通信基础学习知识原理实验-数字解调与眼图

合集下载

通信原理实验报告

通信原理实验报告

通信原理实验报告七实验十六:眼图实验——2014xxxxxx 许子涵一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、掌握眼图观测的方法并记录研究二、实验内容1、观测眼图并记录分析。

三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、 20M 双踪示波器一台四、实验数据1、ASK调制解调眼图ASK-DOUT TH2FSK眼图PSK/DPSK眼图五、分析眼图是通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种方法。

具体做法是:用一个示波器跨接在抽样判决器的输入端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

这样就可以从示波器上显示的波形来观察码间串扰和信道噪声等因素影响的情况,从而估计系统系能的优劣。

如果存在码间串扰,示波器的扫描迹线就不完全重合,“眼睛”的线迹会显得杂乱,而且张开的较小;如果码间串扰小到可以忽略,则眼图将会是标准的“大眼睛”。

当存在噪声时,眼图的线迹就变成比较模糊的带状的线,噪声越大,线条越粗越模糊,“眼睛”张开得越小。

同时我们还可以利用眼图来找到最佳判决门限,求出噪声容限,改善系统性能。

接收二进制双极性波形时,在一个码元周期内只能看到一只眼睛;若是M进制的双极性波形,则在一个码元周期内可以看到纵向显示的(M-1)只眼睛。

若接收的是经过码型变换后得到的AMI码或HDB3码,眼图中间将会出现一根代表0的水平线,因为它们的波形都具有三电平。

六、思考题思考信噪比、码间干扰是如何在眼图中体现的答:眼图的“眼睛”张开的大小反映着的强弱。

“眼睛”张的越大,且眼图越端正,表示越小;反之表示越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。

若同时存在码间串扰,“眼睛”将张开得更小。

与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。

噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

通信原理课程教案实验四数字同步及眼图

通信原理课程教案实验四数字同步及眼图

实验四数字同步及眼图实验(理论课:教材第13章P404)实验内容1.位定时、位同步提取实验2.信码再生实验3.眼图观察及分析实验4.仿真眼图观察测量实验一、实验目的1.掌握数字基带信号的传输过程。

2.熟悉位定时产生与提取位同步信号的方法。

3.学会观察眼图及其分析方法。

二、实验电路工作原理(一)、眼图概念一个实际的基带传输系统,尽管经过十分精心的设计,但要使其传输特性完全符合理想情况是不可能的。

码间干扰是不可能完全避免的,码间干扰问题与信道特性、发送滤波器、接受滤波器特性等因素有关。

因而计算由于这些因素所引起的误码率就十分困难,尤其是在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

在码间干扰和噪声同时存在的情况下,系统性能的定量分析,就是想得到一个近似的结果都是十分繁杂的。

那么,怎样来衡量整个系统的传输质量呢? 眼图,就是一种可以直观地、方便地估价系统性能一种方法。

这种方法具体做法是:用一个示波器接在接受滤波器的输出端,然后调整示波器水平扫描周期,使其与接受码元的周期同步。

这时就可以从示波器显示的图形上,观察出码间干扰和噪声的影响,从而估计出系统性能的优劣程度。

所谓眼图是指示波器显示的这种图像。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像一只人的眼睛而得名。

如图4-3所示。

(二)、同步信号的作用与电路工作原理数字通信系统能否有效地工作,在相当大的程度上依赖于发端和收端正确地同步。

同步的不良将会导致通信质量的下降,甚至完全不能工作。

通常有三种同步方式:即载波同步、位同步和群同步。

在本实验中主要位同步。

实现位同步的方法有多种,但可分为两大类型:一类是外同步法。

另一类是自同步法。

所谓外同步法,就是在发端除了要发送有用的数字信息外,还要专门传送位同步信号,到了接收端得用窄带滤波器或锁相环进行滤波提取出该信号作为位同步之用。

所谓自同步法,就是在发端并不专门向收端发送位同步信号,而收端所需要的位同步信号是设法从接收信号中或从解调后的数字基带信号中提取出来。

通信原理实验(1-8)

通信原理实验(1-8)

通信原理实验报告学院:信息工程学院专业:通信工程学号:201416416姓名:李瑞鹏实验一带通信道模拟及眼图实验一、实验目的1、 了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、掌握眼图观测的方法并记录研究。

二、实验器材1、 主控&信号源、9号、13号、17号模块各一块2、 双踪示波器一台3、 连接线若干三、实验原理1、实验原理框图带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK 信号和经过升余弦滤波后调制的PSK 信号送入带通信道,比较两种状况的眼图。

然后,改变带通信道的带宽重复观测。

四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。

PSK 调制信号加升余弦滤波的带通信道模拟2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【信道模拟及眼图观测实验】→【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。

17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

五、实验报告1、完成实验并思考实验中提出来的问题。

2、分析实验电路工作原理,简述其工作过程。

3、整理信号在传输过程中的各点波形。

实验二HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

通信原理中的眼图如何描述

通信原理中的眼图如何描述

通信原理中的眼图如何描述通信原理中的眼图是一种常用的信号分析方法,用来描述数字通信中的信号质量和带宽利用率。

它可以表达信号的波形、噪声、振幅和时间间隔等信息,是衡量数字通信系统性能的重要工具。

眼图的基本定义是将连续的信号序列按照一定时间间隔进行采样,然后将采样到的数字信号以一定的水平缩放因子和垂直偏移因子绘制到坐标系中,形成一系列的“眼睛”形状。

每个“眼睛”代表一个样本周期内的传输信号,通过分析这些“眼睛”的开口大小、对称性、向上或向下的移动等特征,可以推断出信道传输特性和影响因素。

眼图可以从多个方面提供有关信号质量的信息。

首先,眼图的开口大小可以反映信号的抗噪声能力和抗干扰能力。

如果开口较小,意味着传输信号容易受到噪声和干扰的影响,信号质量较差;反之,如果开口较大,信号质量较好,传输容易。

其次,眼图的对称性可以反映信号的失真情况。

如果眼图不对称,说明信号可能发生了失真,需要进行补偿或校正。

此外,眼图的移动方向和距离可以表达信号的时钟同步性和信号间隔的准确程度。

如果眼图向上或向下移动,或者眼图的顶部或底部出现扭曲,意味着信号的时钟同步不好,信号间隔的准确性较差。

眼图的形状和特征主要受到以下几个因素的影响。

首先,信号的带宽决定了眼图的开口大小。

带宽越大,眼图的开口越大,信号质量越好。

其次,信号的噪声和干扰会使眼图的开口变窄,影响信号的清晰度。

因此,抗噪声和抗干扰能力越强的信号,眼图的开口越大。

此外,时钟同步误差也会对眼图产生影响。

时钟同步误差越大,眼图的移动越明显,信号间隔的准确度越低。

最后,传输介质的失真和信道衰减会使眼图发生形变,降低信号的质量。

在实际应用中,通过观察和分析眼图,可以识别出信号传输中的问题和优化方案。

例如,如果眼图的开口非常小,表明信号的抗噪声和抗干扰能力差,可以考虑增加信号的幅度、使用更好的编码和解码算法,或者改善传输环境等方法来提高信号质量。

如果眼图的对称性不好,可以考虑采用均衡技术或预编码技术来补偿信号失真。

实验八M序列发生及眼图观测实验

实验八M序列发生及眼图观测实验

实验八 M序列发生及眼图观测实验
四、实验原理
1、M序列
移位时 钟节拍
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
表1 m序列发生器状态转移流程图
第1级 a n1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
第2级
an2
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
二、实验预习要求
认真预习《通信原理》中关于M序列及 眼图有关章节的内容。
通信工程专业实验室
实验八 M序列发生及眼图观测实验
三、实验仪器仪表
1、70MHz双踪数字存储示波器一台 2、实验模块:
数字编码模块——M序列输出 数字时钟信号源模块 眼图观测及白噪声输出模块
通信工程专业实验室
实验八 M序列发生及眼图观测实验
通信工程专业实验室
实验八 M序列发生及眼图观测实验
四、实验原理
2、眼图
所谓“眼图”,就是由解调后经过低通 滤波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰和 失真所产生的传输畸变,可以在眼图上清楚 地显示出来。因为对于二进制信号波形,它 很像一只人的眼睛。
眼图是指利用实验的方法估计和改善(通
实验八 M序列发生及眼图观测实验
实验八 M序列发生及 眼图观测实验
【实验性质】:验证性实验
通信工程专业实验室
实验八 M序列发生及眼图观测实验
一、实验目的
1、掌握M序列等伪随机码的发生原理。 2、了解伪随机码在通信电路中的作用。 3、掌握眼图的观测。
通信工程专业实验室
实验八 M序列发生及眼图观测实验
t

实验二 信道与眼图实验

实验二      信道与眼图实验

实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

通信原理硬件实验一 眼图实验

通信原理硬件实验一 眼图实验

电子信息与自动化学院《通信原理》实验报告学号:姓名:实验名称:硬件实验一眼图实验成绩:一、实验目的1.掌握眼图观测方法;2.学会用眼图分析通信系统性能;二、实验仪器1.RZ9681实验平台2.实验模块:•主控模块A1•基带信号产生与码型变换模块-A2•信道编码与频带调制模块-A4•纠错译码与频带解调模块-A53.信号连接线4.100M双通道示波器5.PC机(二次开发)三、实验原理1.1 什么是眼图?所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。

在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于评价实际系统的性能,常用观察眼图进行分析。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

在下图眼图示意图中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

在图中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在硬件实验一 眼图实验报告 姓名: 学号:随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

图1.1无失真及有失真时的波形及眼图(a) 无码间串扰时波形;无码间串扰眼图 (b) 有码间串扰时波形;有码间串扰眼图 1.2 眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

实验七 数字同步技术及眼图实验

实验七 数字同步技术及眼图实验

六、实验步骤及注意事项
(1)、+5V、-5V、+12V、-12V工作。 (2)、按下按键开关:K2、K3、K100、K300 、K700。 (3)、按一下“开始”与“PSK”功能键,显 示代码“5”。 (4)、跳线开关设置:Kl0l 1-2、K304 1-2或 K304 2-3、K301 1-2 、K302 1-2或
实验七 数字同步技术及眼图实验
四、实验原理
3、眼图
以上我们对PSK和DPSK的原理 有了一定的了解。那么,怎样来衡 量整个系统的传输质量呢?下面,我 们再介绍用眼图来衡量传输畸变和 噪声干扰的方法。
CUST
电工电子中心
实验七 数字同步技术及眼图实验
四、实验原理
3、眼图
CUST
我们知道,在实际的通信系统中,数字 信号经过非理想的传输系统必定要产生畸变 ,信号通过信道后,也会引入噪声和干扰, 也就是说,总是在不同程度上存在码间串扰 的。在码间串扰和噪声同时存在情况下,系 统性能很难进行定量的分析,常常甚至得不 到近似结果。为了便于实际评价系统的性能 ,常用所谓“眼图”。眼图可以直观地估价 系统的码间干扰和噪声的影响,是一种常用 的测试手段。 电工电子中心
电工电子中心
实验七 数字同步技术及眼图实验
CUST
电工电子中心
实验七 数字同步技术及眼图实验
四、实验原理
TP703
TP707
T
2、位同步恢复与信码再生电路
T
TP708
TP709
TP710
TP711
自 解 调 电 路
带 带 通 电 通 路 电 路
全 波 整 流
限 幅 放 大
32 KHz 谐振
A/D 转换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称数字解调与眼图学院信息科学与工程学院专业班级姓名学号数字解调与眼图一、实验目的1. 掌握2DPSK相干解调原理。

2. 掌握2FSK过零检测解调原理。

二、实验内容1. 用示波器观察2DPSK相干解调器各点波形。

2. 用示波器观察2FSK过零检测解调器各点波形。

3.用示波器观察眼图。

三、基本原理可用相干解调或差分相干解调法(相位比较法)解调2DPSK信号。

在相位比较法中,要求载波频率为码速率的整数倍,当此关系不能满足时只能用相干解调法。

本实验系统中,2DPSK载波频率等码速率的13倍,两种解调方法都可用。

实际工程中相干解调法用得最多。

2FSK信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

图4-1 数字解调方框图(a)2DPSK相干解调(b)2FSK过零检测解调本实验采用相干解调法解调2DPSK信号、采用过零检测法解调2FSK信号。

2DPSK模块内部使用+5V、+12V和-12V电压,2FSK模块内部仅使用+5V电压。

图4-1为两个解调器的原理方框图,其电原理图如图4-2所示(见附录)。

2DPSK解调模块上有以下测试点及输入输出点:• MU 相乘器输出信号测试点• LPF 低通、运放输出信号测试点• Vc 比较器比较电压测试点• CM 比较器输出信号的输出点/测试点• BK 解调输出相对码测试点• AK-OUT 解调输出绝对码的输出点/测试点(3个)• BS-IN 位同步信号输入点2FSK解调模块上有以下测试点及输入输出点:• FD 2FSK过零检测输出信号测试点• LPF 低通滤波器输出点/测试点• CM 整形输出输出点/测试点• BS-IN 位同步信号输入点• AK-OUT 解调输出信号的输出点/测试点(3个)2DPSK解调器方框图中各单元与电路板上元器件的对应关系如下:•相乘器U29:模拟乘法器MC1496•低通滤波器R31;C2•运放U30:运算放大器UA741•比较器U31:比较器LM710•抽样器U32:A:双D触发器7474•码反变换器U32:B:双D触发器7474;U33:A:异或门74862FSK解调器方框图中各单元与电路板上元器件对应关系如下:•整形1 U34:A:反相器74HC04•单稳1、单稳2 U35:单稳态触发器74123•相加器U36:或门7432•低通滤波器U37:运算放大器LM318;若干电阻、电容•整形2 U34:B:反相器74HC04•抽样器U38:A:双D触发器7474在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。

本实验系统中为简化实验设备,发端即数字调制的输出端没有带通滤波器、信道是理想的,故解调器输入端就没加带通滤波器。

下面对2DPSK相干解调电路中的一些具体问题加以说明。

• MU的波形接近图4-3所示的理论波形,略有区别。

•信源是周期为24bit的周期信号,当24bit的相对码BK中“1”码和“0”码个数不相等时,相乘器U29的输出信号MU及低通滤波器输出信号LPF是正负不对称的信号。

在实际的2DPSK通信系统中,抽样判决器输入信号是一个均值为0且正负对称的信号,因此最佳判决电平为0。

本实验系统中,Vc决定判决电平。

当Vc=0而相对码BK中“1”码和“0”码个数差别太大时,可能出现误判决,即解调器出现误码。

因为此时LPF信号的正电平或负电平非常接近0电平,抽样脉冲(位同步信号)稍不理想就会造成误码。

电位器R39用来调节判决电平,当BK中“1”码与“0”码个数差别比较大时出现误码时,可调节R39使Vc等于LPF信号的中值(最佳判决门限)。

实际通信系统中的2DPSK相干解调器(或差分相干解调器)不需要调节判决电平。

•比较器的输出CM为TTL电平信号,它不能作为相对码直接送给码反变器,因为它并不是一个标准的单极性非归零码,其单个“1”码对应的正脉冲的宽度可能小于码元宽度、也可能大于码元宽度。

另外,当LPF中有噪声时,CM中还会出现噪声脉冲。

•异或门74LS86输出的绝对码波形的高电平上叠加有小的干扰信号,经U34整形后即可去掉。

DPSK相干解调器模块各点波形示意图如图4-3所示。

图4-3 2DPSK相干解调波形示意图2FSK解调器工作原理及有关问题说明如下:•图4-4为2FSK过零检测解调器各点波形示意图,图中设“1”码载频等于码速率的两倍,“0”码载频等于码速率。

•整形1和整形2的功能与比较器类似,在其输入端将输入信号叠加在2.5V上。

74HC04的状态转换电平约为2.5V,可把输入信号进行硬限幅处理。

整形1将正弦2FSK信号变为TTL 电平的2FSK信号。

整形2和抽样电路共同构成一个判决电平为2.5V的抽样判决器。

图4-4 2FSK过零检测解调器各点波形示意图•单稳1、单稳2分别被设置为上升沿触发和下降沿触发,它们与相加器一起共同对TTL 电平的2FSK信号进行微分、整流处理。

电位器R43和R44决定上升沿脉冲宽度及下降沿脉冲宽度(应基本相等)。

•R48可以调节滤波器的频率特性及LPF信号幅度,LPF不是TTL电平信号且不是标准的非归零码,必须进行抽样判决处理。

U34对抽样判决输出信号进行整形。

四、实验步骤本实验使用数字信源单元、数字调制单元、载波同步单元、2DPSK解调单元及2FSK解调单元,它们之间的信号连结方式如图4-5所示,其中实线是指已在电路板上布好的,虚线是实验中要手工连接的。

实际通信系统中,解调器需要的位同步信号来自位同步提取单元。

本实验中尚未用位同步提取单元,所以位同步信号直接来自数字信源。

在做2DPSK解调实验时,位同步信号送给2DPSK解调单元,做2FSK解调实验时则送到2FSK解调单元。

数字信源数字调制2FSK解调2DPSK解调载波同步BS-OUTNRZ-OUT(AK)CAR-OUT2FSK2DPSKBS-INBS-IN图4-5 数字解调实验连接图1. 复习前面实验的内容并熟悉2DPSK解调单元及2FSK解调单元的工作原理,接通实验箱电源。

将数字调制单元单刀双掷开关K7置于左方NRZ端。

2. 检查要用到的数字信源、数字调制及载波同步单元是否工作正常,保证载波同步单元处于同步态!3. 2DPSK解调实验(1)将数字信源单元的BS-OUT用信号连线连接到2DPSK解调单元的BS-IN点,以信源单元的FS信号作为示波器外同步信号,将示波器的CH1接数字调制单元的BK,CH2(建议使用示波器探头的x10衰减档)接2DPSK解调单元的MU。

MU与BK同相或反相,其波形应接近图4-3所示的理论波形。

BK与MU(2)示波器的CH2接2DPSK解调单元的LPF,可看到LPF与MU同相。

当一帧内BK中“1”码“0”码个数相同时,LPF的正、负极性信号电平与0电平对称,否则不对称。

BK与LPF(3)示波器的CH1接VC,调节电位器R39,保证VC处在0电平(当BK中“1”与“0”等概时LPF的中值即为0电平),此即为抽样判决器的最佳门限。

(4)观察数字调制单元的BK与2DPSK解调单元的MU、LPF、BK之间的关系,再观察数字信源单元中AK信号与2DPSK解调单元的MU、LPF、BK、AK-OUT信号之间的关系。

BK与BK’结论:2DPSK解调单元的BK相对于数字调制单元的BK滞后一个码元。

BK与MU结论:2DPSK解调单元的MU与数字调制单元的BK同相。

BK与LPF结论:2DPSK解调单元的LPF与数字调制单元的BK同相。

AK与MU结论:2DPSK解调单元的MU是数字信源单元中的AK的绝对码波形。

AK与LPF结论:2DPSK解调单元的LPF是数字信源单元中的AK的绝对码波形。

AK与LPF结论:2DPSK解调单元的LPF是数字信源单元中的AK的绝对码波形,且LPF滞后一个码元。

AK与AK-OUT结论:2DPSK解调单元的AK-OUT是数字信源单元中的AK的绝对码波形,且AK-OUT滞后一个码元。

(5)断开、接通电源若干次,使发端CAR信号与载波同步CAR-OUT信号的相位关系出现跳变,重新进行步骤(4)中的观察。

BK与MU结论:2DPSK解调单元的MU与数字调制单元的BK反相。

BK与LFT结论:2DPSK解调单元的LFT与数字调制单元的BK反相。

BK与BK结论:2DPSK解调单元的BK与数字调制单元的BK反相,且滞后一个码元。

AK与MU结论:数字信源单元中的AK是2DPSK解调单元的MU的绝对码波形。

AK与LPF结论:数字信源单元中的AK是2DPSK解调单元的LPF的绝对码波形。

AK与BK结论:数字信源单元中的AK是2DPSK解调单元的BK的绝对码波形。

AK与A-OUT结论:数字信源单元中的AK与2DPSK解调单元的AK-OUT同相,且AK-OUT滞后一个码元。

(6)将数字调制单元单刀双掷开关K7置于右方(M序列)端,此时数字调制器输入的基带信号是伪随机序列(本系统中是M序列)信号。

用示波器观察2DPSK解调单元LPF点,即可看到无噪声状态下的眼图。

眼图4. 2FSK解调实验将数字调制单元单刀双掷开关K7还原置于左方NRZ端。

将数字信源单元的BS-OUT用信号连线换接到2FSK解调单元的BS-IN点,示波器探头CH1接数字调制单元中的AK,CH2分别接2FSK解调单元中的FD、LPF、CM及AK-OUT,观察2FSK过零检测解调器的解调过程(注意:低通及整形2都有倒相作用)。

LPF的波形应接近图4-4所示的理论波形。

AK与FDAK与LPFAK与CMAK与AK-OUT五、实验报告要求1. 设绝对码为1001101,根据实验观察得到的规律,画出如果相干载波频率等于码速率的1.5倍,在CAR-OUT与CAR同相、反相时2DPSK相干解调MU、LPF、BS、BK、AK波形示意图,总结2DPSK克服相位模糊现象的机理。

答:当相干载波为-cosωC t 时,MU、LPF 及 BK 与载波为 cosωC t 时的状态反相,但AK 仍不变(第一位与 BK 的起始电平有关)。

2DPSK 系统之所能克服相位模糊现象,是因为在发端将绝对码变为了相对码,在收端又将相对码变为绝对码,载波相位模糊可使解调出来的相对码有两种相反的状态,但它们对应的绝对码是相同的。

2. 设信息代码为1001101,2FSK的两个载频分别为码速率的四倍和两倍,根据实验观察得到的规律,画出2FSK过零检测解调器输入的2FSK波形及FD、LPF、BS、AK波形(设低通滤波器及整形2都无倒相作用)。

相关文档
最新文档