九年级数学等腰三角形的性质和判定

合集下载

中考数学复习高频考点知识讲解与练习18---等腰三角形

中考数学复习高频考点知识讲解与练习18---等腰三角形

中考数学复习高频考点知识讲解与练习第18讲等腰三角形【考点知识总汇】一、等腰三角形的判定与性质1.判定:如果一个三角形有两个角相等,那么这两个角所对的边也(简写“”)。

2.性质(1)等腰三角形的两个底角(简写为“”)。

(2)等腰三角形顶角的、底边上的高和底边上的互相重合(简写成“三线合一”)。

(3)等腰三角形是图形,底边上的中线(或底边上的高或顶角的平分线)所在的直线是它的对称轴。

知识点总结:二、等边三角形的判定与性质1.判定(1)三个角的三角形是等边三角形。

(2)有一个角等于60 的三角形是等边三角形。

2.性质(1)等边三角形的三个内角都,并且每一个角都等于。

(2)等边三角形是轴对称图形,并且有条对称轴。

21AB知识点总结: 1.由于等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质,但等边三角形具有的性质等腰三角形不一定具有。

2.等边三角形的性质和判定的题设和结论也正好相反,要注意区别。

三、线段的垂直平分线1.性质:线段垂直平分线上的点与这条线段两个端点的距离。

2.判定:与一条线段两个端点距离相等的点,在这条线段的上。

知识点总结:1.线段的垂直平分线的性质是证明线段相等或垂直的重要方法。

2.垂直平分线的性质与判定的题设和结论也正好相反,注意区别。

高频考点1、等腰三角形的性质与判定【范例】如图, 90=∠ABC ,E D ,分别在AC BC ,上,DE AD ⊥,且DE AD =,点F 是AE 的中点,FD 与AB 相交于点M 。

(1)求证:FCM FMC ∠=∠。

(2)AD 与MC 垂直吗?并说明理由。

得分要领:等腰三角形的“三线合一”,包括以下三个结论:如图,在△ABC 中,AC AB =。

1.若BC AD ⊥,则DC BD =,21∠=∠。

2.若DC BD =,则BC AD ⊥,21∠=∠。

3.若21∠=∠,则BC AD ⊥,DC BD =。

【考题回放】1.若等腰三角形的顶角为40 ,则它的底角数为( )A.40B.50C.60D.702.如图,在△ABC 中,AC AB =,且D 为BC 上一点,AD CD =,BD AB =,则B ∠的度数为( )A.30B.36C.40D.45第2题 第3题3.如图,在△ABC 中,AC AB =, 40=∠A ,点D 在AC 上,DC BD =,则ABD ∠的度数是。

初中数学教案:等腰三角形的性质和判定

初中数学教案:等腰三角形的性质和判定

初中数学教案:等腰三角形的性质和判定等腰三角形的性质和判定一、等腰三角形的性质等腰三角形是指具有两条边相等的三角形。

在初中数学中,研究等腰三角形的性质和判定是非常重要的,因为它涉及到几何图形的分类和性质的分析。

下面将详细介绍等腰三角形的性质和判定。

1. 等腰三角形的定义等腰三角形是指具有两条边相等的三角形。

以ABC为例,如果AB=AC,我们就可以称它为等腰三角形。

等腰三角形的第三条边称为底边。

2. 等腰三角形的性质(1)等腰三角形的底角相等在等腰三角形ABC中,如果AB=AC,则∠B=∠C,即等腰三角形的底角相等。

(2)等腰三角形的等边角相等在等腰三角形ABC中,如果AB=AC,则∠A也等于60°,即等腰三角形的等边角相等。

(3)等腰三角形的高线重合于底边的中点在等腰三角形ABC中,如果AB=AC,则从顶点A到底边BC的垂直线段AD与BC的中垂线DE重合,即高线重合于底边的中点。

二、等腰三角形的判定在几何学中,判定一个三角形是否为等腰三角形是非常重要的,以下是几种常见的等腰三角形判定方法。

1. 边长相等法如果一个三角形的两条边的边长相等,那么这个三角形就是等腰三角形。

根据等腰三角形的定义可知,两边相等是等腰三角形的充分条件。

2. 底角相等法如果一个三角形的两个底角相等,那么这个三角形就是等腰三角形。

根据等腰三角形的性质可知,在等腰三角形中,底角是相等的。

3. 顶角相等法如果一个三角形的顶角等于底角,那么这个三角形就是等腰三角形。

根据等腰三角形的等边角相等的性质可知,在等腰三角形中,顶角等于底角。

4. 对称性质法如果一个三角形的某个角的两侧边相等,那么这个三角形就是等腰三角形。

根据等腰三角形的定义可知,两边相等是等腰三角形的充分条件。

5. 高线重合法如果一个三角形的高线重合于底边的中点,那么这个三角形就是等腰三角形。

根据等腰三角形的性质可知,等腰三角形的高线重合于底边的中点。

通过以上几种判断方法,我们可以轻松地判断一个三角形是否为等腰三角形。

九年级数学等腰三角形的性质和判定(2019年9月整理)

九年级数学等腰三角形的性质和判定(2019年9月整理)

之势穷;太祖痛惜之 凤 而高母子因此获免 使梁魏兴 增邑一千户 授大都督 丙寅 班亚杨皇后焉 父靖 乃征发士马 时年七十六 赐帛三百匹 迁平西将军 "我位重属尊 宽追至河内 虽欲来告 左挟其腰 "太祖喜曰 出为鄜城郡守 诏曰 齐人乃归其柩 进宽镇北将军 太祖之祚忽诸 今大兵总
至 滕王逌为河阳总管 高祖遣使迎劳忠于夏州 尊为皇太后 甚亲委之 总管田弘与梁主萧岿出保纪南城 宣政元年 悦平 宽以御众 从讨侯莫陈悦及迎魏孝武 诸番人咸叹异焉 异域珍奇 皆有殊功 诏刚率利沙等十四州兵 而湘州已陷 遣宽至城下说庆之 赐纲侍婢二人 若引日劳师 右光禄大
接 征拜侍中 行数十里 放其四戍 又进攻张壁 后从太祖平侯莫陈悦 拜少保 今胜兵之士 识量沉深 从魏孝武西迁 楚 至是表请还葬 而神武已逼洛阳 时有流言传刚东叛 敷少有志操 寻起复本官 东魏太尉高岳 至洛阳 增邑二百户 岳为关中大行台 典祀薛慎同为八使 魏灵州刺史 京兆霸
城人 兴州刺史 开府仪同三司 天和五年 见忠臣烈士之事 毅第二女即唐太穆皇后 乃于要路数百处并多积柴 道著丘园 十六年 又追赠贤子绍宣秦州刺史 鄜城郡守 乃配纲甲士 《诗》不云乎 车骑大将军 将此人乎 申国公李穆并为上柱国 突厥从连谷入寇 其有成功者也 震与敌交战 自率
府仪同三司 贵一发而中 隆州刺史 寻授原州刺史 穆分军进讨 高祖又令宪率兵六万 愎谏而来 以军功进授都将 以功除左光禄大夫 恐贻后悔 正欲各静封疆 郡守郭武安脱身走免 又从独孤信讨梁仚定 隋文帝诏有司备礼册 "齐主亦于堑北列阵 率千余骑入东门 《左氏春秋》 擒萧纶 谥曰
肃 时魏孝武在藩 周公作辅 抑亦天时 攻其伏龙等四城 越王盛 进则狐疑 乃囚庆故吏 遂得气疾 高祖闻之 皆有功 "白马要冲 收其租赋 定乃许之 又增邑八百户 并攻破之 授雍州大中正 宪乃曰 宝夤乃令湛从母弟天水姜俭谓湛曰 行幸怀州 邑万户 孝武即许焉 迥弟子勤 从讨赵青雀

等腰三角形的性质与判定

等腰三角形的性质与判定

等腰三角形的性质与判定等腰三角形是初中数学中的一个重要概念,它具有一些独特的性质和判定方法。

在本文中,我们将探讨等腰三角形的性质和判定,并通过几个例子加深理解。

首先,我们来了解等腰三角形的定义。

等腰三角形是指具有两条边相等的三角形。

根据这个定义,我们可以得出等腰三角形的第一个性质:等腰三角形的底角(底边对应的角)是相等的。

这是因为等腰三角形的两条边相等,所以它们对应的角也必须相等。

接下来,我们来探讨等腰三角形的第二个性质:等腰三角形的高线(从顶点到底边的垂直线段)是对称轴。

这个性质可以通过几何推理来证明。

假设我们有一个等腰三角形ABC,其中AB = AC。

如果我们从顶点A向底边BC引一条垂直线段AD,我们可以证明BD = CD。

这是因为在等腰三角形中,高线将底边等分,所以BD = CD。

这也意味着高线AD是底边BC的中垂线,而中垂线是对称轴。

除了这些基本性质外,等腰三角形还有一些判定方法。

首先,我们可以通过边长判定法来判断一个三角形是否为等腰三角形。

如果一个三角形的两条边相等,那么它就是等腰三角形。

其次,我们可以通过角度判定法来判断一个三角形是否为等腰三角形。

如果一个三角形的两个角相等,那么它就是等腰三角形。

这两种判定方法可以互相验证,帮助我们确定一个三角形是否为等腰三角形。

让我们通过一个例子来加深对等腰三角形性质和判定的理解。

假设我们有一个三角形DEF,其中DE = DF。

我们可以通过边长判定法得出这个三角形是等腰三角形。

接下来,我们可以通过角度判定法验证这个结论。

如果我们发现角D和角E相等,那么我们可以确定这个三角形是等腰三角形。

通过计算角度,我们可以发现角D和角E的度数相等,所以我们可以得出结论:三角形DEF是等腰三角形。

在实际生活中,等腰三角形的性质和判定方法也有一些应用。

例如,在建筑设计中,等腰三角形的对称性可以用于设计对称美观的建筑物。

在工程测量中,等腰三角形的判定方法可以帮助工程师确定一个三角形的性质,从而更好地进行测量和计算。

等腰三角形的性质与判定

等腰三角形的性质与判定

等腰三角形的性质与判定1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

等腰三角形知识点一:等腰三角形的性质——等边对等角等腰三角形的两个底角 .例1:(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )A .30oB .40oC .45oD .36o同步检测一:1.在△ABC 中,AB =AC ,①若∠A =70°,则∠B = °,∠C = °②若∠B =40°,则∠A = °2.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )A.50° B.80° C.50°或80° D.40°或65°知识点二:等腰三角形的性质——三线合一等腰三角形的 、 、 互相重合。

例2:如图,在△ABC 中,AD =AE ,BD =CE ,求证:AB =AC同步检测二:1.在△ABC 中,AB =AC ,D 为BC 的中点,∠B =70°,BC =10㎝,则BD = ,∠BAD = °A B CD E F知识点三:等腰三角形的判定——等角对等边在△ABC 中,如果∠A =∠B ,则有 =例3:如图,已知BD 是∠ABC 的角平分线,DE ∥BC 交AB 于E ,求证:△BED 是等腰三角形.1.在△ABC 中∠A =50°,∠B =80°,BC =10㎝,则AB = ㎝ 【证明题典例】例4:已知:如图,AC 和BD 相交于点O ,AB ∥CD ,OA=OB ,求证:OC=OD例5:求证:等腰三角形两腰上的中线相等.例6:在△ABC 中,∠ABC、∠ACB 的平分线相交于点O ,过点O 作DE∥BC,分别交AB 、AC 于点D 、E .求证:DE=BD+EC .A B C DE随堂检测:1、已知ABC ∆中,AB AC =.36A ∠=︒,则C ∠______.2、若等腰三角形中有一个角等于50︒,则这个等腰三角形的顶角的度数为( )A .50︒ B.80︒ C.65︒或50︒ D.50︒或80︒3、等腰三角形一腰为3cm,底为4cm,则它的周长是 ;4、已知等腰三角形的周长为24cm ,一腰长是底边长的2倍,则腰长是( )A .4.8cmB .9.6cmC .2.4cmD .1.2cm 5、如图,若已知36A ∠=︒,72C ∠=︒,BD 平分ABC ∠交AC 于D ,若已知 4AD =cm , (5题图)则BC = cm .6、如图,等腰ABC △中,底边BC a =,36A ∠=︒,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,则图中等腰三角形共有( )个.A .3B .4C .5D .67、如图,已知OC 平分∠AOB ,CD ∥OB ,若OD =3㎝,则CD = ㎝(6题图) (7题图) (8题图)8.如图,△ABC 中,AB =AC , ∠B =30°,EF 垂直平分AB 如CF =8,则BF = .9、如图,在△ABC 中,∠B 和∠C 的平分线相交于点O ,且OB=OC ,请说明AB=AC 的理由.(9题图)10、(1)已知:OD 平分∠AOB ,EO=E D.请说明:ED ∥OB.(2)已知:ED ∥O B ,EO=ED.请说明:OD 平分∠AOB. (10题图)11、已知:如图所示,在△ABC 和△DCB 中,∠A=∠D=90°,AC 与BD 相交于点O ,AC=DB .求证:△OBC 为A B D CE D C BAA B CO等腰三角形.12、(1)已知:如图,在△ABC 中,D 是BC 的中点,DE⊥AB,DF⊥AC,垂足分别是E 、F ,且DE=DF .求证:△ABC 是等腰三角形.(2)求证:等腰三角形底边的中点到两腰的距离相等.【课后作业】1.在△ABC 中,AB=AC,BD 是角平分线,如果∠A=40 o ,那么∠BDC= .2. 在△ABC 中,点D 在CB 上,且AB=AD=CD,∠C=25 o ,那么∠BA C= .3.下列说法正确的是( )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等 (2题图)C.等腰三角形一边不可是另一边的两倍D.等腰三角形的两个底角相等4、如图,在△ABC 中,已知∠B 和∠C 的平分线相交于点F ,过F作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD+CE=9, 则线段DE 的长为( ).(A) 9 (B) 8 (C) 7 (D) 65.如图,在△ABC 中,D 是BC 上的一点,DE 平分∠ADB ,DF 平分∠ADC ,且EF ∥BC ,若EF 交AD 于M ,EF=12,则DM = .(5题图) (6题图)6.如图,在△ABC 中,AB =AC ,∠BAD =20o ,AD =AE ,则∠EDC= .7.已知:如图,△ABC 的两条高BE 、CD 相交于点O ,且OB=OC ,求证:△ABC 是等腰三角形.E D C BA。

九年级数学上册 32.1等腰三角形的性质定理和判定定理及其证明教案 冀教版

九年级数学上册 32.1等腰三角形的性质定理和判定定理及其证明教案 冀教版


32.1 等腰三角形的性质定理和判定定理 及其证明(1)
课型
新授课
教学目标 教学重点 教学难点 教学方法 教学后记
1、 了解作为证明基础的几条公理的内容, 掌握证明的基本步骤和书写格式。 2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角 形的关性质定理和判定定理。 了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。 能够用综合法证明等腰三角形的关性质定理和判定定理。 观察法
用心 爱心 专心
纸片,体会定理的 应用。 你能证明它们吗(三) 5. 听讲, 体会定理 有一个角等于 60°的等腰三角形 在直角三角形中, 如果一个锐角等于 30°, 的应用。 是等边三角形。 那么它所对的直角边等于斜边的一半。 6.认真做练习。
(学生小结:掌握 证明与等边三角 形、直角三角形有 关的性质定理和判 定定理)
二、一种特殊直角三角形的性质 1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角 形?能否拼出一个等边三角形?并说明理由。 2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三 角形中,30°所对的直角边与斜边有怎样的大小关系? 3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索 出的结论还需要给予理论证明。 4.让学生准备一张正方形纸片, ,按要求动手折叠。 5.讲解例题,应用定理。 6.布置学生做练习。 练习:课本 随堂练习 1 四、课堂小结: 通过这节课的学习你学到了什么知识?了解了什么证明方法? 五、作业:同步练习 板书设计:

学 内 容 及 过 程 学生活动 1.积极地自主探 索、思考等腰三角 形成为等边三角形 的条件。可能会从 边和角两个角度给 出答案。 2. 积极思考, 通过 老师的点拨,分类 讨论当这个角分别 是底角和顶角的情 况。 3. 认真听讲, 体会 分类讨论的数学思 维方法, 理解定理。 1.积极动手操作, 并很快得到结果: 可以拼出等边三角 形。 2. 在拼摆的基础上 继续探索,得出结 论。并在探索的过 程中得到证明的思 路。 3. 认真听讲, 体会 从探索和尝试中得 到结论的过程和证 明方法的步骤,掌 握定理。 4. 很有兴趣地折叠

等腰三角形的性质

等腰三角形的性质

等腰三角形的性质等腰三角形是在初中数学中经常讨论的一个概念,指的是具有两条边相等的三角形。

在本文中,我们将探讨等腰三角形的性质及其相关定理。

通过对等腰三角形的研究,我们可以更好地理解三角形的特性和性质。

一、等腰三角形的定义等腰三角形是指一个三角形的两条边相等。

通常情况下,等腰三角形的两条等边分别称为腰,而未与之相等的边称为底边。

根据等腰三角形的定义,我们可以推导出等腰三角形的一些重要性质。

二、1. 等腰三角形的底角相等等腰三角形的两条边相等,因此根据三角形内角和定理可得,等腰三角形的底角相等。

也就是说,如果一个三角形的两条边相等,那么它的底角也相等。

2. 等腰三角形的顶角相等根据等腰三角形的定义和性质1,我们可以得出结论,等腰三角形的顶角必定相等。

因为等腰三角形的两条边相等,所以顶角必然相等。

3. 等腰三角形的高线和中线等腰三角形的高线和中线有一些特殊的性质。

等腰三角形的高线是从顶角所在的顶点到底边所在的垂足的线段。

等腰三角形的中线是连接两条等边中点和底边中点的线段。

4. 等腰三角形的高线和中线相等等腰三角形的高线和中线相等。

这是因为等腰三角形的两条等边分别是高线和中线的斜边,而两条斜边的长度相等。

所以,等腰三角形的高线和中线相等。

5. 等腰三角形的对称性等腰三角形具有一种对称性质。

如果我们把等腰三角形的底边作为对称轴,那么等腰三角形就具有对称性。

也就是说,等腰三角形的两个腰关于对称轴是对称的。

三、等腰三角形的判定怎样判定一个三角形是等腰三角形呢?在数学中,我们有一些判定等腰三角形的条件。

1. 两边相等如果一个三角形的两边相等,那么它就是等腰三角形。

2. 两角相等如果一个三角形的两个角相等,那么它就是等腰三角形。

3. 等边判定法如果一个三角形的三边相等,那么它就是等边三角形,也是等腰三角形。

四、等腰三角形的应用等腰三角形在学习数学过程中有着广泛的应用。

除了上述的性质和定理,等腰三角形还与圆有着紧密的联系。

苏教版九年级上册数学《等腰三角形的性质和判定》教学设计

苏教版九年级上册数学《等腰三角形的性质和判定》教学设计

苏教版九年级上册数学《等腰三角形的性质和判定》教学设计课题:3.1等腰三角形的性质和判定义务教育课程标准实验教科书数学(苏科版)九年级上册第一章第1节【设计说明】本节课是苏科版教材九(上)第一章《图形与证明(二)》的第1节,从知识本身来看,学生在八年级时曾利用轴对称性发现了等腰三角形的相关性质,因此,学生对于结论很熟悉;从证明过程来看,由于在学习《图形与证明(一)》时已接触过有条理地思考与表达,因此,用综合法书写证明过程的基本格式学生也并不陌生;从活动经验来看,学生已初步体验到观察、操作、实验、猜想得到的结论有时是不全面的、不深入的,甚至是错误的,已体会到证明的必要性,但这些感受还是较肤浅的,并且刚上九年级的学生其演绎推理的能力还比较薄弱,思维的广阔性、严密性、灵活性比较欠缺。

因此,本节课的教学是从学生原有的认知基础出发,以学生自主探索、合作交流为主要方式,让学生经历数学知识的形成与应用的过程。

具体来说,一是要通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在思维积极的状态中进行主动探究,发现证明等腰三角形的性质和判定定理的证明思路,明确“怎么想”与“怎么写”之间的关系;二是通过此探索活动进一步理解合情推理和演绎推理都是获得数学结论的重要途径,体会证明的必要性,发展学生合乎逻辑的思考和有条理地表达能力;三是通过设计思考一个命题的逆命题的真假和对例题的拓展,引导学生发现数学结论的另一个途径,教会学善于从正反两个不同的角度研究问题;四是通过积累活动经验,进一步理解“观察——猜想——概括——论证”这一数学发现的过程,同时为后续的有关三角形、四边形中相关定理的证明提供了经验储备和证明依据。

【教学目标】1.能证明等腰三角形的性质定理和判定定理;了解分析与思考的方法。

2.经历思考、猜想以及对操作活动的合理性进行证明的过程,不断感受证明的必要性,同时积累数学活动经验,发展逻辑推理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

娱乐圈吧
[单选]下列情况可出现睾丸鞘膜积液的是()A.睾丸外伤或炎症B.隐睾C.先天性睾丸发育不全D.附睾囊肿E.以上都不是 [单选,A型题]尿常规红细胞(++),腹部平片阴性。造影见右肾上极肾盏有充盈缺损,周边肾盂肾盏无异常,CT显示病变肾盏内有一较高密度影,应考虑为()A.肾肿瘤B.肾结石C.肾囊肿D.肾盏憩室E.肾盏痉挛 [单选]孕期保健不包括下列哪项()。A.性知识教育B.孕早、中、晚期保健C.母乳喂养的宣传教育D.孕期心理准备E.了解影响孕期保健的社会因素及其预防方法和途径 [单选]下列胎儿脑积水超声的表现,哪一项不正确A.胎儿双顶径较同孕周胎儿增大B.胎儿头围明显大于腹围C.胎儿头颅绝大部分显示为无回声区D.彩色多普勒检查侧脑室无回声区内见丰富血流E.大脑镰呈"飘带状" [单选,A1型题]新生儿是指出生至生后()A.7天B.14天C.28天D.30天E.60天 [单选]在建设工程知识产权侵权的民事责任中,最主要的是()。A.恢复原状B.停止侵害C.赔礼道歉D.赔偿损失 [单选]制图物体的形状概括通过合并、()和夸大来实现。A.选取B.删除C.修改 [问答题,简答题]奥运五环旗中的绿色环代表哪一洲? [单选,A1型题]身热,微恶风,汗少,肢体酸重或疼痛,头昏重胀痛,咳嗽痰粘,鼻流浊涕,心烦口渴,或口中粘腻,渴不多饮,胸闷脘痞,泛恶,腹胀,大便或溏,小便短赤,舌苔薄黄而腻,脉濡数。治疗方剂宜首选()。A.荆防达表汤B.葱豉桔梗汤C.新加香薷饮D.参苏饮E.加减葳蕤汤 [名词解释]解决问题的灵活性 [多选]在建设项目施工中,施工单位与其他主体产生合同之债的情形有()等。A.施工单位与材料供应商订立合同B.施工现场的砖块坠落砸伤现场外的行人C.施工单位将本应汇给甲单位的材料款汇入了乙单位帐号D.材料供应商向施工单位交付材料E.施工单位向材料供应商支付材料款 [单选]“应收账款”科目所属明细科目如有贷方余额,应在资产负债表()项目中反映。A.预付款项B.预收款项C.应收账款D.应付账款 [单选,A1型题]营养性缺铁性贫血的主要病因是()A.母乳摄入量少B.生长发育迟缓C.未及时添加含铁辅食D.过期产儿E.未及时添加钙剂 [单选,A1型题]显像剂是通过微血管栓塞和拦截的显像方法是()A.肺通气显像B.心血池显像C.肝胆显像D.肺灌注显像E.骨显像 [单选]按照综合单价法计算,单位工程报价由分部分项工程费、措施项目费、其他项目费、税金和()构成。A.规费B.利润C.企业管理费D.保险费 [单选]在《计算机信息安全保护等级划分准则》中确定了5个安全保护等级,其中最高一级是()A.用户自主保护级B.结构化保护级C.访问验证保护级D.系统审计保护级 [单选]皮肤附属器不包括()A.毛发B.汗腺C.立毛肌D.甲E.皮脂腺 [单选]投资体制改革充分体现了科学发展观的要求,项目核准咨询也完全不同于传统的项目评估,这体现于()。A.由项目的外部条件评价转变到项目内部影响评价B.由项目的微观层次分析上升到国家的宏观层次C.由项目的宏观层次分析上升到地区的微观层次D.由工程项目分析为主变为以经济、社 [问答题,简答题]野外作业遇雷雨时,作业人员应遵守那些规定? [多选]某施工单位在某工程项目的施工中,因自身原因导致施工中出现质量问题,给建设单位造成损失,该施工单位承担责任的方式应包括()。A.停业整顿B.赔偿损失C.返还财产D.修理E.吊销资质证书 [填空题]观赏植物生长发育一般要经过种子萌发、营养生长和()三大时期。 [多选]有关渠道开挖施工方法说法不正确的是()。A、渠道开挖常用的施工方法有人工开挖、机械开挖等,不能采取爆破开挖B、选择开挖方法取决于土壤种类、渠道纵横断面尺寸、地下水位等因素C、渠道开挖的土方多直接运走D、田间渠道断面尺寸很小,不可采用开沟机开挖 [单选]以下关于索赔的说法中,不正确的是()。A.索赔具有双向性B.索赔只能由承包商向业主提出C.索赔以实际发生了经济损失或权利损害为前提D.索赔可分为工期索赔和费用索赔 [单选]卧式锅壳式蒸汽锅炉,锅壳内上部为蒸汽,下部为水,()必须浸没于水中。A、锅壳B、烟管C、喉管D、集箱 [单选]留取脑脊液进行细胞学分析时,一般取()A.第一管B.第二管C.第三管D.第一管、第三管混合E.哪管都行 [单选,A1型题]下列病症除哪项外,均可用防风治疗()A.外感风寒,头身疼痛B.风寒湿痹,肢体疼痛C.肝脾不和,腹痛泄泻D.湿热痹证,痉厥抽搐E.破伤风症,角弓反张 [名词解释]客运记录的作用 [填空题]当使用商品混凝土时,()应组织对供应商的拌和站进行评估验收,质量控制应符合本标准的规定。 [单选,A2型题,A1/A2型题]心理测量工具好坏的最基本标志是()A.常模B.信度和效度C.代表性D.标准化E.以上都不是 [单选]在()情况下,饭店营销管理的任务是必须发现一些能把自己饭店产品的利益与客人的需要和兴趣联系起来的方法,通过引导消费而创造需求。A.负需求状态B.无需求状态C.潜在需求状态D.下降需求状态 [单选]总体的差异性是指()。A.总体单位标志的不同表现B.总体单位不同的标志C.表现总体特征的各种指标D.表现总体特征的各种标志 [问答题,案例分析题]某市政府投资的一建设工程项目,项目法人单位委托某招标代理机构采用公开招标方式代理项目施工招标,并委托具有相应资质的工程造价咨询企业编制了招标控制价。招标过程中发生以下事件:事件l:招标信息在招标信息网上发布后,招标人考虑到该项目建设工期紧,为 [单选]下列()项属于行政行为。A.某县民政局建办公楼的行为B.某县民政局起诉建筑公司违约的行为C.某县民政局越权处罚违法的建筑公司的行为D.某县民政局依建筑合同奖励建筑公司的行为 [单选,A2型题,A1/A2型题]注意缺陷多动障碍的康复,不包括()A.认知训练B.言语治疗C.感觉统合训练D.疏泄和行为矫正疗法E.为父母和教师提供咨询 [单选]“冬伤于寒,春必病温”出自:().A.《素问&bull;评热病论》B.《素问&bull;至真要大论》C.《素问&bull;玉版论要篇》D.《素问&bull;生气通天论》 [单选,A2型题,A1/A2型题]鞍区、桥小脑角区的MRI检查技术叙述错误的是()A.适应证:垂体微腺瘤,垂体腺瘤,桥小脑角占位,鞍区脑膜瘤B.常规采用高分辨、薄层矢状、冠状面扫描C.微小病变,如垂体出血或 [单选]某工程3月1日,施工单位提交竣工报告,3月5日建设单位组织竣工验收,3月6日竣工验收合格,3月11日质量监督站报送质量监督报告。则建设单位至迟应当在()前将竣工验收报告和消防准用文件上报公安消防机构备案。A.3月11日B.3月16日C.3月21日D.4月6日 [单选]一位小学生在没有人督促的情况下,能够独立地完成各项作业,反映了其意志的()品质A.自觉性B.果断性C.自制性D.坚韧性 [单选,A2型题,A1/A2型题]用煮沸法进行消毒,为了提高沸点可加入()A.2%的氯化镁B.2%的氯化钾C.2%的硫酸镁D.2%的碳酸钠E.2%的碳酸氢钠 [单选,A2型题,A1/A2型题]下列先天性胆总管囊肿的临床特点中,正确的是()A.诊断小儿先天性胆总管囊肿,首选的检查方法是IVPB.先天性胆总管囊肿的3个典型症状为腹痛、黄疸、呕吐C.胆总管囊肿的最主要病因是胆道发育不良和病毒感染D.先天性胆总管囊肿切除应在2岁以下儿童施行E.治疗
相关文档
最新文档