南大数值分析课件第六章 曲线拟合与函数逼近.ppt
逼近和拟合专题教育课件

则在[a,b]上g( x) 0;
就称( x)为[a,b]上的权函数.
例2 设f ( x), g( x) C[a,b], ( x)为[a,b]上的权函数 ,则可
定义内积
( f , g) ab( x) f ( x)g( x)dx. 1,( f , g) ab f (x)g(x)dx.
容易验证内积定义中的 四个性质,并导出范数
项式正交.
(4)有递推关系
pn1( x) ( x n ) pn( x) n pn1( x), n 0,1,, (2.4)
其中 p0( x) 1,p1( x) 0,
n ( xpn , pn ) /( pn , pn ), n ( pn , pn ) /( pn1, pn1),n 1,2,,
称为Gram矩阵,则G非奇异的充要条件是 u1, u2,, un线性
无关.
证明:1) G非奇异 以G为系数矩阵的齐次线性 方程组
n
n
( ju j , uk ) (u j , uk ) j 0,
j1
j1
只有零解。
k 1,,n.
n
n
n
2) juj 0 ( juj , juj ) 0
有限维空间 vs 无限维空间.
Rn, C[a,b],
定理 1(维尔斯特拉斯 ) 如果f ( x) C[a,b], 那么 0,
多项式p( x),使得
| f ( x) p( x) | , 对于一切a x b.
伯恩斯坦(1912)给出一种构造性证明:伯恩斯坦多项式
Bn (
f
,
x)
n
k0
f
(n ,n )
根据定理 3,0,,n线性无关 det(G) 0.
§2 正交多项式
数值分析学习课件

§2.正交多项式
性质3. n次多项式 P (x)有n个互异实根,且全部(a, b)内。 n 性质4.设 P (x)的n个实根为x1 , x2 ,..., xn P + 1 (x) 的n+1 ,n n 个实根为 x1 , x2 ,..., xn1 ,则有
a x1 x1 x 2 x2 ...
{ j(x) = e kj x , ki kj } 对应指数多项式 /* exponential
polynomial */
§1.函数逼近的基本概念
定义 权函数:
①
离散型 /*discrete type */
根据一系列离散点 ( xi , yi ) (i 1, ... , n) 拟合时,在每一误
Pk(x)
kl kl
由 P0 1, P1 x 有递推 (k 1) Pk 1 (2k 1) xP kPk 1 k
k
0
1
2 3
P0 ( x) 1 P ( x) x 1
P2 ( x ) =
4
1 P3 ( x ) = (5 x3 - 3x) 2 1 P4 ( x ) = (35 x 4 - 30 x 2 + 3) 8
第三章
函数逼近
/* Approximation Theory */
第一讲
§1.函数逼近的基本概念
§2.正交多项式
§1.函数逼近的基本概念
已知 x1 … xm ; y1 … ym, 求一个简单易算的近 m 似函数 P(x) f(x) 使得 | P ( xi ) yi |2 最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的 b 近似函数 P(x) 使得 a [ P( x) f ( x)]2 dx 最小。
数值分析课件-6曲线拟合

第六章 曲线拟合的最小二乘 /函数平方逼近初步实例:考察某种纤维的强度与其拉伸倍数的关系,下表是实际测定的24个纤维样品的强度与相应的拉伸倍数是记录:编 号拉伸倍数 强 度编 号拉伸倍数 强 度1 1.9 1.4135 5.522 1.314 5.253 2.1 1.8156 5.54 2.5 2.516 6.3 6.45 2.7 2.817 6.566 2.7 2.5187.1 5.37 3.53198 6.58 3.5 2.72087944218.98.5104 3.5229811 4.5 4.2239.58.112 4.63.524108.1i i y x ii y x 一.实例讲解6.2 数据拟合(最小二乘法)§2(())m nj j i i i j a x f ϕ===-∑∑2(())mi i i S x f ==-∑三、法方程组22δ∑==nj j j x a x S 0)()(ϕ由的函数为拟合系数),,1,0(n j a j =可知因此可假设01(,,,)n F a a a 2(())mnj j i i i j a x f ϕ===-∑∑因此求最小二乘解转化为二次函数四、加权最小二乘法(,)(0,1,,)i i x f i m = 对于一组给定的数据点(,)(0,1,,)i i x f i m = 在拟合的数据点中各点的重要性可能是不一样的()(,)0,1,,i i i i x x f i mρρ= 假设=表示数据点的权(或权重),权:即权重或者密度,统称为权系数.定义加权平方误差为222m i i i δρδ==∑2(())mi i i i S x f ρ==-∑-----(9)6.3 连续函数的最佳平方逼近§0102**222*[,],{,,,}[,].(),()();()[()()]()[()()]()().min n ni i i b a b a S f C a b span C a b S x S x a x f S x f x S x dx x f x S x dx S x f x ϕϕϕϕρρ=∈Φ∈Φ=⊂∀∈Φ=-=-=-∑⎰⎰ 设为的最佳平方逼近1. 最佳平方逼近问题-----(14)0(,)(,)(,)()()()(,)()()()0,1,,x n k i i k k i b k i k i a b k k k a a f d x x x dx d f x f x x dxk nG dϕϕϕϕϕρϕϕϕρϕ=⎧==⎪⎪⎪=⇒⎨⎪==⎪⎪=⎩⇒=∑⎰⎰ ⎪⎪⎪⎪⎭⎫ ⎝⎛),(),(),(01000n ϕϕϕϕϕϕ ),(),(),(11101n ϕϕϕϕϕϕ ),(),(),(10n n n n ϕϕϕϕϕϕ G =最小二乘法方法评注曲线拟和的最小二乘法是实验数据处理的常用方法。
数值分析06函数逼近

函数逼近的历史与发展
早期发展
早在古希腊时期,数学家就开始研究用简单的几何图形来近 似表示复杂的曲线。随着数学的发展,函数逼近的理论和方 法不断完善和丰富。
现代进展
随着计算机科学和数值分析的兴起,函数逼近在数值计算、 信号处理、图像处理等领域的应用越来越广泛。现代的逼近 方法不仅追求形式简单,还注重逼近的精度和计算效率。
数据拟合
在数据分析和机器学习中,利用数值逼近方法对数据进行拟合, 以提高预测精度。
图像处理
在图像处理中,利用数值逼近方法对图像进行平滑、去噪等处理, 以提高图像质量。
工程计算
在工程计算中,利用数值逼近方法对复杂函数进行近似计算,以简 化计算过程和提高计算效率。
05
结论与展望
总结与评价
总结
数值分析06函数逼近课程是一门重要的数学课程,它涉及到许多实际问题的求解,如插值、拟合、最小二乘法等。 通过学习这门课程,学生可以掌握如何使用数学工具来近似描述和分析函数,从而更好地理解和解决实际问题。
数。
稳定性分析
稳定性定义
稳定性是指在逼近过程中,对于小的扰动或误差,逼近结果的变 化程度。
不稳定性影响
不稳定的逼近可能导致结果出现较大的偏差,影响数值计算的精 度和可靠性。
稳定性判据
根据稳定性判据,判断逼近函数的稳定性以及如何提高稳定性。
04
数值实例与应用
一元函数逼近实例
01
线性逼近
通过多项式逼近方法,将一元函 数在某点附近展开成线性形式, 如泰勒级数展开。
评价
这门课程的内容非常实用,对于数学专业的学生来说是一门必修课程。它不仅有助于提高学生的数学素养,还可 以为学生提供解决实际问题的能力。然而,该课程难度较大,需要学生具备较高的数学基础和思维能力。
《数值分析教程》课件

一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
数值分析06-一致逼近

Y
在度量标准 max ri
i
(达到最小),这就是最佳一致逼近(不要产生最大误差, 均匀一些),通常仍 然取 (x)为多项式,即求多项式 (x) 使残差: r f (x ) (x )
i i i
绝对值的最大值 达到最小。或可写为:在H中求满足 (x) (f 的逼近函数 (x) ):
a xb
max
即在H中 (x)与f(x)之差的绝对值的最大值是最小的,H中 任一ψ (x)与f(x)之差的绝对值的最大值都比它大,这样的 6-3 阜师院数科院第六章 函数逼近 (x)为f(x)在H中的最佳一致逼近函数。
W Y
§5 最佳一致逼近多项式
下,求 (x) ,使
max ri max f ( x ) ( x ) min
例如:要求区间[0,1]上y=arctgx的一次近似式 可以有多种方法: (1)Talor公式:tg-1x x,误差R(x)= tg-1x- x,在 x=0附近很小,x=1时误差最大,R(x)|x=1=0.2146; (2)插值: x=0,1作节点=>L1(x)=πx/4,tg-1x πx/4, 4 其误差在 x 1 1 . 12 处,即在1附近较大为0.0711;
定理6.6 P (x)H 是f(x)C[a,b]的最佳一致逼近多项式的 n n 充要条件是Pn(x)在[a,b]上至少有n+2个不同的依次轮流为 正,负的偏差点(这些点称为切比雪夫交错点组)。 切比雪夫定理给出了最佳一致逼近多项式的特征,性质, 在最佳一致逼近理论中起着重要作用。 推论1 如果f(x)C[a,b],则在Hn中存在唯一的最佳一致 逼近多项式。 推论2
(3)最小二乘法(例10 §4中)
tg
阜师院数科院第六章 函数逼近
数值分析第六章函数逼近

5
3
2
求x, y的函数关系. Matlab解法: polyfit([1, 2, 3, 4, 6, 7, 8], [2, 3, 6, 7, 5, 3, 2], 2) ans= -0.3864 3.4318 -1.3182
21
例 测得一发射源的发射强度 I 与时间 t 的一组数据如下 ti 0.2 0.3 0.4 0.5 0.6 0.7 0.8
12
n n x i i 1 n xi2 i 1
xi i 1 x i 1 x i 1
n n 2 i 3 i
n
n 2 xi yi i 1 i 1 a 0 n n 3 x y x a i 1 i i i 1 i 1 n a2 n 4 2 xi x i yi i 1 i 1 n
y a0 a1 x a0 a1 xi
yi
4
衡量近似函数好坏的标准:残差向量的大小 (1) 使残差的绝对值之和最小, 即
min || ||1 min | i |
a0 ,a1 a0 ,a1 i 1 n
(2) 使残差的最大绝对值最小, 即
min || || min max | i |
xi yi
x1
y1
x2 y2
xn yn
求直线 y=a0+a1x 使得
yi (a0 a1 xi ) i 1
n
2
达到最小.
6
令 F (a0 , a1 ) yi (a0 a1 xi ) 2
i 1
n
则原问题等价于求a0, a1使F(a0, a1)达到最小. 利用多元函数取极值的必要条件得
数值分析第六章函数逼近

2 i 2
拟合 函数
st . ,∑ δ = ∑[ yi −ϕ(xi )] = ∑⎡ yi −∑j=1ajϕj (xi )⎤ →min = F(a0, a1,⋯, am) ⎣ ⎦ i=1 i=1 i=1
拟合条件
n
m
2
该方法称为拟合曲线方法
适当选取函数类
{ϕ0 ( x), ϕ1 ( x),⋯, ϕn ( x)}
(*)有最小二乘解
Φ Φ ⋅a = Φ ⋅ y
⎡ (ϕ0 , ϕ0 ) (ϕ0, ϕ1) ⎢ (ϕ , ϕ ) (ϕ , ϕ ) 1 1 ΦT Φa = ⎢ 1 0 ⎢ ⋯ ⎢ ⎣(ϕm , ϕ0 ) (ϕm , ϕ1) ⎡ ϕ0 ( x1 ) ϕ1 ( x1 ) ⎢ϕ ( x ) ϕ ( x ) 1 2 ΦT y = ⎢ 0 2 ⎢ ⋯ ⎢ ⎣ϕ0 ( xn ) ϕ1 (xn ) ⋯ (ϕ0, ϕm ) ⎤ ⎡a0 ⎤ ⎢a ⎥ ⋯ (ϕ1, ϕm ) ⎥ ⎥ ⎢ 1 ⎥, ⎥ ⎢⋮ ⎥ ⋯ ⎥⎢ ⎥ ⋯ (ϕm , ϕm ) ⎦ ⎣an ⎦
T
T
T
⋯ ϕ m xn )⎦
⎡ y1 ⎤ ⎢y ⎥ ⎢ 2 ⎥, ⎢⋮ ⎥ ⎢ ⎥ ⎣ yn ⎦
例:已知一组实验数据 求拟合曲线。
X Y
1 4
2 4.5
3 6
4 8
5 9
解:观察数据特征,各点的变化接近一条二次曲线。 选用 ϕ ( x) = a0ϕ 0 ( x) + a1ϕ1( x) + a2ϕ 2 ( x), ϕ ( x) = p2( x)
主要问题的提出和解决
�
一、给出函数表
x Y x1,x2,---,xn
f(x)
P(x) y1,y2,---,yn O x1, x2,--,xj,--, xn 求拟合函数 ϕ ( x) = a0ϕ0 ( x) + a1ϕ1 ( x ) + ⋯ + amϕ m ( x ), ϕ ( x ) = p ( x )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
i 1
m
m
[F(xi ) P(xi ) P(xi ) yi ]2 [P(xi ) yi ]2
i 1
i 1
0 m
m
[F(xi ) P(xi )]2 2 [F(xi ) P(xi )][P(xi ) yi ]
i 1
i 1
注: L-S method 首先要求设定 P(x) 的形式。若设
第六章 曲线拟合与函数逼近
/* Approximation Theory */
仍然是已知 x1 … xm ; y1 … ym, 求一个简单易 算的近似函数 P(x) f(x)。
但是 ① m 很大; ② yi 本身是测量值,不准确,即 yi f (xi)
这时没必要取 P(xi) = yi , 而要使 P(xi) yi 总体上尽可能小。
x
方案一:设
y
P(x)
x ax b
求
a
和
b
使得
(a,b)
m i 1
(axixi
b
yi )2
最小。
线性化
/*
leiBqnuuetaaThthriaaieozkvyna,eesttiifhtoooeernlaisany*se/ysa:at!nerdmiW令zebeoiiftjsYu…st
1 y
,
X
2
ak
0
ak
m
2 [P(xi )
i 1
yi
]
P( xi ak
)
mn
2
[
a
j
x
j i
yi ]
x
k i
i1 j0
n
m
m
2
aj
x jk i
yi xik
j0
i 1
i 1
m
m
记 bk xik , ck yi xik
i1
i1
b00
...
bn0
... b0n a0 c0
...
...
1 x
,则
Y a bX n就on是lin个ear线! 性问题
将( xi , yi ) 化为( X i ,Yi ) 后易解 a 和b。
例 用 p( x) x 来拟合 x 1 2 3 4 。
ax b
y 4 10 18 26
§1 L-S Approximating Polynomials
方案二:设 y P( x) a eb/ x ( a > 0, b > 0 )
常见做法:
不可导,求解困难 太复杂
➢
使
max |
1 i m
P( xi
)
yi
|
最小
/*
minimax
problem
*/
m
➢ 使 | P( xi ) yi | 最小
i 1
m
➢ 使 | P( xi ) yi |2 最小 /* Least-Squares method */ i 1
§1 最小二乘拟合多项式 /* L-S approximating polynomials */
... ...
x1n ...
... xmn
则 uT B u uTΦTΦ u || Φ u ||22 0
B为正定阵,若则不非然奇,异则,所以法方程组存在唯一解。 存在一个 u 0 Rn1 使得 Φ u 0 …
n
即
j0
x
j k
uYj ou0on,Wlyakgitavae1s,emc..eo. n,admc!ritical
y 4 10 18 26
§2 正交多项式与最小二乘拟合
/* Orthogonal Polynomials & Least-Squares Approximation */
已知 x1 … xm ; y1 … ym, 求一个简单易算的近
似函数
P(x)
f(x)
使得
m
|
P(xi )
yi
|2
最小。
i 1
已知 [a, b]上定义的 f(x),求一个简单易算的
确定多项式 P( x) a0 a1 x ... an xn,对于一组数 m
据(xi, yi) (i = 1, 2, …, n) 使得 [P( xi ) yi ]2 达到极小, i 1
这里 n << m。
实际上是 a0, a1, …, an 的多元函数,即
[ ] (a0
在
,的a1 极, ...值, a点n )应 法有i/m*1/方r*enag程o0rre组msa0sa回(1,il或oxe归nkiq正cu系o0.a规.,e.t数.if.o方.f,inacnsn程iex*n/in组ts)*y/ i
近似函数
P(x)
使得
b
a[P(x)
f ( x)]2dx
最小。
定义 线 性 无 关 /* linearly independent */ 函 数 族 { 0(x),
n
意 b = (b0 b1 … bn )T 对应的多项式 F(x) bj x j 必有
j0
m
m
(a ) [P( xi ) yi ]2 [F ( xi ) yi ]2 (b)
i 1
i 1
m
m
证明:(b) (a) [F ( xi ) yi ]2 [P( xi ) yi ]2
n=m1,则可取 P(x) 为过 m 个点的m1阶插值多
项式,这时 = 0。
P(x) 不一定是多项式,通常根据经验确定。
例
用p( x) a0 a1 x a2 x2 来拟合
x y
1234 4 10 18 26
。
例: y
§1 L-S Approximating Polynomials
(xi , yi) , i = 1, 2, …, m
point,
x1, ... , xm 是butnit’阶s n多ot 项nec式essarily a
P( x) u0 u1 x ..m. inuinmxnu的m p根oint !
§1 L-S Approximating Polynomials
定理 Ba = c 的解确是 的极小点。即:设 a 为解,则任
...
...
...
bn n
an
cn
§1 L-S Approximating Polynomials
定理 L-S 拟合多项式存在唯一 (n < m)。
证明:记法方程组为 Ba = c .
则有
B ΦTΦ c ΦT y
其中
Φ 1...
x1 ...
x12 ...
1 xm xm2
对任意 u 0 Rn1 ,必有 Φ u 0。
线性化:由
ln
y
ln
a
b x
可做变换
Y ln y ,
X
1 x
,
A ln a ,
B b
Y yi ) 化为( X i ,Yi ) 后易解 A 和B
a eA , b B , P(x) a eb/x
HW: p.233 #7,#9, #10,#11
例 用 p( x) aeb/ x 来拟合 x 1 2 3 4 。