蓄热式加热炉传热基本知识
蓄热式燃烧炉课件资料

一,设备简介蓄热式燃烧器是在极短时间内把常温空气加热,被加热的高温空气进入炉膛后,卷吸周围炉内的烟气形成一股含氧量大大低于21%的稀薄贫氧高温气流,同时往稀薄高温空气附近注入燃料,燃料在贫氧(2%~20%)状态下实现燃烧。
同时,炉膛内燃烧后的热烟气经过另一个蓄热式燃烧器排空,将高温烟气显热储存在另一个蓄热式燃烧器内。
工作温度不高的换向阀以一定的频率进行切换,常用的切换周期为30~200秒。
两个蓄热式燃烧器处于蓄热与放热交替工作状态,从而达到节能目的。
1.实现了蓄热体温度效率、热回收率和炉子热效率三高作为一个回收烟气余热的燃烧系统,温度效率、热回收率和炉子热效率可以说是衡量它热工性能优劣的主要指标。
国内外大量生产实际的测试数据表明,在适当的换向周期下,经过蓄热体后的高温空气温度和进入蓄热体的烟气温度十分接近,仅差100℃左右,温度效率高达95%左右,热回收率为80%左右。
炉子热效率得到了较大的提高。
2 . 加热质量好,氧化烧损小由于高温空气燃烧技术是属于低氧空气燃烧范畴,而且助燃空气的切入点和燃料切入点与传统的燃烧方法不一样,从而避免了高温火焰过分集中造成的炉内各区域温差大的弊病,同时也减少了高温氧化烧损的可能性。
由于炉温的均匀程度大大提高,被冶炼的物料加热质量得到了充分保证。
3.节能效果显著蓄热式燃烧系统与传统燃烧系统比,热回收率大大提高,节能效果特别明显,其节能率往往达到40~50%。
这对于传统燃烧系统来说几乎是不可能的。
4.适用性较强,能用于多种不同工艺要求的工业炉由于蓄热式燃烧系统的炉温均匀性好,炉温波动小,不存在高温区过分集中及火焰对工件的冲刷等问题,所以它的适用范畴较宽。
目前己在大中型推钢式及步进式轧钢加热炉、均热炉、罩式热处理炉、辐射管气体渗碳炉、钢包烘烤炉、玻璃熔化炉、熔铝炉、锻造炉等工业炉上使用。
不论是采用蓄热式燃烧器的炉子或蓄热式工业炉,在实际运行中都比较稳定可靠,取得了比较好的经济效益和社会效益。
蓄热式加热炉的发展历程和技术介绍

蓄热式加热炉的发展历程和技术介绍1 概述用蓄热室来预热空气和燃料是一项较早的技术, 早在19 世纪中期就开始应用于高炉、热风炉、焦炉等规模大且温度高的炉子, 但传统的蓄热室采用格子砖为蓄热体、传热效率低、蓄热室体积庞大, 其换向阀结构复杂、效率比较低, 换向周期长, 因此没有得到重视。
由于20 世纪70 年代的能源危机后, 节能工作得到各个国家的重视, 加之科学技术的不断进步出现了结构简单、控制方便、可靠性强的换向系统。
1982 年英国Hot Work Development 公司和Brit2ish Gas 研究院合作, 成功开发出第一座使用陶瓷小球作为蓄热体的新型蓄热式加热炉, 节能效果显著。
近10 年来蓄热式燃烧技术得到长足发展, 很多国家都在研究各种蓄热式烧嘴和高效蓄热式燃烧技术以及高风温燃烧技术。
2 蓄热式燃烧技术1998 年大连北岛能源技术有限公司率先在萍钢棒材公司轧钢加热炉上采用蓄热式燃烧技术燃烧纯高炉煤气, 在国内首次实现了蓄热式技术燃烧高炉煤气在连续式轧钢加热炉上的应用。
此后, 国内有多家公司开展蓄热式燃烧技术的研究和在国内的推广应用, 蓄热式燃烧技术逐渐成熟。
在蓄热式燃烧技术方面形成了一套较完善的设计思想和方法,蓄热式技术在工业炉上的应用实现了高产、低耗、少污染和高自动化水平, 达到了燃烧工业炉“三高一低”(高炉温、高烟温、高余热回收、低惰性) 的发展方向要求。
从20 世纪90 年代开始, 国内蓄热式燃烧技术发展到现在, 基本分为以下两大系列:(1) 以北京北岛为代表的内置通道式加热炉, 其特点是: ①把蓄热室和炉体有机结合为一体, 结构紧凑, 占地面积小, 炉子外观整洁。
②蓄热体采用陶瓷小球, 价格低廉, 集中换向, 换向时间约180 s , 运行费用低。
③炉体热损失小, 热效率高, 很容易做到空气、煤气双预热,燃烧喷口密布, 炉温均匀性好, 钢坯氧化烧损低。
④炉型结构较复杂, 炉墙厚达l m , 对耐火材料的理化指标性能要求高, 对设计、施工的技术水平和经验要求高。
蓄热式燃烧技术在加热炉中的应用

蓄热式燃烧技术在加热炉中的应用一、引言蓄热式燃烧技术自20世纪90年代从国外引进到国内,被广泛应用于钢铁行业,特别是在轧钢加热炉的应用上,通过不断消化吸收和创新改进,在节能减排方面取得了突出的成效。
高炉煤气作为高炉炼铁的副产品,由于热值低,常规情况下不能形成稳定燃烧,大量多余的高炉煤气不得不直接放散,造成了大气污染和能源浪费。
通过蓄热式燃烧技术的应用,将高炉煤气、助燃空气双蓄热后,能使高炉煤气及空气达到1000℃的高温,从而形成良好的燃烧效果。
该技术在轧钢加热炉上的应用取得了显著效果,将原先放散的高炉煤气变废为宝,降低了钢铁企业的整体能耗,减少了大气污染。
本文结合加热炉的设计工作实际,从烧嘴结构形式、火焰组织、换向阀优化布置等方面,探讨蓄热式燃烧技术在加热炉上的应用。
二、概况大冶某钢铁公司有一台高炉煤气双蓄热式加热炉,由我公司设计建造,于2019年元月建成投产,采用高炉煤气作为燃料,低热值为850×4.18kJ/Nm3,设计产能为120t/h(冷坯),主要钢种有10#,20#,45#,40Cr,Q345B,27SiMn,37Mn5等,钢坯规格主要有:150×150×7000—9000mm、180×220×7000—9000mm。
钢坯出炉温度为1200℃,单位热耗:≤1.3 GJ/t,氧化烧损:≤1%。
在设计中,我们采用的炉型为高炉煤气、空气双蓄热步进式加热炉,进出料方式为侧进侧出,单排布料,炉底水管冷却方式为汽化冷却,炉底步进机构由液压驱动,燃烧控制方式采用了先进的全分散脉冲燃烧控制技术。
三、蓄热式烧嘴的结构形式蓄热式烧嘴是蓄热式燃烧技术核心设备,主要由喷嘴、蓄热室、气室组成。
喷嘴是燃气和助燃空气喷入炉内的通道,也是烟气被吸入蓄热室的入口。
蓄热室内安装有挡砖和蜂窝体,挡砖为多孔的刚玉质砖,安装在靠近喷嘴的前端,对蜂窝体起到稳定和保护的作用。
蜂窝体一般采用刚玉莫来石质材料制成,其比表面积大,是蓄热小球的3-4倍,换热效率高,结构紧凑,受到越来越多用户的青睐和选择。
加热炉基础知识与操作2..

2、气体燃料的燃烧过程
是个复杂的过程,但整个燃烧过程可视为:
混合→着火→反应 极短时间完成 提高燃烧强度的途径必须很好地完成混合过 程,是最关键的环节。 有焰燃烧:煤气与空气预先不混合,各自单 独进入炉膛,边混合边燃烧。有碳氢化合物 燃烧产物(游离碳)轨迹形成的火焰。 无焰燃烧:煤气与空气先混合再喷入炉内。 燃烧很快,碳氢化合物来不及分解,所以看 不到火焰或很短。 ▲蓄热式加热炉都是有焰燃烧。无焰燃烧预 热温度不能太高,否则易造成回火事故。
最外层 第二层 第一层 钢坯
Fe2O3 Fe3O4 FeO Fe
10% 50% 40%
氧化铁皮的危害:
1、造成大量金属消耗;
2、炉底堆积,侵蚀耐火材料,定期清理劳动
强度大,严重时造成被迫停产; 3、影响钢的表面质量; 4、轧钢被迫增加工序予以清除; 5、影响加热、增加煤气消耗。 氧化铁皮熔点为1300~1350℃。 (注意粘钢)
排水器
排水器是事故常发部位。 排水器应有明显的警告标志; 排水器的满流管口应保持溢流。
高炉煤气的产出过程
高炉炼铁工艺动画\高炉炼铁工艺动画\高炉本
体_.swf 高炉炼铁工艺动画\高炉炼铁工艺动画\煤气净 化系统.swf
●燃料的燃烧
1、基本概念
完全燃烧:燃烧产物中不存在可燃成分; 不完全燃烧:燃烧产物中存在可燃成分。 不完全燃烧又分两种: 化学不完全燃烧:混合不好,产物中有CO存
2、燃料的发热量 单位质量或体积的燃料,完全燃烧后所放出
的热量称为燃料的发热量。 固体、液体用kJ/kg表示; 气体用kJ/m3表示。 依据燃烧后,燃烧产物水的状态分为: 高发热量、低发热量。主要看水是液态还是 气态。
蓄热式换热器

的直接混合来换热的。
引言
off
fuel
燃烧器 B
炉温 1350℃ 钢板 1250℃
on
fuel
蓄热室B
排气 150℃
air 切换阀
蓄热室A
主要内容及基本要求
蓄热式热交换器主要用于流量大的气-气热交换场合, 如动力、石油化工、冶金等工业中的余热利用和废热回收。
5.1 结构和工作原理 5.2 与间壁式换热器的比较 5.3 传热设计计算特点
2)除了在蓄热式换热器的冷、热气体进口处之外,冷热 气体的温度随时间呈周期性变化。
在蓄热式换热器高度方向上取某一A-A截面,在整个周期内, 该处蓄热材料及气体的温度按图所示情况变化。
5.1 结构和工作原理
5.1.2 阀门切换型蓄热换热器
fuel
fuel
燃烧器 B
炉温 1350℃
钢板 1250℃
排气 150℃
air 切换阀
阀门切换型蓄热式换热器
(a) 蓄热式烧嘴
(b)烧嘴转
蓄热燃烧原理图
空气 煤气
原理图
外置式单蓄热室结构图
砌筑尺寸 砌筑尺寸
内置式蓄热室结构图
外置式双蓄热室结构图
蓄热式烧嘴结构图
5.1 结构和工作原理
从玻璃加热池上 排出的高温烟气进入 蓄热格子体时的温度 约为1100~1300℃, 通过蓄热室后温度约 为400~600℃,进入 蓄热室的空气温度约 100~120℃,排出时 达到约900~1100℃, 然后进入加热池内供 燃油使用。
燃烧器 燃烧室
高炉热风炉结构图
5.1 结构和工作原理
5.1.1 回转式蓄热换热器
回转式换热器又叫再生蓄热式换热器, 主要由圆筒形蓄热体(常称转子)及风罩 两部分组成,分为转子回转型和外壳回转 型。
蓄热式与换热式加热炉比较

蓄热式与换热式加热炉比较!按余热回收方式划分,现有的加热炉主要包括换热式加热炉(常规加热炉)和蓄热式加热炉两种方式。
换热式加热炉的显著特征就是在加热炉上采用了一种在烟道内回收烟气余热的装置―换热器(又称预热器、热交换器)。
换热器是利用炉膛排出的废气(热流体)预热助燃空气、煤气(冷流体)的热工设备。
工作时,高温烟气和被预热空(煤)气同时流过间壁的两侧,烟气以对流和辐射传热方式将热量传给间壁的一侧(高温侧),经过间壁的导热传给间壁的另一侧(低温侧),再以对流或辐射传热方式将热量传给被预热空(煤)气。
蓄热式加热炉的烟气余热回收主要是通过炉体两侧的蓄热室来实现。
助燃空气经切换阀进入右侧通道,而后流经右侧的蓄热室吸收蓄热体储存的热量,把助燃空气预热到800℃-1100℃,再经过烧嘴喷入炉内;与此同时左侧切换阀与引风机相通,这样燃烧产物对物料加热后进入左侧通道,在蓄热室内将烟气热量大部分传递给蓄热体后,以150℃左右的温度经引风机排入大气中。
间隔一定时间(蓄热式燃烧技术常用的换向时间为30s200s)后系统运行进入后半周期,控制系统发出指令,切换阀动作,此时煤气和助燃空气从左侧烧嘴喷出并混合燃烧,这时右侧烧嘴变为烟道。
高温烟气经引风机的作用通过右侧,将其蓄热体加热后,以150℃左右的温度进入切换阀和引风机排入大气中,完成一个换向周期。
应用中两类加热炉均存在一定的问题和不足。
换热式加热炉主要存在的问题有:加热炉不能以低热值的纯高炉煤气为燃料;不能充分回收烟气余热,加热炉的热效率低等。
蓄热式加热炉主要存在的问题有:炉压高且波动大,炉口和炉体冒火严重,炉门易烧损;炉况难于控制;加热炉寿命短等。
随着企业生产工艺流程的改造,加热炉大型化成为满足现代化生产所必需,采用何种炉型何种方式实现加热炉的大型化值得期待。
若通过增加炉子长度或宽度的方法来实现加热炉大型化,有可能导致加热炉性能下降,因而此方法不可取。
若采用蓄热式加热炉炉型结构实现加热炉大型化,应考虑扩大蓄热室容积并增加引风机的排烟能力。
中央蓄热式热交换

中央蓄热式热交换
蓄热式换热是在蓄热器中实现热交换的一种换热方式。
蓄热器内装有固体填充物(如耐火砖等),热、冷流体交替地流过蓄热器,利用固体填充物来积蓄和释放热量而达到换热的目的。
通常在生产中采用两个并联的蓄热器交替地使用。
蓄热式换热re#enerazive hit exchange工业s}r的换热方式之一。
利用固体填充物贮蓄热量以达到换热目的。
当气体通过时,根据气体的温度高于或低于填充物的温度。
可将热量传给填充物或从滇充物吸取热量。
常用于冶金工业,也用于化学工业等。
例如炼钢平炉和煤气炉常用来预热空气等。
蓄热式加热炉操作规程

蓄热式加热炉操作规程
《蓄热式加热炉操作规程》
一、操作人员应具备相关技术培训证书,了解蓄热式加热炉的基本原理和操作方法。
二、在启动蓄热式加热炉前,应检查设备是否完好,电气系统、水系统和燃气系统是否正常,确保安全。
三、操作人员应穿戴好防护装备,包括防护眼镜、耳塞、防护服等。
四、在启动加热炉前,应将燃料、水和电进行检查,并确认供应充足。
五、启动加热炉后,操作人员要对加热温度和加热时间进行监控和调节,保证加热效果。
六、操作人员在操作过程中要时刻留意加热炉的运行情况,一旦出现异常情况,应立即停止加热并报告相关负责人。
七、加热结束后,要及时关闭燃气阀门,切断电源,并清理加热炉周围的杂物和残渣。
八、每次操作结束后,都要对加热炉进行清洁和维护,确保设备干净整洁。
九、必须严格按照操作规程进行操作,不得擅自改变加热炉的工作参数。
十、加热炉操作结束后,应做好安全闭锁措施,以防止未授权人员进行操作。
十一、加热炉操作规程应定期进行更新和培训,确保所有操作人员了解最新的操作规程和安全知识。
十二、在使用过程中,如果发现设备存在问题或者操作方面需要改进,应及时向相关部门反馈并做出改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓄热式加热炉传热基础知识
一 传热的基本方式
钢坯加热是通过炉内热交换过程进行的。只要有温度差存在
热量,热量总是由高温向低温传递,这种热量传递过程称为传热。传
热是一种复杂的物理现象,根据其物理本质的不同,把传热过程分为
三种基本方式:传导、对流和辐射。
1传导传热
没有质点相对位移情况下,物体内部或直接接触的不同物体因为
温度差,将热量由高温部分依次传递给低温部分的现象,称为传导传
热。
传导传热快慢主要影响因素有:
(1) 材料的导热系数。各种材料的导热系数都由实验测定。气体、
液体和固体三种比较来看,气体的导热系统一般比较小(仅为
0.006—0.58W/(m·℃)),液体的导热系数一般比气体大(在
0.09—0.7W/(m▪℃)之间),固体的导热系数一般比较大,其
中以金属的导热系数最大(在2.8--419W/(m▪℃)之间,纯银的
导热系数最高)。而且随着温度的变化,物体导热系数也随着变
化。
(2) 温度差。温度差越大,传导传热也越强烈,另外温差越大,传
热不可逆损失越大。
2对流传热
依靠对流的各部分发生相对位移,把热量由一处传递到另一处的
现象,称为对流传热。
对流传热主要因素不仅有物体的温度差,而且与下列因素有关:
(1) 流体流动的情况。
(2) 流体流动的性质。
(3) 流体的物理性质。
(4) 工体表面的形状、大小和位置。
3 辐射传热
依靠物体表面。对外界发蛇的电磁波(辐射能)来传递热量,当
辐射能投射到另一物体时,能被另一物体吸收又变成热能。这种依靠
电磁波来传递热能的过程叫辐射传热,辐射是一切物体固有的特征,
辐射传热不需要任何中间介质或物体的直接接触,在真空中同样可以
传播。
辐射传热主要影响因素:
| (1)辐射传热量的大小与辐射体的温度的4次方成正比,因此,
提高炉温对加热速度有决定性意义。蓄热式加热炉燃烧温度比常温燃
烧高许多,因此烟气的辐射传热效果远远好于常温燃烧。
(2)辐射传热量的大小与辐射体的黑度成正比,因此,提高加
热炉内壁和火焰黑度对提高加热速度和节能降耗有重要意义。
二 蓄热式加热炉炉内综合传热
在加热炉的炉膛内,热的交换过程是辐射、对流和传导同时存在,
我们把这种传热方式叫做炉内综合传热。
在炉内加热钢坯时,钢料与梁接触或钢料相互接触由传导方式得
到热量,与炉气接触由对流方式得到热量,高温炉墙和炉气通过辐射
方式将热量传给钢坯。
当温度在800℃以下时,加热炉内热量的传递主要依靠对流和传
导;当温度在800--1000℃之间时,加热炉内热量的传递主要依靠对
流和辐射;当温度高于1000℃时,加热炉内热量的传递主要依靠辐
射,被加热柸料所吸收的热量约有90%来自辐射方式。
钢坯的外部加热是决定炉子生产率效率的关键所在,的热交换过
程的目的在于如何提高钢坯的加热速度以提高生产率,以及如何减少
消耗以提高热效率。
1高温炉气的热量分配
高温炉气的热量分配方式为:
(1) 高温炉气以辐射和对流方式传给钢柸的热量。
(2) 高温炉气以辐射和对流方式传给炉内壁的热量。
(3) 烟气带走一部分热量。
2钢坯得到的热量
高温炉气以辐射和对流方式传给钢坯的热量和炉内壁以辐射方
式传给钢坯的热量之和。
3改善加热炉的传统
通过加热炉炉膛内的热交换过程的分析,可以得到以下结论:
(1) 正常工作的加热炉炉内的温度以炉气最高,钢坯最低,
炉内壁居中。炉气通过外部传热将热量传给钢柸,使
钢坯温度升高,而炉气失去热量。所以炉气必须不断
由燃料燃烧来补充,同时将低温排出炉外。
(2) 炉体本身不是一个热原体,炉内壁具有高温是因为它
吸收了炉气的热量。当炉内壁温度稳定后,它吸收的
热量除一小部分经过炉体表面失外,大部分给了钢坯,
因此,炉内壁在热交换过程中起到了一个传递热量的
中间介质作用。
(3) 炉内壁的面积对传热的影响很大。
(4) 炉内壁和炉气的黑度对于传热的影响很大。
蓄热式加热炉的炉内传热由于燃料燃烧温度的提高,辐射传热得
到加强,但由于排烟方式的改变,沿炉长方向的对流传热减少。
(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与
关注!)