二次函数第一课时ppt课件
合集下载
二次函数图像和性质课件(1)完整版公开课全篇

B. y= –(x+1)2+1
C.y=(x–1)2+1
D. y= –(x–1)2+1
1)若抛物线y=-x2向左平移2个单位,再向 下平移4个单位所得抛物线的解析式是 ________
2)如何将抛物线y=2(x-1) 2+3经过平移 得到抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平 移得到抛物线y=2(x+2)2-1
(h,k)
二次函数y=a(x-h)²+k与y=ax²的关系
1.
(1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大 而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的 增大而减小 .
y=3x2
向右
向上
y=3(x-1)2
y=3(x-1)2+2
二次函数y=3(x-1)2+2的 图象和抛物线 y=3x²,y=3(x-1)2有什么关 系?它的开口方向,对称轴 和顶点坐标分别是什么?
y 3x 12 2
y 3x 12
二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.
向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=h时,最小值为k.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
人教版数学九年级上册22 二次函数(第一课时)课件

4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
二次函数第一课时PPT省公开课获奖课件说课比赛一等奖课件

上述三个问题中旳函数解析式具有哪些共同旳 特征?
经化简后都具有y=ax²+bx+c 旳形式. (a,b,c是常数, a≠0 )
下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2&x)
y ax2 bx c(其中a,b, c是常数),
二次函数旳概念
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y , 假如对于x 旳每一个可取旳值,都有唯一一 种y 值与它相应,那么y 称为x 旳 函数。 2、什么叫做一次函数?
形如y=kx+b (k、b为常数,k≠0)
3、函数有哪些表达措施?
解析法 列表法 图象法
合作学习,探索新知 :
请用合适旳函数解析式表达下列问题情 境中旳两个变量 y 与 x 之间旳关系:
(1)圆旳面积 y ( cm2)与圆旳半径 x ( cm ) y =πx2
(2)某商店1月份旳利润是2万元,2、3月 份利润逐月增长,这两个月利润旳月平 均增长率为x,3月份旳利润为y
y = 2(1+x)2
合作学习,探索新知 :
当a, b, c满足什么条件时
(1)它是二次函数? (1)a 0
(2)它是一次函数? (2)a 0,b 0
(3)它是正百分比函数?(3)a 0,b 0, c 0
例题精讲
例1 m取哪些值时,函数 y=(m2-m)x2+mx+(m+1)是以x为自变量旳二次
函数?
2: m取何值时,函数y=(m+1)xm2 2m 1
(3)拟建中旳一种温室旳平面图如图,假如
经化简后都具有y=ax²+bx+c 旳形式. (a,b,c是常数, a≠0 )
下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2&x)
y ax2 bx c(其中a,b, c是常数),
二次函数旳概念
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y , 假如对于x 旳每一个可取旳值,都有唯一一 种y 值与它相应,那么y 称为x 旳 函数。 2、什么叫做一次函数?
形如y=kx+b (k、b为常数,k≠0)
3、函数有哪些表达措施?
解析法 列表法 图象法
合作学习,探索新知 :
请用合适旳函数解析式表达下列问题情 境中旳两个变量 y 与 x 之间旳关系:
(1)圆旳面积 y ( cm2)与圆旳半径 x ( cm ) y =πx2
(2)某商店1月份旳利润是2万元,2、3月 份利润逐月增长,这两个月利润旳月平 均增长率为x,3月份旳利润为y
y = 2(1+x)2
合作学习,探索新知 :
当a, b, c满足什么条件时
(1)它是二次函数? (1)a 0
(2)它是一次函数? (2)a 0,b 0
(3)它是正百分比函数?(3)a 0,b 0, c 0
例题精讲
例1 m取哪些值时,函数 y=(m2-m)x2+mx+(m+1)是以x为自变量旳二次
函数?
2: m取何值时,函数y=(m+1)xm2 2m 1
(3)拟建中旳一种温室旳平面图如图,假如
高中二次函数 课件ppt课件ppt课件ppt

翻折变换是指将二次函数的图像在x轴或y轴上进行翻转。
当函数图像关于x轴进行翻折时,对应的函数表达式变为$y = -f(x)$;关 于y轴进行翻折时,对应的函数表达式变为$y = f(-x)$。
在翻折变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性 不变。
伸缩变换
伸缩变换是指将二次函数的图像在x轴或y轴上进行缩放。
详细描述
二次函数在代数中可以用来解决方程的根的问题,在几何 中可以用来研究图形的性质和关系,在概率统计中可以用 来描述随机变量的分布等。
THANK YOU
当函数图像在x轴方向上缩小a倍时,对应的函数表达式变为$y = f(frac{1}{a}x)$; 在x轴方向上扩大a倍时,对应的函数表达式变为$y = f(ax)$。
在伸缩变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性和周期性不 变。
04
二次函数的解法
配方法
总结词
通过配方将二次函数转化为完全平方形式,从而简化求解过程。
顶点式二次函数解析式
总结词
顶点式二次函数解析式是 $y = a(x h)^2 + k$,其中 $(h, k)$ 是抛物线 的顶点。
详细描述
顶点式二次函数解析式表示一个以 $(h, k)$ 为顶点的开口抛物线,其开 口方向同样由系数 $a$ 决定。顶点坐 标 $(h, k)$ 可以用来确定抛物线的位 置和形状。
详细描述
公式法适用于求解一般形式的二次方程 $ax^2 + bx + c = 0$。根据判别式 $Delta = b^2 - 4ac$ 的值,可以 将二次方程的解表示为 $x_1, x_2 = frac{-b pm sqrt{Delta}}{2a}$。当 $Delta > 0$ 时,方程有两个实根;当 $Delta = 0$ 时,方程有两个相同的实根;当 $Delta < 0$ 时,方程没有实根。
当函数图像关于x轴进行翻折时,对应的函数表达式变为$y = -f(x)$;关 于y轴进行翻折时,对应的函数表达式变为$y = f(-x)$。
在翻折变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性 不变。
伸缩变换
伸缩变换是指将二次函数的图像在x轴或y轴上进行缩放。
详细描述
二次函数在代数中可以用来解决方程的根的问题,在几何 中可以用来研究图形的性质和关系,在概率统计中可以用 来描述随机变量的分布等。
THANK YOU
当函数图像在x轴方向上缩小a倍时,对应的函数表达式变为$y = f(frac{1}{a}x)$; 在x轴方向上扩大a倍时,对应的函数表达式变为$y = f(ax)$。
在伸缩变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性和周期性不 变。
04
二次函数的解法
配方法
总结词
通过配方将二次函数转化为完全平方形式,从而简化求解过程。
顶点式二次函数解析式
总结词
顶点式二次函数解析式是 $y = a(x h)^2 + k$,其中 $(h, k)$ 是抛物线 的顶点。
详细描述
顶点式二次函数解析式表示一个以 $(h, k)$ 为顶点的开口抛物线,其开 口方向同样由系数 $a$ 决定。顶点坐 标 $(h, k)$ 可以用来确定抛物线的位 置和形状。
详细描述
公式法适用于求解一般形式的二次方程 $ax^2 + bx + c = 0$。根据判别式 $Delta = b^2 - 4ac$ 的值,可以 将二次方程的解表示为 $x_1, x_2 = frac{-b pm sqrt{Delta}}{2a}$。当 $Delta > 0$ 时,方程有两个实根;当 $Delta = 0$ 时,方程有两个相同的实根;当 $Delta < 0$ 时,方程没有实根。
二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m
二次函数第一课时PPT教学课件

富阳永兴中6学
练一练:
考考你
1、说出下列二次函数的二次项系数、
一次项系数和常数项。
(1)y1x22x (2)sr2 2
(3)yx215 (4)y4(x21)
(5)y1(x2)21 4
2020/12/12
九年级 数学
富阳m2m1 是二次函数,
则m的值是
3、k取何值时,y ( k 2 3 k 2 ) x 2 ( k 2 ) x k 1 分
剪去4个全等的直角三角形(图中阴影部分)。设
AE=BF=CG=DH=x(cm),四边形EFGH的面积为
y(cm2),求y关于x的函数解析式和自变量x的取值
范围。
D
GC
解:由题意,0<x<2 ,
H
y 2 2 4 1 x (2 x ) 2 x 2 4 x 4
F
2 即所求函数解析式为
A E
B
y2x24x4(0<x<2 )
1、已知二次函数y=ax2+bx,当x=-1时, 函数值y为10;当x=1时,函数值y为4; 求这个二次函数的解析式。
2、已知二次函数y=x2+px+q,当x=-1时, y=0;当x=2时,y=9,求这个二次函数的 解析式。
待定系数法 关键是列出方程组
2020/12/12
九年级 数学
富阳永兴中10学
(1)yax2 (2)ya2xc
(3)ya2 xbx
(其中a、b、c是常数,a ≠0 )
2020/12/12
九年级 数学
富阳永兴中5学
辨一辨
下列函数关系式中,哪些是二次函数?
(1)y3x22x1 (2)yxx2
(3)sr2
(5)y4x22
人教版九年级数学上册二次函数课件(共15张)

1、y =6x2
2、
3、y=20x2+40x+20 上述问题中的函数解析式具有
哪些共同的特征?
化简后具有y=ax²+bx+c 的情势.
(a,b,c是常数, a≠0 )
二次函数概念
我们把形如y=ax²+bx+c
(其中a,b,C是常数,a≠0)的函 数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
(1)写出y关于x的 函数关系式. (2)当x=3时,矩形 的面积为多少?
x
2、已知二次函数 y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值 为 -5, 求这个二次函数 的解析式.
课堂小结
a≠0
y=ax²+bx+c
二次项 系数
一次项 系数
常数项
每个队要与其他 (n-1) 个球队各比赛一场,甲
队对乙队的比赛与乙队对甲队的比赛是同一场比赛,
所以比赛的场次数
.即
.
上式表示比赛的场次数m与球队数n的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题2 某种产品现在的年产量是20 t,计划今后 两年增加产量,如果每年都比上一年的产量增加 x倍,那么两年后这种产品的产量 y 将随计划所 定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20 t,一年后的产量是 20(1+x)t,
再经过一年后的产量是 20(1+x)(1+x) t,即两年 后的产量 y=20(1+x)2 , 即 y=20x2+40x+20 .
上式表示两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值,y都有一个对应值,即y 是x的函数.
二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
人教版九年级下册
3
探索新知
正方体六个面是全等的正方形, 设正方形棱长为 x,表面积为 y , 则 y 关于x 的关系式为_y_=6_x2_.
此式表示了正方体的表面积y与棱长x之间的关 系,对于x的每一个值,y都有一个对应值,即y是 x的函数.
4
探索新知
多边形的对角线数 d 与边数 n 有什么关系?
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
8
解决问题
例1、下列函数中,哪些是二次函数?若是,分别
指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1 (是)
(2)y=x+
_1 x
(否)
(3)s=3-2t² (5)y= _x1_²-x
10
同步练习
1.函数 y (k 1 )x2k2 k1 是一次函数.求k的值。 2
k=0
2.函数y (m 1)xm2m mx 1 是二次函数.求m的值。
m=2
3.函数 y (m2 m)xm2m 是二次函数.求m的值
m=2
11
实际运用
例3 用总长为60m的篱笆围成矩形场地,场地 面积S(m²)与矩形一边长a(m)之间的关系是什 么?是函数关系吗?是哪一种函数?
(是) (否)
(4)y=(x+3)²-x² (否)
(6)v= 3 r ² (是)
(7) y=x²+x³+25 (否) (8)y=2²+2x
(否)
(9) y= x2 5x 6 (否)
(10)y=mx²+nx+p (m,n,p为常数) (否)
9
例题分析
例2. 已知 y=(m+3)xm2-7 (1)m取什么值时,此函数是正比例函数? (2)m取什么值时,此函数是反比例函数? (3)m取什么值时,此函数是二次函数?
变式:
Байду номын сангаас
a
a
解: S a 60 2a a(30 a) a2 30a
2
S是 a 的二次函数。
12
同步练习
1.一个圆柱的高等于底面半径,写出它的
r
表面积 s 与半径 r 之间的关系式,是函 r
数关系吗?是哪种函数?
2. n支球队参加比赛,每两队之间进行一 场比赛,写出比赛的场次数 m与球队数 n 之间的关系式.
温故知新
1、什么是函数?
在一个变化过程中,如果有 两个变量x与y , 并且对于x的每一个确定的值,y都有 唯一 确定的值与其对应,那么就说y是x的函数, x 是自变量。
1
温故知新
2.我们学习过哪些函数? 它们的一般解析式怎么表示?
一次函数 y=kx+b (k≠0) 函 数
(正比例函数) y=kx (k≠0)
4、将进货单价为40元的商品按50元卖出时,就能卖 出500个,已知这种商品每涨1元,其销售量就会减少 10个,设售价定为X元(x>50)时的利润为Y元。试求 出Y与X的函数关系式,并按所求的函数关系式计算 出售定价为80元时所得利润。
17
课堂小结
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数.其中,是x自变量,a,b,c分别 是函数表达式的二次项系数、一次项系数和常数项.
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax²(a≠0,b=0,c=0,). (2)y=ax²+c(a≠0,b=0,c≠0). (3)y=ax²+bx(a≠0,b≠0,c=0). 2.定义的实质是:ax²+bx+c是整式,自变量x的最高次
d=
1 2
n2-
3 2
n
函数都是用自变量 的二次式表示的。
y=20x2+40x+20
一般地,形如
y=ax2+bx+c (a,b,c都是常数,且a≠0) 的函数,叫做二次函数.其中, x是自变量,a,b,c分别 是函数表达式的二次项系数、一次项系数和常数项.
7
探索新知
二次函数的一般形式: y=ax2+bx+c (a、b、c为常数,a≠0)
n边形有_n_个顶点,从一个
顶点出发,连接与这点不相邻的
各顶点,可作(_n-_3_) 条对角线.因
此,n边形的对角线总数
d=
1 2
n(n-3)
.
此式表示了多边形的对角线数d与 边数n之间的
关系,对于n的每一个值,d都有一个对应值,即d
是n的函数.
5
探索新知
某工厂一种产品现在的年产量是20件,计划今后两 年增加产量.如果每年都比上一年的产量增加x倍,那 么两年后这种产品的产量y将随计划所定的x的值而确 定, y与x之间的关系怎样表示?
4、将进货单价为40元的商品按50元卖出时,就能卖 出500个,已知这种商品每涨1元,其销售量就会减少 10个,设售价定为X元(x>50)时的利润为Y元。试求 出Y与X的函数关系式,并按所求的函数关系式计算 出售定价为80元时所得利润。
15
拓展提高
x 如果函数y= k2 - 3k+ 2 +kx+1是二次函数,
则k的值一定是__0__或__3
x 如果函数y=(k-3) k2 - 3k+ 2 +kx+1是二次函数,
则k的值一定是__0____
x 如果函数y=(k-3) k2 - 3k+ 2 +kx+1 (x≠0)是一次
函数,则k的值一定是__3_或__1_ 或2
或 3 2
5
16
拓展提高
3、菱形的两条对角线的和为26cm,求菱形的面积 S(cm2)与一对角线长x(cm)之间的函数关系.
这种产品的原产量是20件,一年后的产量是20(1+x)件, 再经过一年后的产量是 20(1+x)2 件,即两年后的 产量为: y=20(1+x)2 .
此式表示了两年后的产量y与计划增产的倍数x之间的 关系,对于x的每一个值,y都有一个对应值,即y是x的 函数.
6
探索新知
观察下列函数有什么共同点:
y=6x2
3.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( ) (A) m,n是常数,且m≠0 (B) m,n是常数,且n≠0 (C) m,n是常数,且m≠n (D) m,n为任何实数
13
拓展提高
1、圆的半径是1cm,假设半径增加xcm时,圆的面积增加 ycm².写出y与x之间的函数关系表达式;
2、如图,已知梯形ABCD中,AD//BC,AB=DC, ∠B=600,梯形的周长为60,设腰AB=x,
梯形面积为y.
(1)写出y关于x的函数关系式,并求出自变量x的取 值范围。
(2)当x=15时,求y的值。
A
D
x
BE
14
FC
拓展提高
3、菱形的两条对角线的和为26cm,求菱形的面积 S(cm2)与一对角线长x(cm)之间的函数关系.
人教版九年级下册
3
探索新知
正方体六个面是全等的正方形, 设正方形棱长为 x,表面积为 y , 则 y 关于x 的关系式为_y_=6_x2_.
此式表示了正方体的表面积y与棱长x之间的关 系,对于x的每一个值,y都有一个对应值,即y是 x的函数.
4
探索新知
多边形的对角线数 d 与边数 n 有什么关系?
二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
8
解决问题
例1、下列函数中,哪些是二次函数?若是,分别
指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1 (是)
(2)y=x+
_1 x
(否)
(3)s=3-2t² (5)y= _x1_²-x
10
同步练习
1.函数 y (k 1 )x2k2 k1 是一次函数.求k的值。 2
k=0
2.函数y (m 1)xm2m mx 1 是二次函数.求m的值。
m=2
3.函数 y (m2 m)xm2m 是二次函数.求m的值
m=2
11
实际运用
例3 用总长为60m的篱笆围成矩形场地,场地 面积S(m²)与矩形一边长a(m)之间的关系是什 么?是函数关系吗?是哪一种函数?
(是) (否)
(4)y=(x+3)²-x² (否)
(6)v= 3 r ² (是)
(7) y=x²+x³+25 (否) (8)y=2²+2x
(否)
(9) y= x2 5x 6 (否)
(10)y=mx²+nx+p (m,n,p为常数) (否)
9
例题分析
例2. 已知 y=(m+3)xm2-7 (1)m取什么值时,此函数是正比例函数? (2)m取什么值时,此函数是反比例函数? (3)m取什么值时,此函数是二次函数?
变式:
Байду номын сангаас
a
a
解: S a 60 2a a(30 a) a2 30a
2
S是 a 的二次函数。
12
同步练习
1.一个圆柱的高等于底面半径,写出它的
r
表面积 s 与半径 r 之间的关系式,是函 r
数关系吗?是哪种函数?
2. n支球队参加比赛,每两队之间进行一 场比赛,写出比赛的场次数 m与球队数 n 之间的关系式.
温故知新
1、什么是函数?
在一个变化过程中,如果有 两个变量x与y , 并且对于x的每一个确定的值,y都有 唯一 确定的值与其对应,那么就说y是x的函数, x 是自变量。
1
温故知新
2.我们学习过哪些函数? 它们的一般解析式怎么表示?
一次函数 y=kx+b (k≠0) 函 数
(正比例函数) y=kx (k≠0)
4、将进货单价为40元的商品按50元卖出时,就能卖 出500个,已知这种商品每涨1元,其销售量就会减少 10个,设售价定为X元(x>50)时的利润为Y元。试求 出Y与X的函数关系式,并按所求的函数关系式计算 出售定价为80元时所得利润。
17
课堂小结
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0) 的函数叫做x的二次函数.其中,是x自变量,a,b,c分别 是函数表达式的二次项系数、一次项系数和常数项.
y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax²(a≠0,b=0,c=0,). (2)y=ax²+c(a≠0,b=0,c≠0). (3)y=ax²+bx(a≠0,b≠0,c=0). 2.定义的实质是:ax²+bx+c是整式,自变量x的最高次
d=
1 2
n2-
3 2
n
函数都是用自变量 的二次式表示的。
y=20x2+40x+20
一般地,形如
y=ax2+bx+c (a,b,c都是常数,且a≠0) 的函数,叫做二次函数.其中, x是自变量,a,b,c分别 是函数表达式的二次项系数、一次项系数和常数项.
7
探索新知
二次函数的一般形式: y=ax2+bx+c (a、b、c为常数,a≠0)
n边形有_n_个顶点,从一个
顶点出发,连接与这点不相邻的
各顶点,可作(_n-_3_) 条对角线.因
此,n边形的对角线总数
d=
1 2
n(n-3)
.
此式表示了多边形的对角线数d与 边数n之间的
关系,对于n的每一个值,d都有一个对应值,即d
是n的函数.
5
探索新知
某工厂一种产品现在的年产量是20件,计划今后两 年增加产量.如果每年都比上一年的产量增加x倍,那 么两年后这种产品的产量y将随计划所定的x的值而确 定, y与x之间的关系怎样表示?
4、将进货单价为40元的商品按50元卖出时,就能卖 出500个,已知这种商品每涨1元,其销售量就会减少 10个,设售价定为X元(x>50)时的利润为Y元。试求 出Y与X的函数关系式,并按所求的函数关系式计算 出售定价为80元时所得利润。
15
拓展提高
x 如果函数y= k2 - 3k+ 2 +kx+1是二次函数,
则k的值一定是__0__或__3
x 如果函数y=(k-3) k2 - 3k+ 2 +kx+1是二次函数,
则k的值一定是__0____
x 如果函数y=(k-3) k2 - 3k+ 2 +kx+1 (x≠0)是一次
函数,则k的值一定是__3_或__1_ 或2
或 3 2
5
16
拓展提高
3、菱形的两条对角线的和为26cm,求菱形的面积 S(cm2)与一对角线长x(cm)之间的函数关系.
这种产品的原产量是20件,一年后的产量是20(1+x)件, 再经过一年后的产量是 20(1+x)2 件,即两年后的 产量为: y=20(1+x)2 .
此式表示了两年后的产量y与计划增产的倍数x之间的 关系,对于x的每一个值,y都有一个对应值,即y是x的 函数.
6
探索新知
观察下列函数有什么共同点:
y=6x2
3.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( ) (A) m,n是常数,且m≠0 (B) m,n是常数,且n≠0 (C) m,n是常数,且m≠n (D) m,n为任何实数
13
拓展提高
1、圆的半径是1cm,假设半径增加xcm时,圆的面积增加 ycm².写出y与x之间的函数关系表达式;
2、如图,已知梯形ABCD中,AD//BC,AB=DC, ∠B=600,梯形的周长为60,设腰AB=x,
梯形面积为y.
(1)写出y关于x的函数关系式,并求出自变量x的取 值范围。
(2)当x=15时,求y的值。
A
D
x
BE
14
FC
拓展提高
3、菱形的两条对角线的和为26cm,求菱形的面积 S(cm2)与一对角线长x(cm)之间的函数关系.