数字信号处理实验报告要求

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验报告
专业:信息与计算科学班级:08级(一)班指导老师:刘花璐姓名:肖浩学号:200841210140 实验室:K7-407 实验名称:常见离散信号的Matlab产生和图形显示时间:2011.3.30
一、实验目的及要求
(一)实验目的
加深对常用离散信号的理解
(二)实验要求
(1)预先阅读附录(matlab基础介绍)
(2)讨论复指数序列的性质
三、实验内容与步骤
1.离散采样信号序列
(1)首先产生信号x(n),0≤n≤50
运行结果:
(2绘制信号x(n)的幅度谱和相位谱运行结果:
2.单位抽样序列
{0,1
,0
)
(=

=n
n
n
δ
在matlab中,这一函数可由zeros函数实现运行结果:
3.矩形序列



=
-

≤1
0,1
,0
)
(
N
n
N
n
R
其他
运行结果:4.特定冲击串运行结果: 5.指数序列
n
a
n
x
)
(
运行结果:


通过本次试验学习了用matlab软件处理相关离散信号序列的图形显示,在编写函数中有各类函数的比较,有时没注意其区间的变化容易产生较大的误差,因此要注意区间的选取,多上机操作。

2011年 3月 30 日




年月日。

数字信号处理-实验报告

数字信号处理-实验报告

学生实验报告(理工类)课程名称:数字信号处理专业班级:通信(4)班学生学号:学生姓名:所属院部:网络与通信工程学院指导教师:20 16 ——20 17 学年第一学期金陵科技学院教务处制实验报告书写要求实验报告原则上要求学生手写,要求书写工整。

若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。

纸张一律采用A4的纸张。

实验报告书写说明实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。

各院部可根据学科特点和实验具体要求增加项目。

填写注意事项(1)细致观察,及时、准确、如实记录。

(2)准确说明,层次清晰。

(3)尽量采用专用术语来说明事物。

(4)外文、符号、公式要准确,应使用统一规定的名词和符号。

(5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。

实验报告批改说明实验报告的批改要及时、认真、仔细,一律用红色笔批改。

实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。

实验报告装订要求实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:MATLAB语言工作环境和基本操作实验学时:同组学生姓名:实验地点:工科楼A205 实验日期:实验成绩:批改教师:批改时间:一、实验目的和要求目的:1.初步了解MATLAB开发环境和常用菜单的使用方法;2.熟悉MATLAB常用窗口,包括命令窗口、历史窗口、当前工作窗口、工作空间浏览器窗口、数组编辑器窗口和M文件编辑/调试窗口等;3.了解MATLAB的命令格式;4.熟悉MATLAB的帮助系统。

要求:1. 简述实验原理及目的。

2. 记录调试运行情况及所遇问题的解决方法。

3. 简要回答思考题。

二、实验仪器和设备微型计算机、Matlab6.5以上版本的编程环境。

三、实验过程命令窗口(Command Window):(1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。

⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。

2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。

⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。

3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。

要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。

⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。

实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。

(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。

⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。

对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。

单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。

在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。

离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。

三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

所以,根据本课程的重点要求编写了四个实验。

第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。

由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。

这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。

第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。

限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。

通过该实验加深理解DFT的基本概念、基本性质。

FFT是它的快速算法,必须学会使用。

所以,学习完第三、四章后,可安排进行实验二。

数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。

学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。

IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。

这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。

学习完第六章以后可以进行实验三。

FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。

窗函数法是一种基本的,也是一种重要的设计方法。

学习完第七章后可以进行实验四。

以上所提到的四个实验,可根据实验课时的多少恰当安排。

例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。

若时间紧,可以在实验三、四之中任做一个实验。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。

2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容(1)在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,用DFT分析上述各信号的频谱结构,选取不同的采样频率和截取长度,试分析频谱发生的变化。

实验内容(2)设x(n)=cos(0.48*π*n)+ cos(0.52*π*n),对其进行以下频谱分析:10点DFT,64点DFT,及在10点序列后补零至64点的DFT 试分析这三种频谱的特点。

四、实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。

2.复习FFT算法原理和基本思想。

3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验程序和结果实验1内容(1)N=L/T+1;t=0:T:L;a=48;D1=2*pi/(N*T); % 求出频率分辨率k1=floor((-(N-1)/2):((N-1)/2)); % 求对称于零频率的FFT位置向量%%%%%%%%%%%%%%%%%%%%%%%%%figure(1),x1=cos(100*pi*a*t);y1=T*fftshift(fft(x1));%虽然原来是周期信号,但做了截断后,仍可当作非周期信号。

subplot(2,1,1),plot(t,x1);title('正弦信号');subplot(2,1,2),plot(k1*D1,abs(y1));title('正弦信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(2), x2=exp(-a*t);y2=T*fftshift(fft(x2));%有限长(长度为N)离散时间信号x1的dft 再乘T 来近似模拟信号的频谱,长度为Nsubplot(2,1,1),plot(t,x2);title('指数信号');subplot(2,1,2),plot(k1*D1,abs(y2));title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%% figure(3), x3=x1.*x2;y3=T*fftshift(fft(x3))subplot(2,1,1),plot(t,x3);title('两信号相乘');subplot(2,1,2),plot(k1*D1,abs(y3));title('两信号相乘频谱');0.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.140.160.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.0005 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-2000200040006000800000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51指数信号-8000-6000-4000-20000200040006000800000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51-8000-6000-4000-20000200040006000800000.0050.010.015两信号相乘频谱T=0.002 L=0.150.020.040.060.080.10.120.140.16-1-0.500.51正弦信号-2000-1500-1000-50050010001500200000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.51-2000-1500-1000-500050010001500200000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.16-1-0.500.51两信号相乘-2000-1500-1000-500050010001500200000.0050.010.015两信号相乘频谱T=0.001 L=0.180.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-1000100020003000400000.020.040.060.08正弦信号频谱00.020.040.060.080.10.120.140.160.180.51指数信号-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.120.140.160.18-1-0.500.51-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱T=0.001 L=0.120.020.040.060.080.10.12-1-0.500.51正弦信号-4000-3000-2000-10000100020003000400000.020.040.06正弦信号频谱00.020.040.060.080.10.120.51-4000-3000-2000-10000100020003000400000.010.020.03指数信号频谱0.020.040.060.080.10.12-1-0.500.51两信号相乘-4000-3000-2000-10000100020003000400000.0050.010.015两信号相乘频谱实验1内容(2)>> N=10;n=1:NT=1x1=cos(0.48*pi*n*T)+cos(0.52*pi*n*T)X1=fft(x1,10)k=1:N;w=2*pi*k/10subplot(3,2,1);stem(n,x1);axis([0,10,-3,3]);title('信号x(n)');subplot(3,2,2);stem(w/pi,abs(X1));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N2=100;n2=1:N2T=1x1=cos(0.48*pi*[1:10]*T)+cos(0.52*pi*[1:10]*T)x2=[x1,zeros(1,90)]X2=fft(x2,N2)k2=1:N2;w2=2*pi*k2/100subplot(3,2,3);stem(x2);axis([0,100,-3,3]);title('信号x(n)补零');subplot(3,2,4);plot(w2/pi,abs(X2));axis([0,1,0,10]);title('DFTx(n)');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% N3=100;n3=1:N3T=1x3=cos(0.48*pi*n3*T)+cos(0.52*pi*n3*T)X3=fft(x3,100)k3=1:N3;w3=2*pi*k3/100subplot(3,2,5);stem(n3,x3);axis([0,100,-3,3]);title('信号x(n)');subplot(3,2,6);stem(w3/pi,abs(X3));axis([0,1,0,10]);title('DFTx(n)');n =1 2 3 4 5 6 7 8 9 10 T =1510-202信号x(n)0.510510DFTx(n)50100信号x(n)补零0.510510DFTx(n)50100信号x(n)DFTx(n)实验二 卷积定理一、实验目的通过本实验,验证卷积定理,掌握利用DFT 和FFT 计算线性卷积的方法。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验课程设计
题目:数字滤波器的设计与实现
一、课程设计目的
(1) 掌握用脉冲响应不变法和双线性变换法设计无限脉冲响应数字滤波器(IIR DF )的原理和方法;
(2) 掌握用窗函数法和频率采样设计有限脉冲响应数字滤波器(FIR DF )的原理和方法;
(3) 学会根据信号的频谱确定滤波器指标参数;
(4) 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计IIR DF 和FIR DF 。

二、课程设计原理
已知一个连续时间信号())π2cos()π2sin(21t f t f t x +=,Hz 1001=f ,Hz 3002=f ,x (t )为两个单频信号叠加后的混合信号,其时域波形和幅频特性图如图1所示。

由图可知,混合信号时域混叠,无法在时域进行分离,但是频域是分离的,可以通过设计合适的IIR DF 和FIR DF 将两个单频信号分离,形成两个单一频率信号。

-2-1
1
2
t/s
x (t )(a)混合信号时域波

050100150200250
30035040045050000.5
1
f/Hz 幅度(b)混合信号幅频特性
图1混合信号x (t )及其频谱图
三、课程设计内容
设计低通滤波器和高通滤波器将两个单频信号分离。

滤波器的通带截止频率和阻带截止频率通过观察x (t )的幅频特性图自行确定,设采样频率为Hz 1000=s f ,要求滤波器的通带最大衰减和阻带最小衰减分别为dB 50,dB 1s p ==αα。

调用MATLAB 中的滤波器设计函数编写
程序设计低通滤波器和高通滤波器(其中,低通滤波器用脉冲响应不变法和双线性变换法两种方法设计,高通滤波器用窗函数法和频率采样法两种方法设计),并绘制滤波器的幅频特性图、经滤波分离后的信号时域波形图和幅频特性图,观察分离效果。

四、课程设计报告要求
课程设计报告应包含以下几个方面的内容:
1.课程设计目的
2.课程设计要求
3.课程设计过程(包括设计步骤、完整的程序及仿真图)
4.结果分析
5.心得体会、问题或者建议
6.参考文献。

相关文档
最新文档