机器人在车身焊接工艺

合集下载

汽车车身机器人补焊工艺分析

汽车车身机器人补焊工艺分析

汽车车身焊装就是把一块一块 的冲压 件焊 接成一个
围板 、 发动机仓等部位 。这些部位 的材料 主要为冷轧钢
板和镀锌钢板 。冷轧 钢板 有 0 6 .mm、0 8 .mm、10 m、 .m 12 m等规格 。镀锌钢 板有厚度 0 7 m .m .5 m、0 9 .mm,镀 层厚度 4 g m 、3 gm 、2 g m 5 / 2 0/ 0 / 等规格。材料 及材料
排除了人的因素对工艺执行 的影 响 ,可保 证工艺顺利执
1 循环水系统 .
()建 立 专用 的 、独 立 的冷 却水 供 给 装 置。选用 1 L27 型微 电脑 控 制冷 水 机供 水 ,该 机水 温 可 设定 。 S0 F 电脑可根据设定的出水温度选择 一台压缩机工作或 两台 压缩机 同时工作 ,以满足水温要求 向外供水。
机器人焊接就是用机器人代 替人从事焊接工作 。而
对越野车车身焊接来说 ,焊接角度 、焊件连接方 法 、焊
点的大小 、焊点 问 的距离 及焊 接 强度 等都有 严格 的要
求 ,因此机 器人 要有 较好 的 灵活 度 和人脑 似 的指挥 系 统 ,以保证焊接姿态 和焊接工艺的执行 。 ( )机器人焊接姿 态是焊接板材配合 状态 良好的保 1
装置 、 循环水装置 、 压缩空气装 置和 4 台机器 人等组成 。 由于 4台机器人对 车身 46 焊点 同时进 行补焊 ,一个 4个 工作节拍为 28 i 所 以机器人焊接系统 的好坏 直接影 、 n m ,
响到产品质量。系统 内影响产品质量的主要 因素见图 1 。
稳压供电装置
2 车身点焊机器人应用分析 .
www.  ̄ t/ . 0 1 a is O n . 't t
维普资讯

毕业论文机器人CMT焊接工艺研究

毕业论文机器人CMT焊接工艺研究

机器人CMT焊接工艺研究摘要本文利用焊接机器人和福尼斯CMT焊机对镀锌板进行堆焊,搭接和对接,分析CMT 机器人焊接焊接得到板材的外观,成型,硬度,气孔产生的原因,焊接变形产生的原因。

得到由于冷金属过渡焊接的特殊的抽送丝方式,其焊接热输入量更小,在同样焊接参数下,冷金属过渡焊接比MAG焊的飞溅更少,熔深更小,且硬度值要明显低于MAG焊。

但是在搭接镀锌板材时,由于无间隙,电弧力过大,弧长修正系数过大,焊接速度过快等原因,仍会出现气孔,对接时由于板材膨胀收缩不均匀仍会出现焊接变形。

关键词:机器人;冷金属过渡;镀锌板前言近年来镀锌板在工业中应用逐渐增多,在所有应用镀锌板的行业中,汽车工业的自动化程度最高,汽车轻量化需求越来越重要,镀锌薄板的应用也越来越多,但镀锌薄板如何有效的焊接一直困扰着工程技术人员,CMT焊接技术的发展成功解决了镀锌薄板的焊接问题。

本文围绕机器人CMT焊接镀锌板过程中容易出现的几个问题展开研究:焊缝外观是否美观,焊缝区域的硬度问题,焊接区域的气孔缺陷问题,焊接过程中的变形问题……本次研究对汽车车身的镀锌薄板的焊接具有一定的现实意义,可实现机器人CMT焊接镀锌薄板少气孔无气孔,少变形甚至无变形,焊接接头美观。

冷金属过渡焊接技术可代替传统MIG/MAG焊进行薄板焊接。

第1章绪论1.1焊接机器人我国在20世纪70年代末开始进行工业机器人的研究,经过二十多年科技的发展,工业机器人的性能更完善、价格更低,应用越来越普遍。

我国在产业转型的过程中,工业机器人的需求在快速增加。

利用焊接机器人不仅能稳定和提高焊接质量,保证其均一性,而且可以改善劳动条件,提高劳动生产率,缩短产品改型换代的周期,减小相应的设备投资。

现在焊接机器人更是遇到难得的发展机遇。

一方面,焊接机器人的价格不断下降,性能不断提升,性价比大幅度提高。

另一方面,劳动力成本也在不断上升。

现在的制造型企业也都在提升加工手段,提高产品质量和增强企业竞争力。

工业机器人在汽车制造中的应用案例

工业机器人在汽车制造中的应用案例

工业机器人在汽车制造中的应用案例工业机器人是一种能够自动执行重复性、危险性或高精度工作的智能机械设备。

它们在各个行业的生产线上发挥着重要作用,尤其在汽车制造领域。

本文将介绍几个工业机器人在汽车制造中的应用案例,以展示其在提高生产效率、质量控制和安全性方面的优势。

案例一:焊接机器人焊接是汽车制造中必不可少的工序之一,而工业机器人在焊接作业中的应用已经得到广泛应用。

以某汽车制造公司的生产线为例,他们引入了焊接机器人,用于汽车车身的焊接工艺。

这些机器人通过激光传感器和视觉系统,能够精确检测并找到焊接位置,然后自动执行焊接工作。

相比于传统的手工焊接,机器人的工作效率更高且具有更高的一致性和准确性,从而提高了焊接质量和生产效率。

案例二:装配机器人汽车的装配过程需要进行大量的零部件组装和安装工作,而装配机器人能够在这个过程中发挥重要作用。

例如,在发动机装配工序中,工业机器人通过视觉识别系统和机械手臂来执行发动机部件的组装工作。

机器人可以准确、稳定地拿取零部件并进行组装,避免了人为因素所引发的误差,并且能够快速完成高精度的任务。

装配机器人在提高生产效率的同时,还能够减少员工的劳动强度和提高工作安全性。

案例三:喷涂机器人在汽车制造中,车身的喷涂是一个关键的工序,而工业机器人在喷涂过程中的应用可以提高喷涂效果和工作效率。

传统的喷涂往往会受到施工者技术水平和环境因素的影响,而喷涂机器人可以通过预先设置的程序来实现一致、均匀的喷涂。

它们能够根据车身的形状和尺寸,自动调整喷涂角度和压力,从而实现高质量的喷涂效果。

此外,机器人喷涂也可以避免了有害气体的释放,提高了工作环境的安全性。

案例四:搬运机器人汽车制造过程中需要大量的物料搬运和仓储工作,而搬运机器人的引入可以提高生产效率和人力资源利用率。

以某汽车制造工厂的物流中心为例,他们使用搬运机器人来完成货物的搬运和摆放工作。

这些机器人通过激光导航系统和传感器,能够准确地识别和定位货物,并通过机械臂进行搬运操作。

工业机器人在汽车制造业中的应用与前景

工业机器人在汽车制造业中的应用与前景

工业机器人在汽车制造业中的应用与前景工业机器人是一种自动化装置,它在汽车制造业中的应用越来越广泛,为生产线的高效运作提供了重要支持。

本文将探讨工业机器人在汽车制造业中的应用情况,并展望其未来的发展前景。

一、工业机器人在汽车制造业中的应用1.焊接工艺工业机器人在汽车制造业中最常见的应用是焊接工艺。

传统的手工焊接效率低下且质量难以保证,而通过工业机器人进行焊接能够大大提高焊接的准确性和速度。

工业机器人可以根据程序预先设定的路径进行焊接,确保焊接质量的一致性。

同时,机器人可以在高温、高压等环境下操作,从而为焊接过程提供了极大的便利。

2.装配工艺工业机器人还可用于汽车制造过程中的装配工艺。

装配过程通常需要高度的准确性和稳定性,而机器人的精密控制系统能够确保零部件的准确安装。

此外,机器人还能够完成繁重的装配任务,减轻了工人的劳动强度,提高了工作效率。

3.喷涂工艺喷涂是汽车制造业中的一个关键环节,而机器人在喷涂工艺中的应用能够提高喷涂的均匀性和一致性。

机器人通过精确控制喷涂过程中的喷嘴位置和喷涂速度,确保涂料的均匀分布,并避免喷涂过程中的浪费和污染。

4.搬运与包装在汽车制造业中,大量的零部件和成品需要搬运和包装,而工业机器人能够在这个过程中发挥重要作用。

机器人可以根据预先设定的路径,将零部件和成品从一个工作台转移到另一个工作台,提高了搬运速度和准确度。

同时,机器人还能够自动完成包装和打印标签等任务,减轻了人力成本。

二、工业机器人在汽车制造业中的前景工业机器人在汽车制造业中的应用前景广阔。

随着汽车工业的发展,对于生产效率和产品质量的要求越来越高,工业机器人将扮演更加重要的角色。

1.技术升级随着科学技术的不断进步,工业机器人的性能将得到进一步提升。

传感器、视觉系统以及人工智能的应用将使得工业机器人具备更高的智能化和自动化程度,能够更好地适应不同生产环境和需求。

预计未来的工业机器人将具备更强的自主决策能力和学习能力,能够在不同场景下迅速适应。

机器人焊接工艺

机器人焊接工艺

机器人焊接工艺机器人焊接工艺已经成为现代制造业中不可缺少的一部分。

它的高效率、高精度和高一致性使得机器人焊接越来越受到制造业的青睐。

下面是机器人焊接工艺的相关内容:一、机器人焊接工艺的概述机器人焊接工艺是一种自动化的焊接技术,它利用计算机控制的机器人相对于工件进行运动,完成各种焊接任务。

与传统的手工焊接相比,机器人焊接具有更高的生产效率、更高的品质以及更低的成本,是现代制造业不可或缺的一种技术。

二、机器人焊接工艺的组成部分机器人焊接工艺主要由机器人系统、焊接系统以及其他配套设备组成。

其中,机器人系统包括机器人、控制器以及编程设备;焊接系统包括焊接热源、焊接工具以及焊接程序等;其他配套设备包括工件夹紧装置、检测设备以及安全装置等。

三、机器人焊接的优点1.高效率:机器人焊接可以实现24小时连续生产,极大地提高了焊接生产效率。

2.高精度:机器人焊接具有高精度的定位和动作能力,可以保证焊接质量的一致性和稳定性。

3.高品质:机器人焊接可以避免焊接变形和缺陷,提高了焊接的品质和可靠性。

4.节省人力:机器人焊接可以代替人工进行焊接任务,减少了人力成本和人为错误的可能性。

5.环保节能:机器人焊接可以减少焊接废气和废水的排放,符合国家的环保要求。

四、机器人焊接的应用领域机器人焊接广泛应用于汽车、机械、电子、建筑等领域。

其中,汽车制造业是机器人焊接的主要应用领域,其次是机械、电子、建筑等领域。

随着机器人技术的不断发展和应用范围的扩大,机器人焊接将会被应用于更多的领域。

总之,机器人焊接工艺是一项重要的制造业技术,具有高效率、高精度、高品质、节省人力和环保节能等优点。

它的应用范围越来越广泛,也越来越深入人们的生产生活中。

汽车车身焊装工艺的发展

汽车车身焊装工艺的发展

汽车车身焊装工艺的发展随着汽车工业的发展,汽车车身焊装工艺也在不断革新与改进。

从最初的手工焊接到现在的自动化焊接,车身焊装工艺的发展经历了一个漫长的历程。

本文将从历史的角度出发,介绍汽车车身焊装工艺的发展过程,并探讨目前的趋势和未来的发展方向。

一、手工焊接时代汽车车身焊装工艺最早是由工匠们用手工焊接的方式完成的。

在这个时代,焊接工艺主要依靠人工操作,因此生产效率低,质量难以保证。

工匠们需要通过不断的实践和研究,才能掌握焊接的技巧和经验。

而且手工焊接存在焊接强度难以保证、焊接质量不稳定等问题,这种工艺方式已经无法适应当时汽车产量的增长和市场的需求。

二、半自动焊接时代20世纪50年代,汽车行业开始引入半自动焊接技术。

该技术主要是利用半自动焊接设备辅助工人完成焊接作业,提高了焊接质量和效率。

半自动焊接技术的引入大大改善了汽车车身的质量和生产效率,同时也为汽车行业带来了精密化、标准化的生产方式,为汽车工业的进一步发展奠定了基础。

三、自动化焊接时代自动化焊接作为目前主流的汽车车身焊装工艺,采用机器人等自动化设备完成焊接作业。

自动化焊接技术不仅能够大幅提高焊接的质量和效率,还可以实现连续化、批量化的生产。

此外,自动化焊接还能减少劳动力成本和工人的劳动强度,提高了生产效率和生产效果。

目前,大多数汽车制造厂商都已经引入自动化焊接技术,成为汽车车身焊装工艺的主要发展方向。

四、未来发展趋势未来汽车车身焊装工艺的发展趋势主要有以下几个方向:1.智能化:随着人工智能技术的不断成熟,汽车车身焊装工艺将会实现智能化操作。

未来的焊接设备将会具备自我学习、自我诊断和自我修复的功能,大幅提高生产效率和焊接质量。

2.绿色化:未来汽车行业将更加注重环保和可持续发展,汽车车身焊装工艺也将朝着绿色化方向发展。

采用环保材料、绿色工艺和节能技术,减少废气、废水和废渣的排放。

3.柔性化:未来汽车市场将会更加趋向个性化和定制化,汽车车身焊装工艺也将朝着柔性化方向发展。

机器人焊接工艺 -第七章-弧焊机器人焊接工艺的优化

机器人焊接工艺 -第七章-弧焊机器人焊接工艺的优化

分析焊件下料、装配、焊接难点
2.侧板、盖板的装配难点 立角接头、角接头间隙的装配过程易产生偏差。试件装配过程中需要手工划线、 组对、定位焊、校正等,容易产生装配间隙偏差而影响焊接质量。
分析焊件下料、装配、焊接难点
3.焊接难点 1)T形角接头、角接头的90°转角焊接易产生焊缝脱节、未熔合等缺陷。 2)立角接头底层、盖面层的引弧/收弧焊接易产生未熔合、气孔等缺陷。 3)立角接头底层、盖面层设置起焊点时,若选用引弧焊接参数不当,则易产生未熔合、 气孔等缺陷;收弧时需采用添加埋弧坑功能,容易产生未熔合等缺陷。 4)角接头盖面层编程时采用直线摆动插补,如果在摆幅上、下点设定的焊接停留时 间及焊枪角度不当,则易产生咬边、焊缝下塌等缺陷。
拟订机器人焊接工艺方案及编程
2.焊件装配 (1)选用装配工夹具 焊件数量少,可选用磁性定位器进行装配,如图7-8所示。 (2)装配工艺要求 3.选用焊材、焊接机器人及焊接电源 (1)确定焊丝牌号、直径、气体成分 焊件材料为Q235钢,选用的焊丝牌号为AWS ER70-6,直径为1.2mm;保护气体为80%Ar+20%CO2。 (2)确定弧焊机器人及焊接电源 1)机器人选用Panasonic TA-1400,控制系统选用Panasonic GⅢ1400。 2)焊接电源选用Panasonic YD-500GR3。
汽车车桥焊接
3.焊接顺序和轨迹点优化前后对比 优化前后焊接轨迹点的设置如图7-3和图7-4所示。
汽车车桥焊接工艺优化结果
(一)从焊接质量方面考虑焊接工艺和设置焊接轨迹点 焊接质量是指焊接产品符合设计技术要求的程度,获得良好的焊接质量是整个焊接 过程的最终目的。焊接质量不仅影响焊接产品的使用性能和寿命,更重要的是会影响 人身和财产安全。

机器人工艺焊接技术的研究与应用

机器人工艺焊接技术的研究与应用

机器人工艺焊接技术的研究与应用引言随着科技的不断进步与发展,机器人技术在工业领域的应用越来越广泛。

其中,机器人工艺焊接技术作为其中的一个重要方向,对于提高生产效率、确保产品质量具有重要意义。

本文将深入探讨机器人工艺焊接技术的研究与应用,以及未来的发展趋势。

一、机器人技术在焊接领域的应用1.1 机器人工艺焊接的定义与特点机器人工艺焊接是指利用自动化机器人完成焊接作业的工艺,相对于传统手工焊接,具备以下几个显著特点:首先,机器人工艺焊接可以实现高度的自动化。

通过编程控制,机器人能够在一定的工作区域内完成焊接工作,减少人工操作的需求,提升了生产效率。

其次,机器人工艺焊接具备高精度性。

由于机器人焊接采用先进的传感器和控制技术,能够对焊接过程进行实时监测和调整,从而保证焊接质量的稳定和准确性。

最后,机器人工艺焊接具有良好的可编程性。

通过对机器人进行编程,可以针对不同的焊接任务进行灵活的调整和优化,满足不同产品的要求,提高焊接效率。

1.2 机器人工艺焊接的应用领域机器人工艺焊接技术在多个行业具有广泛的应用。

以汽车制造业为例,机器人工艺焊接被广泛应用于车身焊接、零部件焊接等环节,可以提高生产效率和焊接质量;在航空航天领域,机器人工艺焊接可以应用于飞机的结构焊接和维修焊接,保证飞机的安全性和可靠性;而在家电行业,机器人工艺焊接可以应用于冰箱、空调等产品的焊接,提高工艺稳定性和外观质量。

二、机器人工艺焊接技术的研究进展2.1 焊接机器人与焊接工艺的集成研究一方面,焊接机器人的选择与控制技术对于焊接质量和效率至关重要。

研究者通过对机器人的结构设计和控制系统的优化,以及对焊接工艺的分析和模拟,实现焊接机器人与焊接工艺的高度集成。

另一方面,焊接机器人的传感器技术也得到了广泛的研究。

通过在机器人手臂上配备高精度的传感器,可以实时监测焊接工艺中的温度、气压、电流等参数,并将其反馈给控制系统进行调整,从而提高焊接质量的稳定性和重复性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工件位置不当
焊钳调节不当
无焊接 无焊核形成 仅仅形成热痕与压痕
裂纹 极端的热量变化将引 起表面或焊核产生裂纹
原因分析: 电极头过大 电流过小
原因分析: 电流过大
焊接时间短
)
维持时间过长
1.2凸焊 凸焊是电焊的一种变形,它是利用零件原有的能使电流 集中的预制的凸点来作为焊接部位的。凸焊时,一次可在接 头处形成一个或多个熔核。 凸焊在汽车车身中应用 凸焊在汽车车身制造中,凸焊主要用于螺母,螺钉等焊到 薄钢板的焊件上。
3种电阻中的接触电阻Rc最大,因此, 最高温度产生在在此点使金属熔化并熔 结在工件接触点的中心,在此点使金属 熔化并熔结在一起。
)
焊核过小 焊核直径<5.1mm
常见焊核缺陷分析
焊核位置偏移 焊核位于工件接缝处 焊核位于工件圆角处
原因分析:
电极头过大 电极压力过大 电流过小 焊接时间短
原因分析: 点焊位置不当
)
1.1点焊的分类 点焊通常分为双面点焊和单面点焊两大类 双面点焊时,电极由工件的两侧向焊接处馈电。 所有电流通路的阻抗必须基本相等,而且每一焊接部位 的表面状态、材料厚度、电极压力都需相同,才能保证 通过各个焊点的电流基本一致。 单面点焊时,电极由工件的同一侧向焊接处馈电, 为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。
)
点焊
点焊参数
电流 点焊时产生的热量: Q=I2Rt 式中: Q ——产生的热量(J) I ——焊接电流(A) R——电极间电阻(欧姆) t——焊接时间(s)
电流
焊核
)
电极间电阻的影响
电极间电阻包括: 工件本身电阻Rw 两工件间接触电阻Rc
电极与工件间接触电阻Rew
即R=2Rw+Rc+2Rew
)
1.上电极臂 2.下电极臂 3.上电极夹持器)
4.下电极夹持器 5.上电极 6.下电极
7.定位销 8.凸焊标准件 9. 钣金件
1.3缝焊 缝焊属连续点焊,是以旋转的滚盘状电极代替点焊的柱状 电极。 缝焊按滚盘转动与馈电方式可分为连续缝焊、断续缝焊、 步进式缝焊等。 缝焊主要用于要求气密性的制件,例如汽车油箱 油桶、罐头罐、暖气片等。
)
缝焊电极
缝焊用的电极是圆形的滚盘,滚盘的直径一般为50-600mm, 常用的直径为180-250mm。滚盘厚度为10-20mm。接触表面形状 有圆柱面和球面两种,个别情况下采用圆锥面。
)
谢谢
)
工业机器人分类
按功能:
弧焊机器人
焊接机器人 切割机器人 搬运机器人 喷涂机器人
)
激光焊机器人 点焊机器人
我们经常用到的一些焊接类型
焊接
溶焊
压焊钎焊弧焊 激源自焊电阻焊 点焊凸焊
缝焊
)
对焊
电阻焊的工作原理:焊件组合后通过电极施加压力,利用电流 通过接头的接触面及邻近区域产生的电阻热进行焊接的方法称为 电阻焊
相关文档
最新文档