(完整word版)中考数学复习《1.3数的开方与二次根式》教案北师大版

合集下载

北师大版八年级数学上册:2.7《二次根式》教案3

北师大版八年级数学上册:2.7《二次根式》教案3

北师大版八年级数学上册:2.7《二次根式》教案3一. 教材分析《二次根式》是北师大版八年级数学上册第2.7节的内容,本节主要让学生了解二次根式的概念,掌握二次根式的性质和运算方法。

通过学习二次根式,为学生后续学习函数、方程等数学知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了实数、有理数、无理数等基础知识,具备一定的逻辑思维能力和运算能力。

但学生对二次根式的理解可能存在一定的困难,因此需要通过具体例子和实际操作,让学生深入理解二次根式的概念和性质。

三. 教学目标1.了解二次根式的概念,掌握二次根式的性质;2.学会二次根式的运算方法,能够进行简单的二次根式运算;3.培养学生的逻辑思维能力和运算能力,提高学生解决实际问题的能力。

四. 教学重难点1.二次根式的概念和性质;2.二次根式的运算方法。

五. 教学方法1.采用实例教学法,通过具体例子让学生理解二次根式的概念和性质;2.采用归纳总结法,引导学生总结二次根式的运算方法;3.采用小组合作学习法,让学生在合作中思考、交流、解决问题。

六. 教学准备1.准备相关例题和练习题;2.准备多媒体教学设备,如投影仪等;3.准备二次根式的相关素材,如图片、实物等。

七. 教学过程1.导入(5分钟)利用生活中实际问题,引入二次根式的概念。

例如,讲解一个物体的高度为3√2米,让学生思考如何表示这个高度的平方根。

通过这个例子,让学生初步了解二次根式的概念。

2.呈现(10分钟)呈现几个二次根式的例子,让学生观察、分析,引导学生发现二次根式的性质。

如:√9 = 3,√16 = 4,√25 = 5等。

通过这些例子,让学生深入理解二次根式的性质。

3.操练(10分钟)让学生进行二次根式的运算练习,如:计算√16 + √25,√81 - √16等。

在练习过程中,引导学生总结二次根式的运算方法。

4.巩固(10分钟)出示一些有关二次根式的应用题,让学生运用所学知识解决问题。

如:一个正方形的边长为3√2米,求其面积。

北师大版八年级数学上册2.7《二次根式》教案

北师大版八年级数学上册2.7《二次根式》教案
(3)熟练运用二次根式的运算规则:乘除法则、加减法则等,这是进行二次根式运算的核心。
举例:讲解(√2 + √3)(√2 - √3)的运算过程,强调平方差公式的运用。
2.教学难点
(1)二次根式的性质理解:特别是乘除法则和加减法则,学生容易混淆,需要通过实例反复讲解和练习。
举例:解释为何√a * √b = √(ab),以及合并同类项时如何识别同类二次根式。
在讲授二次根式的应用时,我发现学生对于如何将实际问题转化为数学模型的这个过程比较生疏。以后,我打算引入更多贴近生活的案例,让学生感受到数学知识在实际中的应用,从而提高他们解决问题的能力。
此外,小组讨论的环节也让我有所启发。学生在交流中能够互相启发,碰撞出思维的火花。但我也注意到,有些学生在讨论中较为被动,今后我需要更加关注这部分学生,鼓励他们积极参与,表达自己的观点。
3.数学抽象:理解二次根式的概念及其性质,发展学生的数学抽象思维,提高对数学符号和表达式的理解和运用能力。
4.数学运算:掌握二次根式的化简与运算方法,培养学生的数学运算能力,使其准确快速地进行数学计算。
5.数据分析:在解决实际问题时,能运用二次根式进行数据分析,培养学生的数据敏感性和分析能力,为科学决策提供依据。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的概念、性质、化简方法和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a的表达式,其中a是非负实数。它是解决非完全平方数开平方运算的重要工具,广泛应用于数学和实际生活中。

新北师大版九年级数学中考复习第4讲:数的开方与根式课件

新北师大版九年级数学中考复习第4讲:数的开方与根式课件

[解析] 由题意得 x≥0, 2x-1≠0, 1 解得 x≥0 且 x≠ , 2 所以,选 C 项.
2 1 1 2 - 1 计算: ×( 3-1) + + 3- . 2 2 2-1
4-2 3 解:原式= + 2+1+ 3- 2 2 =2- 3+ 2+1+ 3- 2 =3.
[2012· 巴中] 先化简,再求值:




已知实数 x,y 满足 x-4 y-8=0,则以 x,y 的 + 值为两边长的等腰三角形的周长( B ) A. 20 或 16 B.20 C.16 D.以上答案均不对


回归教材
(1) 50;(2) 48- 3;(3) 5- 1 . 5
归类示例
(1).9 的平方根是 A.3 B.-3 C.±3 (2). (-2)2 的算术平方根是 A.2 B. ±2 C.-2 ( C ) D.6 (A ) D. 2
[解析] 9的平方根是± 3,(-2)2的算术平方根是2.
x 使代数式 有意义的 x 的取值范围是 ( C ) 2x- 1 1 1 A. x≥ 0 B. x≠ C. x≥ 0 且 x≠ D.一切实数 2 2
解: (1) 50= 25× 2= 25× 2= 5 2; (2) 48- 3= 16× 3- 3 = 16× 3- 3 = 4 3- 3 =3 3
(3) 5-
1 5
5 = 5- 25 5 = 5- 25 5 = 5- 5 4 = 5 5
中考变式
1.计算: 2( 2- 3)+ 6.
解: 2( 2- 3)+ 6 = 2× 2- 2× 3+ 6 =2- 6+ 6 =2.
2 1 1 x x +2x+1 1 - ,其中x= . x x+ 1· 2 2 2 x+ 1 -x- 1

中考数学第一章《数的开方与二次根式》复习教案新人教版(最新整理)

中考数学第一章《数的开方与二次根式》复习教案新人教版(最新整理)

)))章节第一章课题数的开方与二次根式课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。

会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

教学重点使学生掌握二次根式的有关概念、性质及根式的化简.教学难点二次根式的化简与计算.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.平方根与立方根(1)如果x2=a,那么x 叫做a 的。

一个正数有个平方根,它们互为;零的平方根是;没有平方根。

(2)如果x3=a,那么x 叫做a 的。

一个正数有一个的立方根;一个负数有一个的立方根;零的立方根是;2.二次根式(1(2(3(4)二次根式的性质①若a ≥ 0,则( a)2=;③ab =(a ≥ 0, b≥ 0)2⎧a ( ) a a② a = a =⎨-a ( );④b=b(a ≥ 0, b 0)⎩(5)二次根式的运算①加减法:先化为,在合并同类二次根式;babx2 +1 x2 y5 1223233x2+y2a 1+1a b②乘法:应用公式 a ⋅=ab (a ≥ 0, b ≥ 0) ;③除法:应用公式=a(a ≥0, b0)b④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

(二):【课前练习】1.填空题2 . 判断题3.如果(x-2)2 =2-x 那么 x 取值范围是()A、x ≤2 B. x <2 C. x ≥2 D. x>24.下列各式属于最简二次根式的是()A. B. C. D.5.在二次根式:①12, ②③;④27和是同类二次根式的是()A.①和③B.②和③C.①和④ D.③和④二:【经典考题剖析】1.已知△ABC的三边长分别为 a、b、c, 且a、b、c 满足a2-6a+9+ b - 4 + | c - 5 |= 0 ,试判断△ABC 的形状.2.x 为何值时,下列各式在实数范围内有意义1(1);(2);(3)x - 43.找出下列二次根式中的最简二次根式:x2+y27x ,, , 0.1x ,, - 21, -x ,,2 24.判别下列二次根式中,哪些是同类二次根式:0.5-2x +31-xx2+12ab21 27 1 25 1 50 a2b675 4 - 4x + x 21 - 1 16 25 m2 - 4m + 4m 2 + 6m + 9 2 3 2 3 3 2 3 2 ( x - 2)2(x - 3)2( x - 2)( x - 3) 3 - x3 - x 2 - x3 - x2 - x17 1a3a 2 25x x 9 x 5 5 3 48 27 12 3x 2 -4 + 4-x 2 +1 ( p -1)2 (P - 2)21-2a+a 2 1-2a+a 2 3, 75, 18, , 2, , , 238ab 3 (b 0), -3b5. 化简与计算7 ① ;② (x 2) ;③ ;④ (m - 2) ⑤ (+ - 6 )2-( -+ 6 )2;⑥ (2 +3 - 6)(2 - 3 + 6 )三:【课后训练】1. 当 x≤2 时,下列等式一定成立的是( )A 、 = x - 2 C 、=2 - x ⋅B 、D 、 = = x - 32. 如果 (x-2)2 =2-x 那么 x 取值范围是()A 、x ≤2B. x <2C. x ≥2D. x >23. 当 a 为实数时, a 2 =-a 则实数 a 在数轴上的对应点在( )A .原点的右侧B .原点的左侧C .原点或原点的右侧D .原点或原点的左侧4. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④- 是 17 的平方根,其中正确的有( )A .0 个B .1 个C .2 个D .3 个5. 计算 a 3 +a 2所得结果是 .6. 当 a≥0 时,化简 =7.计算(1)、2 5+ 9 - 2; (2)、( - 2)2003( + 2)2004(3)、(2 - 3 2 )2;(4)、5 -6 +8. 已知: x 、y 为实数,y=x-2,求 3x+4y 的值。

2024年中考数学复习课件---第2讲+数的开方与二次根式

2024年中考数学复习课件---第2讲+数的开方与二次根式





+
+
+…+
+
=
+ + +
+ +

.

4
5
6
第2讲
数的开方与二次根式— 真题试做
返回命题点导航
返回栏目导航
命题点 3 二次根式的估值(遵义6年1考)
7.(2022·遵义5题4分)估计 的值在( C )
A.2和3之间
(2)找出与平方后所得数字相邻的两个开得尽方的整数,如4和9
(3)对以上两个整数开方,如 = , =3
(4)确定这个二次根式的值在两个整数开方后所得的
之间,如2< <3
(1)先确定 在哪两个整数(或小数)之间,如3< <
确定与
最接
近的整

(2)取这两个连续整数(或小数)的平均数,如
与非负
数的性

平方根
ห้องสมุดไป่ตู้
算数平方根
立方根
概念
a>0

质 a=0
a<0
相反
互为①______数
(两个)
0
没有
正数(一个)
正数(一个)
0
0
没有
②_________
负数(一个)
非 负 数 的 性 质 :(1)常见的非负数有 ( ≥ ),| a |,
(2)若几个非负数的和为, 则这几个非负数同时为,
+
=3.5

(3)将平均数进行平方,并与 a比较,确定与 最接近的整数,
如. �� = . , < . , 所以 < . ,所以与

中考数学复习《1.3数的开方与二次根式》教案北师大版(最新整理)

中考数学复习《1.3数的开方与二次根式》教案北师大版(最新整理)

)))章节第一章课题辽宁省丹东七中中考数学复习《1.3数的开方与二次根式》教案北师大版课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。

会求实数的平方根、算术平方根和立方根2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

教学重点使学生掌握二次根式的有关概念、性质及根式的化简.教学难点二次根式的化简与计算.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.平方根与立方根(1)如果x2=a,那么x 叫做a 的。

一个正数有个平方根,它们互为;零的平方根是;没有平方根。

(2)如果x3=a,那么x 叫做a 的。

一个正数有一个的立方根;一个负数有一个的立方根;零的立方根是;2.二次根式(1(2(3(4)二次根式的性质①若a ≥ 0,则( a)2=;③ab =(a ≥ 0, b≥ 0)2⎧a ( ) a a② a = a =⎨-a ( );④b=b(a ≥ 0, b 0)⎩(5)二次根式的运算babx2 +1 x2 y5 12 0.523233①加减法:先化为,在合并同类二次根式;②乘法:应用公式 a ⋅= ab (a ≥ 0, b ≥ 0) ;③除法:应用公式=a(a ≥0, b0)b④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

(二):【课前练习】1.填空题2.判断题3.如果(x-2)2 =2-x 那么 x 取值范围是()A、x ≤2 B. x <2 C . x ≥2 D. x>24.下列各式属于最简二次根式的是()A. B. C. D.5.在二次根式:①12, ②③;④27和是同类二次根式的是()A.①和③B.②和③C.①和④ D.③和④二:【经典考题剖析】1.已知△ABC的三边长分别为 a、b、c, 且a、b、c 满足a2-6a+9+ b - 4 + | c - 5 |= 0 ,试判断△ABC 的形状.2.x 为何值时,下列各式在实数范围内有意义-2x +31-x x2+1x2+y22ab2a 1+1a b1 27 125150a2b675 4 - 4x +x21-116 25m2- 4m + 4m2+ 6m + 92 3 2 3 3 2 3 2 (x - 2)2(x - 3)2(x-2)(x-3) 3 -x 3 -x2 -x3 -x 2 -x171a3a225x x9x553 48 27 123x2 -4 + 4-x2+1( p -1)2(P - 2)21 (1);(2 );(3)x - 4 3.找出下列二次根式中的最简二次根式:x2+y 27x ,, , 0.1x ,, - 21, -x ,,2 2 4.判别下列二次根式中,哪些是同类二次根式:3, 75, 18, , 2, , ,238ab3 (b 0), -3b5.化简与计算①;②(x 2) ;③;④(m -7 ) 2⑤(+- 6 )2-( -+ 6 )2;⑥(2 + 3 - 6 )(2 - 3 + 6 ) 三:【课后训练】1.当x≤2时,下列等式一定成立的是()A、=x -2 C、=2 -x ⋅B、D、==x - 32.如果(x-2)2 =2-x 那么 x 取值范围是()A、x ≤2 B. x <2 C. x ≥2 D. x>23.当a 为实数时,a2 =-a 则实数a 在数轴上的对应点在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧4.有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-是17 的平方根,其中正确的有()A.0 个B.1 个C.2 个D.3 个5.计算a3 +a2所得结果是.6. 当a≥0时,化简=7.计算(1)、25+ 9 - 2 ;(2)、(-2)2003 (+2)2004(3)、(2 - 3 2 )2 ;(4)、5-6+ 8.已知:x、y为实数,y= ,求3x+4 y 的值。

九年级数学数的开方与二次根式教案北师大版【教案】

九年级数学数的开方与二次根式教案北师大版【教案】

第6课 数的开方与二次根式〖知识点〗平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化 〖大纲要求〗1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。

会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

内容分析1.二次根式的有关概念 (1)二次根式式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或O .(2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.2.二次根式的性质 ).0;0();0;0();0(),0(||);0()(22>≥=≥≥⋅=⎩⎨⎧<-≥==≥=b a ba bab a b a ab a a a a a a a a a3.二次根式的运算 (1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并. (2)三次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化. 〖考查重点与常见题型〗1.考查平方根、算术平方根、立方根的概念。

北师大版八年级数学上册《二次根式》精品教案

北师大版八年级数学上册《二次根式》精品教案

《二次根式》精品教案●教学目标:知识与技能目标:1.理解二次根式的概念和性质,2.最简二次根式的概念3.会根据二次根式的性质进行二次根式的化简过程与方法目标:1.通过加深对概念的理解,提高对二次根式的性质和运算的认识。

2.利用二次根式的化简解决简单的数学问题,通过独立思考,能选择合理的方法解决问题。

情感态度与价值观目标:1.通过对实际问题的分析,使学生进一步体会二次根式的性质及运算,培养学生利用数学解决问题的能力。

●重点:1.掌握二次根式的概念和性质,理解它们解的含义;2.能利用二次根式的乘除法的法则进行二次根式的运算。

●难点:1.最简二次根式的概念2.把根号内含字母的二次根式的化简。

●教学流程:一、课前回顾1、 11的算术平方根是2、面积为a(a3、直角三角形的两直角边分别是1和2二、情境引入探究1:b=24,c=25)上述式子有什么共同特征?共同特征:都含有开方运算,并且被开方数都是非负数。

1.二次根式的概念一般地,形如(a ≥0)式子叫做二次根式. a 叫做被开方数. *一个式子是二次根式应满足几个条件?第二,被开方数a 是正数或0.(条件:a ≥0 ) 练习11、判断下列式子,哪些是二次根式,哪些不是二次根式.1x ,1x y+x ≥0),(x ≥0,y ≥0)(x ≥0),x ≥0,y ≥0),1x ,1x y+,2、当x 解:由x -1≥0 ,得x ≥13、a ≥0解:a ≥00 (双重非负性) 探究21、二次根式性质(1)计算下列式子,猜想你能得到什么结论?94⨯= 6 ,94⨯= 6 ; 2516⨯= 20 ,2516⨯= 20 ;94=23 ,94= 23 ; 2516=45 ,2516= 45 . 结论:94⨯=94⨯; 2516⨯=2516⨯94=942516 =2516 (2)用计算器计算:76⨯= 6.480,76⨯=_6.480__;76=0.9255,76=0.9255 .发现:76⨯=76⨯76=76 从上面得出的结论,发现了什么规律?能用字母表示这个规律吗?b a b a •=⋅(a ≥0,b ≥0),baba =(a ≥0, b >0). 说明:公式中字母a ≥0,b ≥0(或b >0)这一条件是公式的一部分,不应忽略.注意公式里的条件噢! 探究2例1 化简(1)6481⨯;(2)625⨯;(3)95; (4解:(1)6481⨯ =9×8=72 ;(2)625⨯ ;(3)953;(4 =3×4×5=60 .探究3最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式 最简二次根式的条件:(1)是二次根式; (2)被开方数中不含分母;(3)被开方数中不含能开得尽方的因数或因式.化简时,通常要求最终结果中分母不含根号,而且各个二次根式是最简二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章节
第一章
课题
辽宁省丹东七中中考数学复习《1.3
数的开方与二次根式》教案北师大

课型复习课教法讲练结合
教学目标(知
识、能力、教育)
1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、
立方根和算术平方根。

会求实数的平方根、算术平方根和立方根
2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二
次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,
能根据指定字母的取值范围将二次根式化简;
3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会
进行简单的分母有理化。

教学重点使学生掌握二次根式的有关概念、性质及根式的化简.
教学难点二次根式的化简与计算.
教学媒体学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.平方根与立方根
(1)如果x2=a,那么x叫做a的。

一个正数有个平方根,它们互为;
零的平方根是;没有平方根。

(2)如果x3=a,那么x叫做a的。

一个正数有一个的立方根;一个负数有一个的立方根;零的立方根是;
2.二次根式
(1)
(2)
(3)
(4)二次根式的性质
①2
0,
a≥=
若则(a);③ab=(0,0)
a b
≥≥
②2
()
()
a
a a
a

==⎨
-

;④(0,0)
a a
a b
b b
=≥f
(5)二次根式的运算
①加减法:先化为 ,在合并同类二次根式;
②乘法:应用公式(0,0)a b ab a b ⋅=≥≥;
③除法:应用公式(0,0)a a a b b b
=≥f ④二次根式的运算仍满足运算律,也可以用多项式的乘法公式来简化运算。

(二):【课前练习】
1.填空题
2. 判断题
3. 如果2(x-2)=2-x 那么x 取值范围是()
A 、x ≤2 B. x <2 C. x ≥2 D. x >2
4. 下列各式属于最简二次根式的是( )
A .225x +1 B.x y C.12 D.0.5
5. 在二次根式:①12, ②32③23
;④273和是同类二次根式的是( ) A .①和③ B .②和③ C .①和④ D .③和④
二:【经典考题剖析】
1. 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2
-6a+9+4|5|0b c -+-=,试判断△ABC 的形状.
2. x 为何值时,下列各式在实数范围内有意义
(1)23x -+; (2)211x x -+; (3)14
x - 3.找出下列二次根式中的最简二次根式:
2222
1127,,2,0.1,,21,,,22a x y x x y ab x x a b ++--+ 4.判别下列二次根式中,哪些是同类二次根式:
311123,75,18,
,2,,,8(0),327255032a ab b b b
-f 5. 化简与计算 ①675;②2
44(2)x x x -+p ;③111625-;④22447()692m m m m m -+-++p ⑤()()22236236+---+;⑥()()2332623326+--+ 三:【课后训练】
1. 当x ≤2时,下列等式一定成立的是( )
A 、
()222x x -=- B 、()
233x x -=- C 、 ()()2323x x x x --=-⋅- D 、3322x x x x --=--
2. 如果2(x-2)=2-x 那么x 取值范围是()
A 、x ≤2 B. x <2 C. x ≥2 D. x >2
3. 当a 为实数时,2a =-a 则实数a 在数轴上的对应点在( )
A .原点的右侧
B .原点的左侧
C .原点或原点的右侧
D .原点或原点的左侧
4. 有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③
负数没有立方根;④-17是17的平方根,其中正确的有( )
A .0个
B .1个
C .2个
D .3个
5. 计算32
1a +a a 所得结果是______. 6. 当a ≥0时,化简23a =
7.计算 (1)、2259259x x x +-; (2)、()()200320045252-+
(3)、()22332-; (4)、548627123
-+
8. 已知:22x -4+4-x +1x y y=x-2
、为实数,,求3x+4y 的值。

9. 实数P 在数轴上的位置如图所示:化简22(1)(2)p P -+-
10. 阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:
a+2
1-2a+a其中a=9时”,得出了不同的答案,小明的解答:
原式= a+2
1-2a+a= a+(1-a)=1,小芳的解答:原式= a+(a-1)=2a-1=2×9-1=17
⑴___________是错误的;
⑵错误的解答错在未能正确运用二次根式的性质:________
四:【课后小结】
布置作业地纲
教后记。

相关文档
最新文档