平面向量的应用课件课件

合集下载

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1


→ AM
= 1,12

→ BN

-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,

《平面向量应用举例》高一年级下册PPT课件

《平面向量应用举例》高一年级下册PPT课件

第二章 平面向量
[解析] 以 B 为原点,BC 所在直线为 x 轴,建立如图所示的平面直角坐标
系.
∵AB=AC=5,BC=6, ∴B(0,0),A(3,4),C(6,0), 则A→C=(3,-4). ∵点 M 是边 AC 上靠近点 A 的一个三等分点, ∴A→M=31A→C=(1,-43),
8
∴M(4,3),
第二章 平面向量
(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线 段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a· b=0(或 x1x2+y1y2=0)
_______________________________.
a· b cosθ=|a ||b|
(4)求与夹角相关的问题,往往利用向量的夹角公式________________.
第二章 平面向量
∴B→M=(4,8).
3
假设在 BM 上存在点 P 使得 PC⊥BM, 设B→P=λB→M,且 0<λ<1, 即B→P=λB→M=λ(4,83)=(4λ,83λ), ∴C→P=C→B+B→P=(-6,0)+(4λ,83λ)=(4λ-6,83λ). ∵PC⊥BM,∴C→P· B→M=0,
第二章 平面向量
[解析] A→B=(7-20)i+(0-15)j=-13i-15j, (1)F1所做的功 W1=F1· s=F1· A→B =(i+j)· (-13i-15j)=-28; F2 所做的功 W2=F2· s=F2· A→B =(4i-5j)· (-13i-15j)=23. (2)因为 F=F1+F2=5i-4j, 所以 F 所做的功 W=F· s=F· A→B =(5i-4j)· (-13i-15j)=-5.
1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)

返回导航 上页 下页
向量 a 在向量 b 上的投影向量的求法 将已知量代入 a 在 b 方向上的投影向量公式|a|cos θ e(e 是与 b 方向相同的单位向量, 且 e=|bb|)中计算即可.
必修第二册·人教数学A版
返回导航 上页 下页
2.已知|a|=4,|b|=6,a 与 b 的夹角为 60°,则向量 a 在向量 b 上的投影向量是________. 解析:向量 a 在向量 b 上的投影向量是|a|cos 60°|bb|=4×12×16b=13b. 答案:13b
我们称上述变换为向量 a 向向量 b 投影 ,A→1B1叫做向量 a 在向量 b 上的 投影向量 .
必修第二册·人教数学A版
返回导航 上页 下页
(2)如图,在平面内任取一点 O,作O→M=a,O→N=b,设 与 b 方向相同的单位向量为 e,a 与 b 的夹角为 θ,过点 M 作直线 ON 的垂线,垂足为 M1,则O→M1= |a|ecos θ . 特别地,当 θ=0 时,O→M1= |a|e . 当 θ=π 时,O→M1= -|a|e . 当 θ=π2时,O→M1=0.
返回导航 上页 下页
必修第二册·人教数学A版
⑥cos θ=|aa|·|bb|.
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 平面向量数量积的性质
预习教材,思考问题
根据实数乘法的运算律,类比得出向量数量积的运算律,如下表,这些结果正确吗?
运算律 实数乘法
平面向量数量积
交换律
ab=ba
a·b=b·a
结合律
(ab)c=a(bc)
(a·b)·c=a·(b·c) (λa)·b=a·(λb)=λ(a·b)
解析:(2a+3b)·(3a-2b) =6a2-4a·b+9b·a-6b2 =6|a|2+5a·b-6|b|2 =6×42+5×4×7·cos 120°-6×72 =-268.

高中数学第2章平面向量7向量应用举例7.1点到直线的距离公式7.2向量的应用举例课件北师大版必修

高中数学第2章平面向量7向量应用举例7.1点到直线的距离公式7.2向量的应用举例课件北师大版必修

知识点一 向量在物理中的应用
1.人骑自行车的速度为 v1,风速为 v2,则逆风行驶的速度 为( )
A.v1-v2 C.v1+v2
B.v2-v1 D.|v1|-|v2|
答案:C
2.若向量O→F1=(1,1),O→F2=(-3,-2)分别表示两个力→F1,
→F2,则|→F1+→F2|为(
)
A.(5,0)
【方法总结】 用向量的方法解决相关的物理问题,要将 相关物理量用几何图形表示出来;再根据它的物理意义建立数 学模型,将物理问题转化为数学问题求解;最后将数学问题还 原为物理问题.
如图所示,用两根分别长 5 2 米和 10 米的绳子,将 100 N 的物体吊在水平屋顶 AB 上,平衡后,G 点 距屋顶距离恰好为 5 米,求 A 处所受力的大小(绳子的质量忽略 不计).
解:设A→D=a,A→B=b,则B→D=a-b,A→C=a+b. 而|B→D|2=a2-2a·b+b2=|a|2-2a·b+|b|2=5- 2a·b=4,所以 2a·b=1. 又|A→C|2=|a+b|2=a2+2a·b+b2=|a|2+2a·b+ |b|2=5+2a·b=6, 所以|A→C|= 6, 即 AC= 6.
第二章 平面向量
§7 向量应用举例 7.1 点到直线的距离公式
7.2 向量的应用举例
课前基础梳理
自主学习 梳理知识
|学 习 目 标| 1.能运用向量的有关知识解决解析几何中直线方程的问 题,以及在平面几何中的线段平行、垂直、相等等问题. 2.能运用向量的有关知识解决物理中有关力、速度、功等 问题.
B.(-5,0)
C. 5
D.- 5
答案:C
知识点二 向量在解析几何中的应用
3.已知直线 l:mx+2y+6=0,向量(1-m,1)与 l 平行,则

《平面向量的应用》平面向量及其应用 PPT教学课件 (第二课时正弦定理)

《平面向量的应用》平面向量及其应用 PPT教学课件 (第二课时正弦定理)

必修第二册·人教数学A版
返回导航 上页 下页
同理,过点 C 作与C→B垂直的单位向量 m,可得sinc C=sinb B. 因此sina A=sinb B=sinc C. 在钝角三角形中的这个边角关系也成立.
必修第二册·人教数学A版
知识梳理 正弦定理
返回导航 上页 下页
必修第二册·人教数学A版
法二:由sina A=cobs B=cocs C 得sina A=cobs B=cocs C,① 把 a=2Rsin A,b=2Rsin B,c=2Rsin C 代入①, 得 2R=2Rtan B=2Rtan C, ∴tan B=tan C=1, 又 0°<B<180°,0°<C<180°, ∴B=C=45°,A=90°, ∴△ABC 为等腰直角三角形.
必修第二册·人教数学A版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第二册·人教数学A版
返回导航 上页 下页
[教材提炼] 知识点一 正弦定理 预习教材,思考问题 (1)在△ABC 中,若 A=30°,B=45°,AC=4,你还能直接运用余弦定理求出边 BC 吗?
返回导航 上页 下页
2.在△ABC 中,A=45°,B=30°,a=10,则 b=( )
A.5 2
B.10 2
C.10 6
D.5 6
解析:由正弦定理sina A=sinb B得 b=assiinnAB=10s×insi4n5°30°=5 2.
答案:A
必修第二册·人教数学A版
返回导航 上页 下页
3.在△ABC 中,若 A=30°,a=2,b=2 3,则此三角形解的个数为( )

第六章平面向量及其应用章末总结课件(人教版)

第六章平面向量及其应用章末总结课件(人教版)
2
2
2
由 b=3 及余弦定理 b =a +c -2accos B,
2
2
得 9=a +c -ac.
所以 a= ,c=2 .
规律总结
解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的
过程.三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平
分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时

=
(-∠)
=
在△ABC 中,BC=5,
2
2
2
2
2

由余弦定理得 AC =AB +BC -2AB·BC·cos B=8 +5 -2×8×5×=49,
所以 AC=7.
=3,
题型四
正、余弦定理的综合应用
[例 4] (2021·山西运城模拟)△ABC 的角 A,B,C 的对边分别为 a,b,c,已知

所以 tan B= ,又 0<B<π,所以 B=.
[例 3] 在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 bsin A= acos B.
(2)若b=3,sin C=2sin A,求a,c的值.


解:(2)由 sin C=2sin A 及=,得 c=2a,


所以=2,即 D 错误.故选 AB.



(2)如图所示,正方形 ABCD 中,M 是 BC 的中点,若=λ+μ,则λ+μ等于
(
)


(A)

(B)

(C)




(D)2

最新人教A版高一数学必修二课件:6.4.3平面向量的应用正弦定理

最新人教A版高一数学必修二课件:6.4.3平面向量的应用正弦定理

【解析】由题意得:sinb B=sinc C,
所以 sin B=bsicn C=
6× 3
3 2=
2 2.
因为 b<c,所以 B=45°.所以 A=180°-B-C=75°.
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
(2)解:因为sina A=sinc C,
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
2.满足 B=60°,AC=12,BC=k 的△ABC 恰有一个,则 k 的取值
范围是
()
A.k=8 3
B.0<k≤12
C.k≥12
D.0<k≤12 或 k=8 3
【答案】D
| 自学导引 |
a (2)sin
A=sinb
B=sinc
C=sin
a+b+c A+sin B+sin
C=_____2_R_____;
(3)a=__2_R__si_n__A__,b=__2_R__si_n__B__,c=__2_R_s_in__C___;
a
b
c
(4)sin A=___2_R___,sin B=___2_R___,sin C=___2_R___.
数学 必修第二册 配人版A版
第六章 平面向量及其应用
| 课堂互动 |
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用

《平面向量的概念》平面向量及其应用 PPT教学课件

《平面向量的概念》平面向量及其应用 PPT教学课件

必修第二册·人教数学A版
返回导航 上页 下页
知识梳理
名称 大小 方向
零向量 0
任意的
单位向量 1 规定了方向
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 向量的关系 预习教材,思考问题 (1)向量由其模和方向所确定.对于两个向量 a,b,就其模等与不等,方向同与不同 而言,有哪几种可能情形?
必修第二册·人教数学A版
返回导航 上页 下页
探究三 相等向量与共线向量 [例 3] 如图,四边形 ABCD 为边长为 3 的正方形,把各边三等分后,共有 16 个交 点,从中选取两个交点作为向量,则与A→C平行且长度为 2 2的向量个数有________ 个.
必修第二册·人教数学A版
返回导航 上页 下页
[解析] 如图所示,满足与A→C平行且长度为 2 2的向量有A→F,F→A, E→C,C→E,G→H,H→G,→IJ,→JI共 8 个.
[答案] 8
必修第二册·人教数学A版
返回导航 上页 下页
相等向量与共线向量的探求方法 (1)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是 同向共线. (2)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向 与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终 点的向量. 提醒:与向量平行相关的问题中,不要忽视零向量.
[自主检测] )
B.拉力 D.压强
解析:拉力既有大小又有方向,是向量,其余均是数量.
答案:B
必修第二册·人教数学A版
返回导航 上页 下页
2.下列说法正确的是( ) A.数量可以比较大小,向量也可以比较大小 B.向量的模可以比较大小 C.模为 1 的向量都是相等向量 D.由于零向量的方向不确定,因此零向量不能与任意向量平行
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x1,y1)=λ(x2,y2),即
(3)夹角公式cosθ=
ab
| a || b(0| °≤θ≤180°).
(4)模长公式|a|= | a |2 x2 y(2a=(x,y)).
(5)数量积性质|a•b|≤|a|•|b|.
2.向量应用的分类概述
(1)应用平面向量解决函数与不等式的问题,是以函数和不等 式为背景的一种向量描述,它需要掌握向量的概念及基本 运算,并能根据题设条件构造合适的向量,利用向量的“数 ”、“形”两重性解决问题.
答案:D
3.将y

2cos

x 3


6
的图象按向量a




4
,
2
.平移,

平移后所得图象的解析式为( )
A.y

2cos

x 3


4


2
B.y

2cos

x 3


4


2
C.y

2cos

x 3


12


2
D.y

2cos

x 3


12


2Leabharlann 析:函数y2cos

x 3


6
的图象按向量a




4
,
2


移后所得图象解析式为y

2cos
1 3

x


4



6


2

2cos

1 3
x


4


2, 所以选A.
答案:A
4.若直线2x-y+c=0按向量a=(1,-1)平移后与圆x2+y2=5相切, 则c的值为( )
A.1005
B.1010
C.2010
D.2015
解析:由题意知A、B、C三点共线,则a2+a2009=1.
∴S2010=
=1005×1=1005.故选A.
答案:A 2010(a1 a2010 )
2
类型一
利用向量解决平面几何问题
解题准备:一般情况下,用向量解决平面几何问题,要用不共线 的向量表示题目所涉及的所有向量,再通过向量的运算法 则和性质解决问题.
第二十六讲平面向量的应用
回归课本
1.向量应用的常用结论 (1)两个向量垂直的充要条件 符号表示:a⊥b⇔a·b=0. 坐标表示:设a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.
(2)两个向量平行的充要条件
符号表示:若a∥b,b≠0,则a=λb.
坐标表示:设a=(x1,y1),b=(x2,y2),则a∥b 或x1yxy121 -x2yxy212=, 0.
A.8或-2
B.6或-4
C.4或-6
D.2或-8
解析:直线2x-y+c=0,按a=(1,-1)平移后得直线
2(x-1)-(y+1)+c=0,即2x-y-3+c=0,
由d=r,得 答案:A
| c 3 | 5得, c=8或-2.
5
5.已知等差数列{an}的前n项和为Sn,若 OB a2 OA+a2009 ,且A、BO、CC三点共线(该直线不过点O),则S2010等于( )
3
答案:B
2.(2010 天津)如图,在 ABC中, AD AB, BC 3BD,| AD | 1, 则AC AD ( )
A.2 3 C. 3
3
B. 3 2
D. 3
解析 :因为AC BC BA 3BD BA,所以AC AD ( 3BD BA) AD 3BD AD BA AD, 又AD AB,所以BA AD 0,所以AC AD 3BD AD, 又BD AD AB,所以AC AD 3BD AD 3( AD AB) AD 3 AD2 AB AD 3.
(4)平面向量在平面几何中的应用,是以平面几何中的基本图 形(三角形、平行四边形、菱形等)为背景,重点考查平面向量 的几何运算(三角形法则、平行四边形法则)和几何图形的 基本性质.
(5)平面向量在物理力学等实际问题中的应用,是以实际问题 为背景,考查学科知识的综合及向量的方法.
注意:(1)在解决三角形形状问题时,回答要全面、准确,处理四 边形问题时,要根据平行四边形或矩形、菱形、正方形及梯 形的性质处理.
(2)用向量处理物理问题时,一般情况下应画出几何图形,结合 向量运算与物理实际进行解决.
考点陪练
1.(2010 湖北)已知 ABC和点M满足MA MB MC 0. 若存在实数m使得AB AC mAM成立,则m ( ) A.2 B.3 C.4 D.5
解析:由MA MB MC 0得点M是 ABC的重心, AM 1 (AB AC), AB AC 3AM , m 3,选B.
用向量方法解决平面几何问题的“三步曲”: ①建立平面几何与向量的联系,用向量表示问题中涉及的几
何元素,将平面几何问题转化为向量问题; ②通过运算,研究几何元素之间的关系,如距离、夹角等问题; ③把运算结果“翻译”成几何关系.
【典例1】如图,正方形OABC两边AB、BC的中点分别为D和 E,求∠DOE的余弦值.
2
4
OA OC, AB CB,OA OC 0, AB CB 0.
AB OC,OA CB,

AB
OC

2
AB
|
AB
|2 ,OA
CB

2
OA
|
OA
|2 ,
OD OE | AB |2 , 又 | OD |2 | OA |2 | AD |2
| AB |2 1 | AB |2 5 | AB |2,| OE |2 | OD | 2.
[分析]把∠DOE转化为向量夹角.
[解]解法一 : OD OA AD OA 1 AB,OE 2
OC CE OC 1 CB. 2
OD OE (OA 1 AB) (OC 1 CB)
2
2
OA OC 1 ( AB OC OA CB) 1 AB CB.
(2)平面向量与三角函数的整合,仍然是以三角题型为背景的 一种向量描述,它需要根据向量的运算性质将向量问题转 化为三角函数的相关知识来解答,三角知识是考查的主体.
(3)平面向量在解析几何中的应用,是以解析几何中的坐标为 背景的一种向量描述,它主要强调向量的坐标运算,将向量 问题转化为坐标问题,进而利用直线和圆锥曲线的位置关 系的相关知识来解答,坐标的运算是考查的主体.
相关文档
最新文档