可以判断参与上述反应的屯子中微子的最小能量为( A )A.0.82 MeV B.0.31 MeV C.1.33 MeV D.0.51 McV2、相距很远的两个分子,以一定的初速度相向运动,直到距离最小在这个过程中,两分子间的分子势能( D )A .一直增大B .一直减小C .先增大,后减小D .先减小,后增大3、如图所示,M 为固定在桌面上的木块, M 上有一个3/4圆弧的光滑轨道abcd ,a 为最高点,bd 为其水平直径,de 面水平且长度一定,将质量为m 的小球在d 点的正上方高h 处从静止释放,让它自由下落到d 点切入轨道内运动,则( ACD )A .在h 为一定值的情况下,释放后,小球的运动情况与其质量的大小无关B .只要改变h 的大小,就能使小球通过a 点后,既可以使小球落到轨道内,也可以使小球落到de 面上C .无论怎样改变h 的大小,都不能使小球通过a 点后又落回到轨道内D .使小球通过 a 点后飞出de 面之外(e 的右边)是可以通过改变h 的大小来实现的4、用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图(1)所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T ,则T 随ω2变化的图象是图(2)中的( C )5、如图所示,在水平方向的匀强电场中,绝缘细线的一端固定在O 点,另一端系一带正电的小球在竖直平面内作圆周运动,小球所受的电场力和重力相等,直径ac 和bd 互相垂直,且bd 平行于电场线,则( BC )A .小球在a 点动能最小B .小球在c 点重力势能最小C .小球在b 点机械能最大D .小球在d 点总能最大 6、“水刀”就是将普通水加压,使其从小口径喷嘴中以800m/s —1000m/s的速度射出的水流我们知道,任何材料能承受的压强都有一定的限度,如橡胶为5⨯107Pa ,花岗石为1.2~2.6⨯108Pa ,铸铁为8.8⨯108Pa ,工具钢为6.8⨯108Pa 设想一水刀垂直入射的速度为800m/s ,水流与材料接触后速度为零,且不附着在材料上,则此水刀不能切割( CD )A .橡胶B .花岗石C .铸铁D .工具钢7、圆筒形的薄壁玻璃容器中,盛满某种液体,容器底部外面有光源S ,试问液体折射率至少为多少时,才不能通过容器壁在筒外看到光源S (壁厚不计).8、如图所示,一带电质点,质量为 m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.(重力忽略不计)图(1) 图(2) 达标4 E达标59、如图所示,木板AB 放在光滑水平面上,其周围是竖直向下的匀强电场一质量为m 、带电量为q 的小物块,以某一水平初速度从A 端滑上木板,到B 端时恰相对静止若将电场反向,强度不变,物块仍以原初速度从A 端滑上木板,结果滑到木板的中点时相对静止,求:(1)物块的电性;(2)场强的大小.10、如图所示,弹簧上端固定在O 点,下端挂一木盒A ,盒子顶端挂着一小球B (可视为质点),若A 、B 的质量均为1kg ,B 距A 底板为H =16cm ,当它们都静止时,弹簧的长度为L 某时刻,悬挂小球的细线突然断开,在A 上升到最高点时,B 和A 的底板相碰,碰撞时间极短,碰后成为一体向下运动,当弹簧的长度又为L 时,两者的速度为v =1m/s ,求:(1)碰撞中动能的损失∆E ;(2)弹簧的劲度系数k ;(3)细线断前弹簧的弹性势能E 0.11、如图所示为三对等间距的平行光滑导轨,导轨宽均为L ,其中M 、N 为两对倾斜放置的塑料导轨,P 为水平放置的金属导轨,三对导轨焊接处为金属,整个装置放在竖直向上的匀强磁场中,磁场的磁感应强度为B 已知质量为m 1的金属棒在M 轨道上从高度为h 1处由静止释放,金属棒沿导轨M 滑下,然后沿导轨N 滑上,达到的最大高度为h 2,此过程中质量为m 2的导体棒由静止在安培力作用下沿导轨P 运动起来,不计一切因碰撞损失的能量,不计导轨电阻,求此过程中:(1)安培力对m 1的冲量I ;(2)m 2的最大速度v ;(3)电路中产生的焦耳热Q .专题十一,课时1解答例1解析:以B 为研究对象,由平衡条件得 T =m B g再以A 为研究对象,它受重力、斜面对A 的支持力、绳的拉力和斜面对A 的摩擦作用.假设A 处于临界状态,即A受最大静摩擦作用,方向如图所示,根据平衡条件有:N =mg cos θ,T - f m -mg sin θ = 0,或:T +f m -mg sin θ=0, f m =μN ,综上所得,B 的质量取值范围是:m (sin θ-μcos θ)≤m B≤m (sin θ+μcos θ) .例2解析:人与车运动时间相等,设为t ,当人追上车时,二者之间的位移关系应为,即,由上式求解t ,若有解则追上,反之追不上,将题给数据代入整理后可得,由于判别式,所以人不可能追上车当车的速度等于人的速度时,人与车的距离最小,根据可知,从开始追车到距离最小所用时间为 t = 6s 在这段时间内人与车的位移分别为m , m ,人、车间最小距离为∆ s =s 车 + x 0 – s 人=7m .例3解析:首先用极限法把加速度a 推到两个极端来分析:当加速度a 较小时,小球受到重力、绳子的拉力和斜面的支持力三个力作用,此时绳子平行与斜面;当加速度a 足够大 例11 达标11时,小球将“飘起” ,离开斜面,此时绳子与水平方向的夹角未知那么,当a =10m/s2向右时,究竟是上述两种情况的哪一种?解题时必须先求出小球离开斜面的临界值,然后再确定.设小球处在离开斜面的临界状态(N刚好为零)时,斜面向右的加速度为a0,此时对小球:mg cotθ= ma0,可求出:a0 =g cotθ = 7.5m/s2;因为a > a0,所以小球一定离开斜面,可以求得绳子的拉力N,细线与水平方向的夹角为α= arctan mg/ma = 45º,斜面的支持力N=0.例4解析:要求F II:F I的最小值,即要求F I的最大值,F II的最小值,故必须找出F I和F II对应的两个临界状态.据题意,小球经两次打击才通过圆周最高点C,故第一次打击后,小球只能在圆弧AB C 之间运动,从下图可以看出,当小球在圆弧AB上运动时,重力沿半径的分力F1背离圆心,拉紧绳子,即使小球速度减为零,也不会脱离圆周.当小球在圆弧BC上运动时,重力沿半径的分力F1改为沿半径指向圆心.必会在下图中P点出现(0º<θ<90º),小球将脱离圆周而作斜抛运动,线松驰.可见,由于在B点上下重力沿半径方向分力F1方向的突变,使得小球将出现不同的运动情况.要使绳子始终拉直,第一次打击后,小球只能在圆弧AB上运动,“小球沿圆弧上升至B点速度恰为零”为确定F I的临界条件.要求F II最小,则第二次打击后,小球恰能通过最高点C,“绳子张力T C= 0”,这是确定F II最小值的临界条件.设第一次打击后,小球速度为v1,由动量定理得F I t = mv1 ……①F I最大时,小球到达B点速度为零,由机械能守恒定律得mv12/2 = mgl ……②联立解得:v1 =,F I =m/t小球经过最低点并向左运动时,作第二次打击,打击后速度为v2,由动量定理得:F II t = mv2 - mv1……③设小球升至最高点C时速度为v3,由机械能守恒定律得:……④F II最小时,小球通过C点时线的张力T C=0,由牛顿第二定律得mg= mv32/l ……⑤联立解得:F II =,得F II/ F I =.例5解析:滑块A恰好到达滑块B的最高点时,两者有共同速度v,系统水平方向动量守恒:mv0cosθ=(m+M)v①系统机械能守恒:可得,所以当时,滑块A可以滑过斜面B的顶端.例6 解析:该同学所得结论有不完善之处.为使小球始终沿水平面运动,电场力在竖直方向的分力必须小于等于重力qE sinθ≤mg 所以即7.5×104V/m<E≤1.25×105V/m.例7解析:由几何关系可得,粒子在磁场中的轨道半径L/3 ≤r ≤L,又Bqv0=m v02/r,r = m v0 /Bq,得L Bq / 3m≤v0 ≤L Bq / m.例8解析:光垂直BC面入射,一部分光按原路反射,一部分沿入射方向进入玻璃.射到AC面上时光的人射角i1=30°<55°,因此一部分光折射进空气,一部分光反射到BC面.在BC面上光的入射角i2=60°>55°,发生全反射,垂直于AB面入射并进入空气.光路图如图所示.反馈1解析:(1)由质能方程,E0 = 2mc2,得m = 9.1×10-19kg;(2)E0 = h f,f = 2.5×1020Hz;(3)h f - E0= 2 ×mv2/2,.反馈2解析:(1)由题设可知,中子星的卫星绕中子星沿圆周运动,则中子星与其卫星之间的万有引力提供卫星做圆周运动的向心力,所以有,即由上式可知,轨道半径越小,卫星的运行周期越小,故当卫星做圆周运动的半径恰等于中子星的半径时,其运行的周期必为最小值.设中子星的圆轨道半径为R,质量为m,由万有引力提供向心力,可得,即当R= r(中子星的半径)时,卫星的运行周期最小,注意到,则有,代入数据,解得T min=1.2×10-3s.(2)由F=mω2R可知,中子星表面“赤道"”部分做圆周所受的向心力最大,由此可得到中子星因自转而不发生瓦解的临界条件是:中子星“赤道”表面处质点所受万有引力应等于其所需要的向心力,由这种情况下计算出的中子星的密度即为其密度的下限值.设中子星的质量为M,半径为r,密度为ρ, 自转角速度为ω,今在中子星"赤道"表面处取一质量极小的部分,设其质量为m,因为这部分的质量极小,故可认为中子星其他部分的质量仍为M,由万有引提供向心力,可得,又,整理,可得,代入数据,可午ρmin=1.3×1014 kg/m3.达标解析达标1、A 2、D 3、ACD 4、C 5、BC 6、CD达标7解析:要在容器外空间看不到光源S,即要求光源S进入液体后,射向容器壁光线的入射角(临界角),如图所示,由折射定律可知,(1)由图可知,,(2)在A点入射处,由折射定律有,所以(3)由(1)(3)两式可知,由(2)式可知:越小越好,临界角C也是越小越好:由可知,越大,C越小;而由可知,当一定时,越大,小,所以液体的折射率.达标8解析:质点在磁场中作半径为R的圆周运动,,得(1)根据题意,质点在磁场区域中的轨道是半径等于R的圆上的1/4圆弧,这段圆弧应与入射方向的速度、出射方向的速度相切过点作平行于轴的直线,过b点作平行于y轴的直线,则与这两直线均相距R的O'为圆心、R为半径的圆(圆中虚线圆)上的圆弧MN,M点和N点应在所求圆形磁场区域的边界上在通过M、N两点的不同的圆周中,最小的一个是以MN连线为直径的圆周所以本题所求的圆形磁场区域的最小半径为达标8(2)所求磁场区域如图12-5中实线圆所示.达标9解析:(1)负电;(2)设木板质量为M ,长为L ,木块与木板间的动摩擦因数为μ,则f 1 = μ(mg – qE ),f 2 = μ(mg + qE ),由动量守恒,mv 0=(M+m )v ,由系统能量守恒,f 1 L = mv 02/2 -(M+m )v 2/2,f 2 L /2 = mv 02/2 -(M+m )v 2/2,解得E=mg /3q .达标10解析:(1)全程用能量守恒,m B gH =(m A + m B )v 2/2 + ∆E ,∆E =0.6J ;(2)设B 下降h 与A 相碰,有m B gh = m B v 12/2,碰撞时动量守恒,m B v 1 = (m A + m B )v 2,又∆E = m B v 12/2 -(m A + m B )v 22/2,得h = 0.12m ,则此过程中A 上升h ´ = 0.04m ;又B 下落时A 作简谐运动,A 在最低点时,回复力为F 回= mg ,则A 在最高点时,回复力为F 回= mg ,弹恰好处于原长,B 下落前系统平衡时有,k h ´=2mg ,得k = 500N/m ;(3)A 从开始运动到最高点机械能守恒,有E 0= m A g h ´=0.4J .达标11解析:(1)设金属棒m 1沿导轨M 下滑到最低点时的速度为v 1,沿导轨N 上滑的初速度为v 2,有m 1gh 1 = m 1 v 12/2,m 1gh 2 = m 1 v 22/2,则安培力的冲量为I = m 1 v 2 - m 1 v 1= m 1()(2)由动量守恒,m 1 v 1 = m 1 v 2 + m 2 v ,v =(3)由能量守恒定律,得)2()(212121221211222111h h h h g m m h h g m v m gh m gh m Q -+--=--=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档