蓄热式燃烧炉

合集下载

蓄热燃烧法名词解释

蓄热燃烧法名词解释

蓄热燃烧法名词解释
蓄热燃烧法是一种常见的清洁能源应用技术,也被称为蓄热式燃烧技术。

它是指在燃烧过程中将燃料中释放的热量部分或全部用于加热燃烧过程中的其他物质,以提高热效率的一种能源利用方式。

蓄热燃烧法的原理是通过在燃烧炉内设置热能储存体来实现的。

燃烧时,燃料释放的热量首先被用于加热热能储存体,使其温度升高。

当燃烧停止时,热能储存体会继续释放热量,通过传导、辐射和对流的方式将热量传递给燃烧炉内的其他物质,从而实现热能的有效利用。

蓄热燃烧法的优点之一是可以显著提高燃烧炉的热效率。

通过将热能储存体置于燃烧炉内,可以有效地利用燃料释放的热量,减少能量的浪费。

同时,由于热能储存体能够在燃烧停止后继续释放热量,可以实现热能的延续利用,提高整个能源利用过程的效率。

此外,蓄热燃烧法还可以减少对环境的污染。

通过提高燃烧炉的热效率,可以减少燃料的使用量,降低二氧化碳等温室气体的排放。

同时,由于燃烧过程中释放的热量得到了更有效的利用,可以降低烟气中的有害物质排放,减少对大气的污染。

总的来说,蓄热燃烧法是一种能源利用技术,通过充分利用燃料释放的热量,提高能源利用效率,减少对环境的污染。

随着清洁能源技术的不断发展,蓄热燃烧法有望在工业生产和生活供暖等领域发挥越来越重要的作用。

蓄热式焚烧炉原理

蓄热式焚烧炉原理

蓄热式焚烧炉原理
蓄热式焚烧炉是一种利用高温燃烧废物的设备,其原理是通过将废物投入炉内进行燃烧,释放高温热量,并将炉体内的热量储存起来,以在需要时再次利用。

蓄热式焚烧炉的主要组成部分包括燃烧炉膛、燃烧器、炉膛内壁、蓄热体和烟气尾气处理系统。

废物被投入燃烧炉膛中,燃烧炉膛中的燃烧器会在适当的空气供给下点火,并使废物燃烧成灰渣和烟气。

燃烧废物释放出的高温热量会被燃烧膛内壁的蓄热体吸收。

蓄热体通常由高热容量和热导率的材料制成,例如陶瓷或金属。

当蓄热体吸收和储存热量时,它会慢慢释放储存的热能,以保持燃烧炉内的高温。

这使得炉膛能够连续进行燃烧,即使在废物输入量不稳定或间断的情况下也能保持高效运行。

燃烧过程结束后,蓄热体中的热量可以通过烟气尾气处理系统进一步利用。

烟气尾气处理系统常常包括余热回收装置,用于回收和利用烟气中的热能。

通过将余热用于预热气体或水,可以降低能源消耗和减少环境污染。

蓄热式焚烧炉的原理使其能够高效利用废物燃烧所产生的热能,帮助降低废物处理的能耗和污染排放。

同时,由于炉膛内的高温可以持续维持,蓄热式焚烧炉也适用于处理具有高湿度或可燃性低的废物。

rto蓄热式焚烧炉团体标准

rto蓄热式焚烧炉团体标准

rto蓄热式焚烧炉团体标准
RTO蓄热式焚烧炉是一种广泛应用于工业有机废气治理的设备。

关于RTO蓄热式焚烧炉的团体标准,以下是一些参考信息:
1. 团体标准《RTO蓄热式焚烧炉》:该标准规定了RTO 蓄热式焚烧炉的术语和定义、技术要求、试验方法等方面的内容。

您可以参考该标准了解RTO蓄热式焚烧炉的技术细节和性能要求。

2. 国标《蓄热燃烧法工业有机废气治理工程技术规范(HJ1093—2020)》:该标准规定了蓄热燃烧法在工业有机废气治理中的应用技术要求,其中包括RTO蓄热式焚烧炉的相关内容。

您可以将团体标准与国标进行对比,以更全面地了解RTO蓄热式焚烧炉的技术要求。

3. 行业标准:在环保、化工等相关行业领域,可能还存在一些针对RTO蓄热式焚烧炉的行业标准。

您可以关注这些标准,以了解行业内的技术要求和最佳实践。

需要注意的是,团体标准、国家标准和行业标准可能会随着技术发展和行业需求的变化而更新。

因此,在选择和使用RTO蓄热式焚烧炉时,建议关注相关标准的最新版本,并
与供应商、专家或相关部门保持联系,以获取准确的技术要求和信息。

蓄热式燃烧炉工作原理

蓄热式燃烧炉工作原理

蓄热式燃烧炉工作原理蓄热式燃烧炉,这名字一听就让人觉得挺高大上的吧?其实它的原理说白了,就是把热量先存起来,再慢慢释放出来,像个温暖的热水袋。

想象一下,寒冷的冬天,窝在沙发上,抱着热水袋,心里那种暖洋洋的感觉。

就是这么回事!这炉子先把燃料点燃,发出高温,然后用一些特别的材料把热量储存起来,等需要的时候,再把这些热量释放出去。

就像小时候吃糖,先把糖放在嘴里,慢慢化开,甜蜜得让人陶醉。

说到蓄热式燃烧炉,很多朋友可能会问:它有什么好处呢?嘿,这里就得说说了。

它能节省能量,想想看,这可是能省下不少电费呢!就像我们平时买东西,有时一张卡能叠加好多优惠,这样不就更划算了吗?这个炉子也是,一开始可能需要消耗点燃料,但后面释放出来的热量可不少,真正做到了一箭双雕,省钱又省心。

这炉子的设计也特别人性化。

比如说,有些地方需要持续的热量,像是工业生产或者一些大型的加热项目,蓄热式燃烧炉可就派上用场了。

它能持续供热,像是个可靠的小伙伴,随叫随到。

试想一下,你正在忙着做大事,突然需要一阵热气,咔嚓一下,炉子就给你提供,真是省时省力,感觉就像有个全能助手在身边。

还有一个特别酷的地方,就是它的环保性。

现在大家都在提环保,蓄热式燃烧炉在这方面可是一把好手。

通过高效的燃烧和储热过程,减少了废气的排放,真心为环境出了一份力。

就像你在路上看到的志愿者,默默地为大自然贡献着自己的力量,大家都应该点赞呀。

哦,对了,操作起来也不复杂,简直是简单得让人惊讶!很多新手一开始都会担心,哎呀,我能搞定吗?别担心,蓄热式燃烧炉就像骑自行车,刚开始可能有点不适应,但熟悉了之后,你会发现它真的是个得心应手的好帮手。

不论你是老手还是新手,只要认真阅读说明书,跟着步骤走,就一定能把它玩转得溜溜的。

在我们的生活中,蓄热式燃烧炉的应用还真是无处不在。

你可能在工厂里见过,在一些大楼的供暖系统中也能找到它的身影。

它默默无闻,却又扮演着重要的角色,像是那个总是默默支持你的朋友,虽然不常露脸,但在关键时刻总会出现,给你温暖。

rto余热回收原理

rto余热回收原理

rto余热回收原理
RTO(Regenerative Thermal Oxidizer)全称蓄热式热氧化焚烧炉,是一种高效有机废气治理设备。

与传统的催化燃烧、直燃式热氧化炉(TO)相比,具有热效率高(≥95%)、运行成本低、能处理大风量低浓度废气等特点,浓度稍高时,还可进行二次余热回收,大大降低生产运营成本。

其工作原理为:有机废气通过引风机输入蓄热室1进行升温,吸收蓄热体中存储的热量,随后进入焚烧室进一步燃烧,升温至设定的温度,在这个过程中有机成分被彻底分解为CO2和H2O。

由于废气在蓄热室1内吸收了上一循环回收的热量,从而减少了燃料消耗。

处理过后的高温废气进入蓄热室2进行热交换,热量被蓄热体吸收,随后排放。

而蓄热室2存储的热量将可用于下个循环对新输入的废气进行加热。

该过程完成之后系统自动切换进气和出气阀门改变废气流向,使有机废气经由蓄热室2进入,焚烧处理后由蓄热室1热交换后排放,如此交替切换持续运行。

RTO热回收原理简单、VOCs处理效率高、运行及管理方便,因空气分布范围广,热回收效率高,因压力损失小,减少了动力费用。

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理蓄热式加热炉是一种利用热量积蓄和释放的加热设备。

其主要工作原理是通过蓄热材料的吸热和释热过程,实现能源的稳定供应。

蓄热式加热炉由燃烧室、蓄热室和排烟系统等组成。

燃烧室中燃烧燃料产生的高温燃烧气体经过烟道进入蓄热室,与其中的蓄热材料热交换,使其温度升高。

蓄热材料是蓄热式加热炉的关键部件,通常采用高热容量和高热传导性的材料,如陶瓷、耐火材料等。

当燃烧室中的燃料燃烧完毕或加热系统需要热量时,通过调整控制系统,蓄热室中的高温蓄热材料开始释放热能。

蓄热材料的吸热过程是指在燃烧室中,当燃料燃烧产生高温燃烧气体时,蓄热材料吸收燃烧气体中的热能并升温。

蓄热材料内部的微观孔隙结构能够有效地吸附和储存大量的热能,从而使得燃烧室内的高温烟气得到充分利用,提高燃烧效率。

蓄热材料的释热过程是指在燃烧室和加热系统需要热量时,蓄热材料开始释放其储存的热能。

控制系统通过调整燃烧室的气流方向和蓄热材料的温度,确保蓄热材料释放的热能能够有效地传递给加热系统。

蓄热材料的释热过程是一个持续而稳定的过程。

通过合理地设计蓄热室的结构和材料,以及控制系统的精确控制,蓄热式加热炉可以实现能量的高效利用和稳定供应。

蓄热式加热炉相对于传统的加热设备具有一系列的优点。

首先,蓄热式加热炉能够充分利用燃料的热能,提高热利用率。

其次,由于蓄热材料的热容量较大,热能的释放相对稳定,能够实现加热过程的均匀和稳定。

此外,蓄热式加热炉还能够实现节能和减少排放,对环境友好。

总之,蓄热式加热炉通过蓄热材料吸热和释热的过程,实现能量的稳定供应。

其工作原理主要包括燃烧室中烟气与蓄热材料的热交换和蓄热材料的热能释放。

通过合理设计和优化控制系统,蓄热式加热炉能够提高能量利用效率,实现高效、稳定和环保的加热过程。

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理

蓄热式加热炉的工作原理
蓄热式加热炉是一种利用热储存材料的热容和热传导特性来进行加热的设备。

其工作原理如下:
1. 热储存材料:蓄热式加热炉内部放置着一种称为热储存材料的物质。

这种材料具有较高的比热容和热传导率,能够吸收和存储大量的热量。

2. 加热源:蓄热式加热炉内部有一个或多个加热源,常见的有电加热元件、燃气或液体燃料的燃烧器等。

加热源将热量传递给热储存材料。

3. 热能储存:当加热源工作时,热能被传递给热储存材料,材料内部的温度升高,吸收大量热量。

这些热量会在材料中被储存起来,并逐渐释放出来。

4. 热能释放:当需要加热时,蓄热式加热炉关闭加热源,热储存材料开始释放储存的热能。

热能通过热传导或辐射的方式传递给需要加热的物体或空气,使其温度升高。

5. 加热循环:蓄热式加热炉通过循环工作,实现了热能的储存和释放。

加热源在需要加热时提供热量,而在热储存材料释放热能时,加热源则处于关闭状态。

蓄热式加热炉的工作原理可以有效地利用电能或燃料,提供持续稳定的加热效果。

在一定程度上,它也可以实现能源的节约和环境保护。

RTO蓄热式焚烧炉

RTO蓄热式焚烧炉

RTO蓄热式燃烧炉:排放自工艺含VOCs的废气进入双槽RTO,三向切换风阀(POPPET VALVE)将此废气导入RTO的蓄热槽(Energy Recovery Chamber)而预热此废气,含污染的废气被蓄热陶块渐渐地加热后进入燃烧室(Combustion Chamber),VOCs在燃烧室被氧化而放出热能于第二蓄热槽中之陶块,用以减少辅助燃料的消耗. 陶块被加热,燃烧氧化后的干净气体逐渐降低温度, 因此出口温度略高于RTO入口温度. 三向切换风阀切换改变RTO出口/入口温度. 如果VOCs浓度够高,所放出的热能足够时, RTO即不需燃料. 例如RTO热回收效率为95%时,RTO出口仅较入口温度高25℃而已.蓄热式催化剂燃烧炉(RCO)排放自工艺含VOCs的废气进入双槽RCO,三向切换风阀(POPPET VALVE)将此废气导入RCO的蓄热槽(Energy Recovery Chamber)而预热此废气,含污染的废气被蓄热陶块渐渐地加热后进入催化床(Catalyst Bed), VOCs在经催化剂分解被氧化而放出热能于第二蓄热槽中之陶块,用以减少辅助燃料的消耗. 陶块被加热,燃烧氧化后的干净气体逐渐降低温度, 因此出口温度略高于RCO入口温度. 三向切换风阀切换改变RCO出口/入口温度. 如果VOCs浓度够高,所放出的热能足够时, RCO即不需燃料. 例如RCO热回收效率为95%时,RCO出口仅较入口温度高25℃而已.催化剂燃烧炉( Catalytic Oxidizer )换热器,废气经由换热换热器之壳侧(shell side)将管侧(tube side)未经处理的VOC废气加热,此换热器会减少能源的消耗,最后,净化后的气体从烟囱排到大气中.直燃式燃烧炉( Thermal Oxidizer )换热器,废气经由换热器管侧(Tube side)而被加热后,再通过燃烧器,这时废气已被加热至催化分解温度(650~1000℃换热器之壳侧(shell side)将管侧(tube side)未经处理的VOC废气加热,此换热器会减少能源的消耗(甚至于某ㄧ适当的VOCs浓度以上时便不需额外的燃料),最后,净化后的气体从烟囱排到大气中.直接燃烧燃烧炉( Direct Fired Thermal Oxidizer-DFTO )有时直接燃烧燃烧炉源于后燃烧器(After-Burner), 直接燃烧燃烧炉使用经特别设计的燃烧器以加热高浓度的废气到ㄧ预先设的温度,于运转时废气被导入燃烧室(Burner Chamber). 燃烧器将VOCs及有毒空气污染物分解为无毒的物质(二氧化碳及水)并放出热,净化后的气体可再由一热回收系统以达节能的需求. 恩国直接燃烧燃烧炉可达99%碳氢化合物破坏去除率,为达此去除率,高温的废气区在炉内保持一定的滞留时间.在入口处也须让废气有足够的扰流和氧产生充分的混合,充分的扰流不只提高去除破坏率,更是为平安考虑. 恩国的设计将爆炸风险降至最低以及最小的能源消耗.浓缩转轮/燃烧炉( Rotor Concentrator / Oxidizer )恩国浓缩转轮/燃烧炉系统吸附大风量低浓度挥发性有机化合物(VOCs). 再把脱附后小风量高浓度废气导入燃烧炉予以分解净化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一,设备简介
蓄热式燃烧器是在极短时间内把常温空气加热,被加热的高温空气进入炉膛后,卷吸周围炉内的烟气形成一股含氧量大大低于21%的稀薄贫氧高温气流,同时往稀薄高温空气附近注入燃料,燃料在贫氧(2%~20%)状态下实现燃烧。

同时,炉膛内燃烧后的热烟气经过另一个蓄热式燃烧器排空,将高温烟气显热储存在另一个蓄热式燃烧器内。

工作温度不高的换向阀以一定的频率进行切换,常用的切换周期为30~200秒。

两个蓄热式燃烧器处于蓄热与放热交替工作状态,从而达到节能目的。

1.实现了蓄热体温度效率、热回收率和炉子热效率三高
作为一个回收烟气余热的燃烧系统,温度效率、热回收率和炉子热效率可以说是衡量它热工性能优劣的主要指标。

国内外大量生产实际的测试数据表明,在适当的换向周期下,经过蓄热体后的高温空气温度和进入蓄热体的烟气温度十分接近,仅差100℃左右,温度效率高达95%左右,热回收率为80%左右。

炉子热效率得到了较大的提高。

2 . 加热质量好,氧化烧损小
由于高温空气燃烧技术是属于低氧空气燃烧范畴,而且助燃空气的切入点和燃料切入点与传统的燃烧方法不一样,从而避免了高温火焰过分集中造成的炉内各区域温差大的弊病,同时也减少了高温氧化烧损的可能性。

由于炉温的均匀程度大大提高,被冶炼的物料加热质量得到了充分保证。

3.节能效果显著
蓄热式燃烧系统与传统燃烧系统比,热回收率大大提高,节能效果特别明显,其节能率往往达到40~50%。

这对于传统燃烧系统来说几乎是不可能的。

4.适用性较强,能用于多种不同工艺要求的工业炉
由于蓄热式燃烧系统的炉温均匀性好,炉温波动小,不存在高温区过分集中及火焰对工件的冲刷等问题,所以它的适用范畴较宽。

目前己在大中型推钢式及步进式轧钢加热炉、均热炉、罩式热处理炉、辐射管气体渗碳炉、钢包烘烤炉、玻璃熔化炉、熔铝炉、锻造炉等工业炉上使用。

不论是采用蓄热式燃烧器的炉子或蓄热式工业炉,在实际运行中都比较稳定可靠,取得了比较好的经济效益和社会效益。

5.建设投资相对不高,投资回收期短
从全国冶金行业已经改造或新建的二十余座蓄热式工业炉情况来看,将传统燃烧方式的工业炉改造为蓄热式工业炉的投资比仍采用传统燃烧方式的炉子要高,但是在同等要求下新建蓄热式工业炉与新建传统燃烧方式的工业炉投资基本相当或略有上升。

蓄热式工业炉与传统燃烧方式工业炉在建设投资的比较上并没有显示较大的优势,但是在投资回收期的缩短上体现了强劲的优势。

如果考虑到由于炉温均匀而导致加热质量提高、氧化烧损减少,由于加热能力的提高导致产量的增加等方面的收益,则综合经济效益更加可观。

二,主要技术参数
炉子的主要尺寸:
炉底面积: 1.9 mm^2
炉膛温度:1200度
燃料名称:天燃气
炉前燃气压力:4-6KPa
最大天燃气消耗量;20-25Nm/h
烧嘴数量:1对
燃烧方式:对烧
蓄热体形式:高铝球
鼓风机压力:6000Pa
鼓风机流量:400m³/h
引风机压力;5000 Pa
引风机流量:650 m³/h
压缩空气压力0.6MPa
烧嘴排烟温度;<=100℃
三.工作原理
配备在工业炉上的蓄热式燃烧系统,由蓄热式烧嘴、换向系统和控制系统组成。

工作原理如上图所示
来自鼓风机的助燃空气经换向系统和燃料分别进入左侧烧嘴的各自通道,助燃空气由下向上通过蓄热室A。

预热后的空气从左侧通道喷出并与燃料混合燃烧。

燃烧产物对物料进行加热后进人右侧通道,在蓄热室B内进行热交换将大部分热量留给蓄热体后,以200℃以下的温度进入换向阀,经引风机排入大气。

设定的换向时间一到控制系统发出指令,换向机构动作,空气、烟气同时换向。

此时助燃空气从右侧通道喷口喷出并与燃烧器B的燃料混合燃烧,这时左侧喷口作为烟道。

在引风机的作用下,使高温烟气通过蓄热体、换向阀、引风机排出,一个换向周期完成。

采用蓄热式烧嘴可取消常规工业炉上的烧嘴、换热器、高温管道、地下烟道及高大的烟囱.操作及维护简单,无烟尘污
染,换向设备灵活,控制系统功能完备,炉内温度均匀,节能30%~50%。

四,技术、结构特点
4.1 蓄热式燃烧器
加热炉外部安装2个空气蓄热式燃烧器,2个空气蓄热器对称安装,蓄热式燃烧器为单喷口。

一个空气喷口和天燃气喷口,组成一个燃烧单元。

蓄热器中的蓄热体采用陶瓷小球和陶瓷蜂窝体的复合蓄热结构,它具有换向时间适中(中型厂设计换向时间2min),耐急冷急热性好、导热性能好等优点;每个燃烧器前的天燃气和空气连接管上都安有手动调节阀,从而使得各个燃烧器、特别是上部与下部燃烧器的能力能够按需要进行调节;维修方便,可以在不影响炉子正常生产的情况下利用常规检修更换蓄热体。

4.2引火烧嘴
采用电子打火点燃,使用安全可靠。

4.3自动控制
炉温控制系统采用在工业炉窑控制中广泛使用的双交叉限幅控制方式,为保证供热区温度的可控性,首先设置独立的,以温度为主
环,空煤气流量调节为副环的炉温控制回路。

根据工艺的供热分配情况,设有温度调节回路。

炉膛压力控制为减少换向对炉压调节的干扰采用手动调节煤气烟道及空气烟道的废气调节阀门,保证炉膛压力稳定在给定范围。

4.4换向控制
换向采用二腔二通换向阀,换向燃烧控制按定时的原则,并按规定的换向时序,控制2个天燃气换向阀和2个空气换向阀的动作,也可手动控制换向。

4.5安全保护系统
仪表控制安全连锁逻辑保护系统在天燃气总管压力过低、空气压力过低、仪表气源压力过低、电源故障情况下,发生自动停炉;当发生自动停炉时,系统完成如下动作:总管煤气立即切断,并在10min后停引风机,鼓风机则需要手动停止。

另外还有紧急手动停炉。

用于在特殊情况下,如控制系统故障时,由操作员通过操作台的急停按钮,完成停炉操作。

五,蓄热式燃烧系统操作流程
A操作前必须做的准备工作
1、仔细阅读《蓄热式自动燃烧控制系统操作说明书》,了解各部件的名称、功能和作用,清楚控制柜面板各按钮的功能。

牢记:任何时候,点火启动时,务必打开炉门!
2、保持冷却风机一直处于开启状态,直至炉膛温度低于750℃为止。

B冷炉运行操作流程(炉膛温度在900℃以下)
1、打开炉门60%以上开度;开启冷却风机;开启90%助燃风机;开启90%引风机;打开燃气总阀;调整1#燃气手动阀到50%开度;调整2#燃气手动阀到50%开度。

2、启动1#点火枪运行,并检查其火检状况;启动2#点火枪运行,并检查其火检状况;确认全部火检信号到位稳定,并肉眼观察到火焰明火。

如果火检信号不到位,请调节点火燃气手动球阀开度,直至火检信号稳定为止。

3、启动“自动运行”模式,严密观察1#大火和2#大火换向单枪燃烧是否正常;严密观察炉膛温度运行数据,逐渐加大1#燃气手动阀和2#燃气手动阀开度,直至开度90%左右。

系统正常运行至少六个周期后,炉膛温度在逐渐上升的前提下,调整炉门开度到15%左右,让系统自动运行。

正常运行45分钟后,炉膛温度达到900度以上时,方可关闭炉门运行。

4、中途出现火检报警停运时,只需按下“报警复位”按钮,报警即可消除,再次点火运行前,务必打开炉门点火,确认正常运行后,方可关闭炉门运行。

5、炉膛温度超过大火停止运行温度后,可将1#燃气手动阀和2#燃气手动阀调整到50%开度,一方面为下炉做准备,另一方面炉膛保温也无需太多燃料。

C热炉运行操作流程(炉膛温度在900℃以上)
1、炉膛温度在900℃以上,炉壁已经发红的前提下,可以启动“自动运行”模式运行。

2、加完冷料后,若炉膛温度低于“点火停止”温度,必须先打开炉门60%以上开度,再启动“自动运行”模式,并严密观察1#大火和2#大火换向单枪燃烧是否正常。

确认燃气喷到炉膛即可自燃后,方可关闭炉门运行。

3、派人值守炉旁。

一旦系统出现紧急情况,可立即按下急停按钮,系统会马上停止运行。

D系统停运操作流程
关闭“自动运行”模式,关闭鼓风机、引风机,务必记得关闭燃气总阀、1#燃气手动阀和2#燃气手动阀,但不能关闭冷却风机,因为炉膛温度高;也无需关闭点火燃气阀。

E系统设备维护保养
1、每炉运行完毕,小心取出点火枪,清理点火枪头上的积灰,保持良好点火状态。

2、每天检查二个气动换向阀、二台风机、二个燃气电磁阀的运行状况。

3、每周清理积尘室内的灰尘。

每月检查一次蓄热球集尘状况、主枪护套的烧损状况。

六、吊运、安装调试与维护操作
起吊装卸炉子时,必须注意重心使之平衡,钢丝绳不宜与机器接触,建议用橡胶板、木头之类的较软物衬垫。

燃气炉在安装前需检查是否由于运输或其它原因造成损坏
或配套不全,在完备的情况下,将零部件先行清除尘垢与修补好发现的缺陷,然后进行安装。

燃气炉烟囱出口连接尺寸,烟囱直径应不小于250mm,高度由出口起不小于6m。

操作与调试:
1、点炉前必须将炉门全开启,以免点炉时,爆燃发生危险。

2、第一次点火点燃时,应逐个燃烧机开机点火,间歇开机将未燃气体排净后,再重新点火,以免发生危险。

相关文档
最新文档