第三角动量和角动量守恒

合集下载

角动量和角动量守恒定律

角动量和角动量守恒定律

恒矢量
M 0
质点或质点系所受对参考点 O 的合外力矩为零 时,质点或系统对该参考点 O 的角动量为一恒矢量 . (1) 不受外力
(2) 力臂 d 0 (3) F // r
3 – 2 角动量 角动量守恒动量守恒。
质点在有心力作用下的运动:r 与 F 同向或
第三章 刚体力学
dp dL F, ? Lrp dt d t dL d dp dr (r p) r p dt dt d t dt dr dL dp v, v p 0 r r F dt dt dt 作用于质点的合力对参考点 O dL 的力矩 ,等于质点对该点 O 的角 M dt 动量随时间的变化率 .


L mR
2 32 12
2g 12 ( sin ) R
L mR (2g sin )
Lx 、Ly 、Lz 质点对x、y、z 轴的角动量 M y、 M x、 M z 质点对x、y、z 轴的力矩
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
1)求角动量和力矩某一方向的分量的方法
L ( xi yj zk ) ( pxi py j pz k ) M (xi yj zk) (Fxi Fy j Fz k)
rb
通过一点(力心)—— 力对力心的力矩为零。
当力 F 的作用线始终
vb
ra mva rb mvb ra v b va va rb
ra
r
F
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
举例: 将一个质量为m的小球系在轻绳的一端,放在 光滑的水平桌面上,轻绳的另一端从桌面中间的一 光滑小孔穿出。先使小球以一初速度在水平桌面上 作圆周运动,然后向下拉绳。 动画演示:模拟实验

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。

(B) 其动量一定守恒,角动量不一定为零。

(C) 其动量不一定守恒,角动量一定为零。

(D) 其动量不一定守恒,角动量不一定为零。

答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。

本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。

故(B)是正确答案。

[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。

[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。

角动量、角动量守恒

角动量、角动量守恒

T
(3) )
m, l
联立(1)、(2)、(3)式求解 式求解 联立
mg
1 T = mg 4
例5:在光滑水平桌面上放置一个静止的质量 : 可绕中心转动的细杆, 为 M、长为 2l 、可绕中心转动的细杆,有一质 、 量为 m 的小球以速度 v0 与杆的一端发生完全弹 性碰撞, 性碰撞,求小球的反弹速度 v 及杆的转动角速 度ω。 解:在水平面上,碰撞 在水平面上, 过程中系统角动量守恒, 过程中系统角动量守恒,
∆A/ ∆t = 恒 量
两个共轴飞轮转动惯量分别为J 例1:两个共轴飞轮转动惯量分别为 1、J2, 角速度分别为 ω1 、ω2,求两飞轮啮合后共同 啮合过程机械能损失。 的角速度 ω 。啮合过程机械能损失。 J1 J2 解:两飞轮通过摩 擦达到共同速度,合 擦达到共同速度 合 外力矩为0, 外力矩为 ,系统角 动量守恒。 动量守恒。
定义:力对某点 的力矩等于力的作用点 定义:力对某点O的力矩等于力的作用点 的矢量积。 的矢径 r 与力F的矢量积。 v v
v Mo
ϕ
注意: 注意: 1)大小: o = rF sin ϕ )大小: M v v 的方向 2)方向: × F )方向: r 3)单位:牛顿米 )单位: v r 4)当 F ≠ 0 时, ) 有两种情况 Mo = 0 v A) r = 0 ) B)力的方向沿矢径的方向( sin ϕ = 0) )力的方向沿矢径的方向(
ω1 L0 = L = C J1ω1 + J2ω2 = (J1 + J2 )ω
ω2
J1ω1 + J2ω2 共同角速度 ω = J1 + J2
啮合过程机械能损失
∆E = E − E0
1 1 1 2 2 2 ∆E = (J1 + J2 )ω − ( J1ω1 + J2ω2 ) 2 2 2 J1ω1 + J2ω2 其中 ω = J1 + J2

第三章 动量与角动量

第三章 动量与角动量

在光滑桌面上运动,速度分别为
v1

10i ,
v2

3.0i
5.0
j
(SI制)碰撞后合为一体,求碰撞后的速度?
解:方法一,根据动量守恒定律
m1v1 m2v2 (m1 m2 )v
解得:
v
7i
25
j
7
方法二,利用动量守恒分量式:
(m1 m2 )vx m1v1x m2v2x vx 7m / s
例 题 12
12、一子弹在枪筒里前进时所受的合力大小为 F 400 4105 t
3
(SI),子弹从枪口射出时的速率为300m/s。假设子弹离
开枪口时合力刚好为零,则
(1)子弹走完枪筒全长所用的时间;
(2)子弹在枪筒中所受力的冲量; (3)子弹的质量 m ;
解:(1)根据题意,子弹离开枪口时合力为零,
f mg
f t(N)
30N L L L 0 t 4 30 ft 70 10tL 4 t 7
0
Ft ft f
t(s) 47
当 t 4s 时 Ftt mv4 mv0 v4 8m / s
(2)当 t 6s 时
6
4 Ftdt mv6 mv4 v6 v4 8m / s
人造卫星的角动量守恒。
A1 : L1 mv1(R l1)
l2
l1 m
A2 : L2 mv2 (R l2 )
A2
A1
mv1(R l1) mv2 (R l2 )
v2 6.30km/s
v2

v1
R l1 R l2
o
B

角动量 角动量守恒定律

角动量 角动量守恒定律

h
vN2 2g

1 2g


3mvM m 6m
2

h
3m m 6m

2
19
4-3 角动量 角动量守恒定律
第四章 刚体转动
P104例3 质量很小长度为l 的均匀细杆, 可绕过其中心
O 并与纸面垂直的轴在竖直平面内转动 . 当细杆静止于
水l/4平处位, 置并时背,离有点一O只向小细虫杆以的速端率点vvA0 0垂爬直行落. 设在小距虫点与O细为杆
14
4-3 角动量 角动量守恒定律
比较 动量

F

dP dt
t2

Fdt ΔP
t1

F 0 P 0
F
P
mv
力 动量
t2
Fdt 力的冲量
t1
第四章 刚体转动
角动量

M

dL dt
t2

Mdt ΔL
t1

LMMrrp0F角L力动矩量0或或角动力量矩
其角速度为ω, 求齿轮啮合后两圆盘的角速度.
解: 系统角动量守恒
J11 J22 (J1 J2)
J11 J22
(J1 J2 )
16
4-3 角动量 角动量守恒定律
第四章 刚体转动
P103例2 一杂技演员 M 由距水平跷板高为 h 处自由下
落到跷板的一端 A, 并把跷板另一端的演员 N 弹了起来.
R

x

26

dP
F dt
t2

Fdt ΔP
t1

F 0 P 0

大学物理(上册)角动量 角动量守恒定律(3)

大学物理(上册)角动量 角动量守恒定律(3)
- 4
,已足以盖过整个银河发光的总和。 ( 10
?
第二篇 实物的运动规律 第五章 角动量 角动量守恒定律
第五章第三讲
本章共3讲
§5.3 角动量守恒定律 一. 角动量守恒定律 研究对象:
dL M外 dt
质点系
由角动量定理: 得:当M 外 0时,L 恒矢量 分量式:
Mx 0 My 0 Mz 0 时 时 时 Lx 恒量 L y 恒量 Lz 恒量
F轴 0 m M系统 p 不守恒; M轴 0 m M系统 对O点角动量守恒 m 2 gh R m M vR
回顾习题( p84 4 -11)
C B Ny
o
Nx
A
F轴 0
M轴 0
A、B、C系统 p 不守恒;
A、B、C系统对 o 轴角动量守恒
应用广泛,例如:
天体运动
(行星绕恒星、卫星绕行星...) 微观粒子运动 (电子绕核运动;原子核中质子、中子的运动一级 近似;加速器中粒子与靶核散射...)
[例2] 已知:地球 R=6378 km
卫星 近地:h1= 439 km v1=8.1 km.s-1
远地: h2= 2384 km
求: v2=?
严格同步条件
卫星轨道平面与地球赤道平面倾角为零
轨道严格为圆形
运行周期与地球自转周期完全相同 (23小时56分4秒)
地球偏心率,太阳、月球摄动引起同步卫星星下点漂 移,用角动量、动量守恒调节 ~ 定点保持技术
•研究微观粒子相互作用规律
自学教材P108[例4]
第五章
角动量
角动量守恒
习题课
复习提要:三个概念,两条规律
mA mB v1 R mA mB mc vR

物理三大守恒定律公式

物理三大守恒定律公式

物理三大守恒定律公式物理学是一门研究自然界中各种现象的科学,它是自然科学中最基础、最根本的一门学科。

在物理学中,有三个重要的守恒定律,它们分别是能量守恒定律、动量守恒定律和角动量守恒定律。

这三个守恒定律是物理学研究中的基础,也是我们理解自然界中各种现象的重要工具。

下面,我们将详细介绍这三大守恒定律公式。

一、能量守恒定律公式能量守恒定律是物理学中最基本的守恒定律之一,它表明在一个封闭系统中,能量总量保持不变。

这个定律可以用一个简单的公式来表示:E1 + Q = E2其中,E1是系统的初始能量,E2是系统的最终能量,Q是系统吸收或放出的热量。

这个公式的意义在于,系统中的能量总量不会因为内部的能量转化或热量的吸收或放出而改变。

这个定律可以应用于各种物理现象的研究,如机械能守恒、热力学过程、电磁能守恒等。

二、动量守恒定律公式动量守恒定律是物理学中另一个重要的守恒定律,它表明在一个封闭系统中,物体的总动量保持不变。

这个定律可以用一个简单的公式来表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2是它们的初始速度,v1'和v2'是它们的最终速度。

这个公式的意义在于,系统中的物体总动量不会因为内部的碰撞或运动而改变。

这个定律可以应用于各种物理现象的研究,如弹性碰撞、非弹性碰撞、质点运动等。

三、角动量守恒定律公式角动量守恒定律是物理学中最后一个重要的守恒定律,它表明在一个封闭系统中,物体的总角动量保持不变。

这个定律可以用一个简单的公式来表示:L1 + L2 = L1' + L2'其中,L1和L2分别是两个物体的角动量,L1'和L2'是它们的最终角动量。

这个公式的意义在于,系统中的物体总角动量不会因为内部的转动或运动而改变。

这个定律可以应用于各种物理现象的研究,如刚体转动、自转、公转等。

总结物理学中的三大守恒定律——能量守恒定律、动量守恒定律和角动量守恒定律,是我们理解自然界中各种现象的重要工具。

圆周运动:角动量和角动量守恒

圆周运动:角动量和角动量守恒

角动量守恒在量子力学和粒子物理学中也有着重要的应用,对于理解微观世界的运动规律具有重要意义。
角动量守恒在未来的发展前景和影响将更加广泛,对于推动科学技术的发展和进步具有重要意义。
如何理解和掌握角动量守恒定律
6
学习角动量守恒定律的方法和技巧ຫໍສະໝຸດ 理解角动量守恒定律的难点和重点
角动量的定义:理解角动量的物理意义和数学表达式
角动量守恒可以帮助我们理解各种旋转运动现象,例如地球自转、陀螺旋转等。
角动量守恒还可以帮助我们解决一些实际问题,例如设计旋转机械、分析旋转物体的稳定性等。
角动量守恒在科技领域的应用价值
光学器件:利用角动量守恒原理,制造出高性能的光学器件,如光纤陀螺仪等
粒子加速器:利用角动量守恒原理,提高粒子加速器的性能和效率
角动量守恒定律
3
角动量守恒的条件
系统不受外力矩作用
系统的角动量守恒定律适用于旋转参考系和惯性参考系
系统的角动量变化率为零
系统内力矩之和为零
角动量守恒的证明方法
添加标题
添加标题
添加标题
添加标题
角动量守恒定律:L=mvr
牛顿第二定律:F=ma
角动量守恒的条件:系统不受外力矩作用
角动量守恒的证明:通过牛顿第二定律和角动量守恒定律,推导出角动量守恒的条件,从而证明角动量守恒定律。
角动量守恒定律:在圆周运动中,角动量保持恒定
角动量的大小:与物体的质量和速度成正比
角动量的变化:在圆周运动中,角动量不会发生变化,除非有外力作用
圆周运动中角动量守恒的证明
角动量守恒定律:在封闭系统中,系统内各物体的角动量之和保持不变
证明过程:假设物体在圆周运动中受到外力作用,根据牛顿第二定律,外力作用在物体上会产生加速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三 质点系角动量定理 质点系角动量守恒定律
9
第 i 个质点
dLi dt
Mi
M ij
ji
力矩的迭加原理
j j
Mij Mij
ji
j
i
系统
i
dLi dt
i
Mi
i
M ij
ji
i
M ij
j
Mij M ji
0
M外
M外
dL dt
L
Li

i
M外dt dL
质点系的 角动量定理
t2
若 m1 m2,会出现什么情况?
系统所受的合外力矩为
M 外 (m2 m1)gR 0
系统总角动量 L (m1v1 m2v2 )R
初始时小孩未动, L0 0 。
由角动量定理
M外
dL dt
若 m1 m2 :
dL 0, dt
L 0
有 m1v1 m2v2 0, v1 v2
N
以向纸 O R
由牛顿第二定律,得
T mg ma1
T (m M )g (m
m d2 x1 dt 2
M )a2
(m
M
)
d2 x2 dt 2
整理得
Mg
d2 x1 dt 2
m
d2 x2 dt 2
(m
M
)
x
h
h
TT
mm1
mm+M2
(不爬)
(爬)
mg (m+M)g
Mg
d2 x1 dt 2
m
d2 x2 dt 2
L1 L2
常量
一个系统由两个质点组成,如果只受它们之间 的相互作用,则这个系统的总角动量保持守恒
3
4
例:自由下落质点的角动量
(1) 对 A 点的角动量
任意时刻 t, 有 r
1
gt2
5
o RA
2
p mv mgt
LA
r
p
1 2
mt 3 g
g
0
r r
(2) 对 O 点的角动量
LO
r
p
m1r1 dv1 m2r2 dv2 dr1 v1dt, dr2 v2dt
dr1 v1 0, dr2 v2 0
由于 d(r v) dr v r dv
dv1
1
1
m1
H
r1
m2
r2
dv2
d(m1r1 v1) d(m2r2 v2 ) o
d(r1 m1v1 r2 m2v2 ) 0
内为正
v1 r1r v2
m1
r//
m2
(不爬) m1g m2 g (爬)
轻的升得快;
若 m1 m2 :
dL 0, L 0 dt
则 m1v1 m2v2 0, v1 v2 轻的升得快。
当较轻的人爬到滑轮处,较重的人离滑轮还有多高16 的距离? 若开始时离滑轮的距离均为 h 。
设 m : 较轻人的质量, m+M : 较重人的质量。
L2
M 外dt dL L2 L1
t1
L1
dL
M 外 dt
L
Li
i
质点系角动
M 外 0时
dL 0 dt
L Li 常量
量守恒定律
讨论; 1) 不要求系统孤立, 只要求 M 外 0 2) 矢量式有3个分量式,即 M 外的某个分量=0, 则相应角
动量的分量守恒
3) 系统守恒条件;
r L1
rrm1 1Rrm1vrvr11(m指1(向Rr 纸 r内r// ))
vr1
L1 m1Rv1
同理 L2 m2Rv2 (指向纸外)
系统的角动量守恒: L1 L2 0
N
OR
v1
m1
r1rr//
v2
m2
(不爬) m1g m2 g (爬)
m1Rv1 m2Rv2 0
m1v1 m2v2
Q m1 m2 v1 v2 爬与不爬,两小孩同时到达滑轮!
(m
M
)

t
积分 Mgt
m
dx1
(m
M
)
dx2
dt
dt
再对 t 积分
t
0
l
Mgtdt mdx1 (m M )dx2
0
h
h
解得 l M (h 1 gt2 ) mM 2
x
17
h T
m
mm1
hl T
mm+mM2+M
(不爬)
(爬)
mg (m+M)g
即是较重的人离滑轮的距离。
【解】 设滑轮半径为R, 且 m1= m2
N
OR
把小孩看成质点,
以滑轮中心为“固定点”,
v1
v2
对外“力m:1+mm1g2r+,
轻绳
r
+ r恒
设两小孩分别以 vr1, vr 2速度上升。
m1
m2
(不爬) m1g m2 g (爬)
设角动量以指向纸内为正。
i
i
rc mivi [ri mivc ] [ri ' mivi]
i
i
i
故角动量
L
rc
mvc
i [ri mi vi]
L L轨道 L自旋
二 力矩
由两个质点组成的孤立系统
L1 L2 常量
dL1 dL2 dt dt
定义力矩: M dL
MF
M
r O r0
dt
F
F// f
r1 m1v1 r2 m2v2 常量
r1 m1v1 r2 m2v2 常量
L
2
定义: L r mv r p
----- 质点对参考点O的质 点角动量 或 质点动量矩
r
m O
p
大小: L rp sin mrv sin
方向:垂直 r , p组成的平面
二. 质点角动量守恒定律
Rg
(
R
r)
LO
p rRrp RR Rmgt
mgt
m
mv
3-2 质点系角动量和角动量守恒定律
6
一、质点系角动量
n
L Li (ri mvi )
由 ri i1rc ri ' 得 vi vc vi
L [(rc ri' ) mi vi ]
O
rc
cri '
ri mi
i
rc mivi ri ' mi (vc vi)
M外 0 或 1 F 0, 或 2 r F 0
*质心参考系的角动量定理
dL dt
drc dt
p
rc
dp dt
dLc dt
rc
dp dt
dLc dt
对定点O:
L rc p Lc
rc
cri '
ri mi
O
M外 (ri Fi ) (rc ri ' ) Fi rc Fi (ri ' Fi )
i
i
i
i

M外
dL dt
rc
i
Fi
i
(ri ' Fi )
dp rc dt
dLc dt
i
(ri '
Fi )
dLc dt

Mc
dLc dt
质心参考系的 角动量定理
角动量守恒说明天体系统的旋转盘状结构
12
例题. 已知:轻绳,v10 = v20 =0,(忽略滑轮的质量和轴的摩擦) 问:哪一个小孩先到达滑轮?
F
dL dt
d dt
(r
p)
dr dt
p r
dp dt
v
mv
r
F
r
F
对O点力矩 对轴的力矩
Mf MF M轴
r
f
r
F
r
F
Mf r
F//
r0
f r
fr sin F
M dL
8
dt
对于质点
Mdt dL
t2
L2
Mdt dL L2 L1
质点的 角动量定理
t1
L1
角冲量(冲量矩)
相关文档
最新文档