换热系数大自然对流

合集下载

自然对流

自然对流

t t t w t
u0——任意选择的参考速度
U U gtl 1 2U U V 2 X Y u0 Re Y 2 hx x U V Nu x ( ) w, x 0 Y X Y
1 2 U V X Y Re0 Pr Y 2
u u 2u u v g (t t ) 2 y y x
பைடு நூலகம்
u u 2u u v g (t t ) 2 y y x
无量纲温度:
其他无量纲:
x y u v X ;Y ; U ; V l l u0 u0
2 gtl Gr 2 u0l 2 u 02 Re 0 ( ) gtl 3 Gr 格拉晓夫数(Grashof number) 2 Gr:浮升力与粘性力的相对大小。Gr越大,浮升力的相对作 用越大,自然对流越强 U U Gr 1 2U U V 2 X Y Re Re Y 2
6.3 自然对流
Natural Convection Heat Transfer
一、概述
静止的流体,与不同温度的 固体壁面相接触,热边界层 内、外的密度差形成浮升力 (或沉降力)
f B ( f ) g gt
导致流动
固体壁面与流体的温差是 自然对流的根本原因
层流:GrPr<108 湍流:GrPr>1010 过渡区: 108<GrPr<1010 自模化现象: 在常壁温或常热流边 界条件下,达到旺盛 紊流时,hx将保持不 变,与壁面高度无关
3 2 Pr Nu x 4 5(1 2 Pr1/ 2 2 Pr) hx x
1/ 4
(Grx Pr)1/ 4

对流换热公式汇总与分析..

对流换热公式汇总与分析..

对流换热公式汇总与分析【摘要】流体与固体壁直接接触时所发生的热量传递过程,称为对流换热,它已不是基本传热方式。

本文尝试对对流换热进行简单分类并对无相变对流换热公式简单汇总与分析。

【关键词】对流换热 类型 公式 适用范围对流换热的基本计算形式——牛顿冷却公式:)(f w t t h q -= )/(2m W或2Am 上热流量 )(f w t t h -=Φ )(W上式中表面传热系数h 最为关键,表面传热系数是众多因素的函数,即),,,,,,,,(l c t t u f h p f w μαρλ=综上所述,由于影响对流换热的因素很多,因此对流换热的分析与计算将分类进行,本文所涉及的典型换热类型如表1所示。

表1典型换热类型1. 受迫对流换热 1.1 内部流动1.1.1 圆管内受迫对流换热 (1)层流换热公式西德和塔特提出的常壁温层流换热关联式为14.03/13/13/1)()(PrRe86.1wf fff l d Nu μμ= 或写成 14.03/1)()(86.1w f f f l d Pe Nu μμ=式中引用了几何参数准则ld,以考虑进口段的影响。

适用范围:16700Pr 48.0<<,75.9)(0044.0<<wfμμ。

定性温度取全管长流体的平均温度,定性尺寸为管内径d 。

如果管子较长,以致2])()Pr [(Re 14.03/1≤⋅wf l dμμ则f Nu 可作为常数处理,采用下式计算表面传热系数。

常物性流体在热充分发展段的Nu 是)(66.3)(36.4const t Nu const q Nu w f f ====(2)过渡流换热公式对于气体,5.1Pr 6.0<<f ,5.15.0<<wf T T ,410Re 2300<<f 。

45.03/24.08.0)]()(1[Pr )100(Re 0214.0wf f f f T T l dNu +-=对于液体,500Pr 5.1<<f ,20Pr Pr 05.0<<wf ,410Re 2300<<f 。

传热学三大基本公式

传热学三大基本公式

传热学三大基本公式Nu = 2+0.6(Re^1/2)(Pr^1/3) 。

F=Q/kK*△tm F 是换热器的有效换热面积。

Q 是总的换热量。

k 是污垢系数一般取0.8-0.9K。

是传热系数。

△tm 是对数平均温差。

传热学三种传热方式可以分开学。

传热学相较于理论力学,工程热力学,流体力学而言还是比较简单的,一般大学生掌握了高等数学完全可以自学的。

学习传热学必须有耐心,了解几种换热方式和常见的几个常数公式(努谢尔特数、格拉晓夫数、伯努利常数,傅里叶常数,而且常常推导下几个常用常数公式间的关系,你会惊奇地发现他们其实不少是远亲的),其实解决传热学问题绝大多数都是在和导热系数较劲,有时候是直接涉及。

扩展资料:在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。

传热学作为学科形成于19世纪。

1804年,法国物理学家毕奥在热传导方面得出的平壁导热实验结果是导热定律的最早表述。

稍后,法国的傅里叶运用数理方法,更准确地把它表述为后来称为傅里叶定律的微分形式。

1860年,基尔霍夫通过人造空腔模拟绝对黑体,论证了在相同温度下以黑体的辐射率(黑度)为最大,并指出物体的辐射率与同温度下该物体的吸收率相等,被后人称为基尔霍夫定律。

传热的三种方式:热的传递是由于物体内部或物体之间的温度差引起的。

若无外功输入,根据热力学第二定律,热量总是自动地从温度高的地方传递至温度较低的地方。

热能的传递有三种基本方式:热传导、热对流、热辐射,下面分别介绍这三种传热方式(一)热传导物体各部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递成为热传导。

热传导的基本计算公式是傅立叶定律:在单位时间内热传导方式传递的热量与垂直于热流的截面积成正比,与温度梯度成正比,负号表示导热方向与温度梯度方向相反。

其中Q表示热流率,单位为W; dT/dx为温度梯度,单位为°C/m ;A为导热面积,单位为m2;λ为材料的导热系数,又称热导率,单位为W/(m°C) ,也可以为W/(mK) 。

传热学 西交大考试题库及答案

传热学 西交大考试题库及答案

单选题1、()是在相同温度条件下辐射能力最强的物体。

2、不稳态导热采用有限差分方法求解温度场,关于差分方程,下列说法错误的是()。

3、常物性流体管內受迫流动,沿管长流体的平均温度,在常热流边界条件下呈()变化,在常壁温边界条件下呈()规律变化。

4、单纯的导热发生在()中。

5、单位时间内离开单位表面积的总辐射能为该表面的()6、当导热过程在两个直接接触的固体表面之间迸行,为了减少接触热阻,下列做法错误的是()7、当通过回体壁面传热时,采用加肋增强传热,说法正确的是()。

8、冬天时节,棉被经过白天晾晒,晚上人盖着感觉暖和,是因为()。

9、管内受迫对流换热,当管内流速增加一倍时,表面传热系数增加比例最大的是()10、绝大多数情况卜强制对流时的对流换热系数()自然对流。

11、空间辐射热阻与()无关12、流体分别在较长的粗管和细管內作强制紊流对流换热,如果流速等条件相同,则()13、流体外掠光管束换热时,第一排管子的平均表面传热系数与后排管子平均表面传热系数相比,第一排管子的平均表面传热系数()。

14、暖气片外壁与周围空气之间的换热过程为()。

15、普朗特准则P〉1时,则()16、热传递的三种基本方式为()17、若换热器中,一侧流体为冷凝过程(相变),另一侧为单相流体,下列说法正确的是()18、同一流体以同一流速分别进行下列情况对流换热,表面传热系数最大的是()19、温度对辐射换热的影响()温度对对流换热的影响。

20、稳态导热是指()。

21、无限空间自然对流,在常壁温或常热流边界条件下,当流态达到旺盛紊流时,沿程表面传热系数将()22、物性参数为常数的一国柱导线,通过的电流均匀发热,导线与空气间的表面传热系数为定值,建立导线的导热微分方程采用()。

23、下列材料中导热系数最大的是()。

24、下列工质的普朗特数最小的是(25、下列哪个准则数反映了流体物性对对流换热的影响?()26、下列哪种设备不属于间壁式换热器?()27、下列哪种物质中不可能产生热对流()28、下列说法错误的是()29、夏季,有一锅热稀饭,为使稀饭凉的更快一些,()可以使稀饭凉得最快30、削弱辐射换热的有效方法是加遮热板,而遮热板表面的黑度应()。

自然对流换热系数与面积

自然对流换热系数与面积

自然对流换热系数与面积
自然对流换热系数与表面积之间的关系是一个重要的热传导问题。

自然对流换热系数是描述流体在自然对流过程中传热能力的参数,而表面积则是热交换的关键因素之一。

这两者之间的关系可以
从几个方面来分析。

首先,根据自然对流换热的基本原理,自然对流换热系数与表
面积之间存在着正相关的关系。

换句话说,表面积越大,自然对流
换热系数通常也会越大。

这是因为在相同的流体条件下,更大的表
面积意味着更多的热量可以通过表面传递到流体中,从而增加了传
热的能力。

其次,自然对流换热系数与表面积还受到表面形状和流体性质
的影响。

例如,表面形状的不同会影响流体在表面附近的流动状态,进而影响自然对流换热系数。

而流体的性质,如粘度、密度等,也
会对自然对流换热系数产生影响,从而间接地影响到与表面积的关系。

此外,需要注意的是,自然对流换热系数与表面积之间的关系
并不是简单的线性关系,而是受到多种因素共同作用的复杂关系。

因此,在实际工程和科研中,需要通过实验和理论分析来准确地确定自然对流换热系数与表面积之间的关系,并在设计和优化热交换设备时加以考虑。

综上所述,自然对流换热系数与表面积之间的关系是一个复杂而重要的问题,需要综合考虑流体性质、表面形状和实际工程条件等多个因素,才能准确地描述二者之间的关系。

自然对流换热试验

自然对流换热试验

自然对流换热实验报告一、实验目的(1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。

(2)测定单管(水平放置)的自然对流换热系数h 。

(3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出Pr Gr 的范围。

二、实验原理对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。

即r h c Φ-Φ=Φ (W )式中:)(f w c t t hA -=Φ;UI h =Φ;⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=Φ4f 4w 0100T 100T A c r ε,所以⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛---=4f 4w 0100T 100T )()(f w f w t t c t t A UIh ε[])(K /W ∙m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,)(420K m /W 67.5∙=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2∙m 。

当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。

根据相似理论,自然对流换热的准则为Pr),(Gr f Nr =在工业中广泛使用的是比式更为简单的经验方程式,即n Gr c Nr Pr)(=式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。

为了确定上述关系式的具体形式,根据测量数据计算结果求得努塞尔准则Nu 、格拉晓夫准则Gr 和普朗特准则Pr ,即λhDNu =; 23υβtD g Gr ∆=; a υ=Pr式中:Pr 、β(空气的体胀系数,1/K )、υ(空气的运动黏度,m 2/s )等、λ(空气的导热系数,℃)(∙m /W )等物性参数由定性温度)(2fw t t +从气体的热物理性质表查取;2/8.9s m g =;D 为圆管壁面定型尺寸,m ;f w t t t -=∆,℃。

自然对流换热

自然对流换热
自然对流换热
大空间自然对流换热:周围没有其它物体阻碍换热面上边界层 形成和发展的自然对流换热。
有限空间自然对流换热:否则称为有限空间自然对流换热 。
1大空间自然对流换热
边界层:层流→紊流。
转变点取决于温差和流体 的性质 Gr Pr>109 流态为紊流 边界层内速度分布:
y 0和y 处,均为零
y= 1 处具有最大流速
形成厚 15 mm 的竖直空气夹层。试计算通过空气夹层的自然
对流换热量。
解 定性温度 tm (tw1 tw2 ) / 2 (100 40) / 2 70℃,据此查附录得,空气物性
1.029 kg/m3 , 20.02106 m2/s , 0.0296 W/(m 1m/
4
(
h
)1/
9
Gr Pr 2 105 ~ 1.1107 时,
Num
0.073(Gr
Pr
)1m/
3
(
h
)1/
9
(5-32)
(5-33) (5-34)
以上各式的适用范围为: Pr 0.5 ~ 2 h / 11 ~ 42
准则的定,性温度 : tm (tw1 tw2 ) / 2
例 5-8 温度分别为 100℃和 40℃,面积均为0.50.5 m2 的两竖壁,
)1/
9
0.197
(1.002
104
)1m/
4
(
0.015 0.5
)1/
9
1.335
Num 1.335 0.0296 2.63 W/(m2 K)
0.015
自然对流换热量为
Q Ft 2.63(0.50.5)(100 40) 39.5 W
作业
1. 4.

大空间自然对流换热的试验关联式

大空间自然对流换热的试验关联式
d l udy dx bd面流出的质量为 0 dx
相应的动量为
d l u dx udy dx 0
注这里略去u沿x变化引入的高阶导数项 dp dp p dx l pl l dx ab,cd面压差 dx dx
于是动量定理可以表达为
§5-4
积分方程 一、物理问题
边界层积分方程组的求解及比拟理论
一块平板,垂直于屏幕方向放置,平行流体以u,t掠过平板, 平板温度为tw , tw ≠ t,将有热量传给流体(稳态、常物性)
二、数学模型(完整的数学描述应是:方程+定解条件)
1. 动量积分方程 进入ab面的动量 为
l
cd面流出的动量
w
du dy
y 0


0
u u
du u dy dx
u
0


du u dy dy
y 0
为求解上式必须补充边界层中的速度分布,选用
u f y a by cy dy
2
3
根据边界条件
y 0, u 0 y , u u
d l 2 d l dp dx u dy u dx udy w dx l dx dx 0 dx 0 dx

l d d u udy u 0 dx dx
du udy 0 dx
l
udy
0
l
代入上式
dp w l 0 udy dx d l du l dp u u udy udy w l 既 dx 0 dx 0 dx 1 2 p u const 由Bernoulli方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

uu vu 1 p 2u x y x y2
u

x

v

y

a
2
y 2
外掠平板层流边界层微分方程精确解 由量级分析得到的微分方程组,可求出速度场,温度场及局
部表面传热系数:

x
5.0Re
1/ x
2
x
C f ,x 2
0.332 Re
1/ x
2u y 2

1
u v x


1 1
v v y




p y
δ


2v x2

δ2

12
2v y 2

结论:py
2
~
,
该方程可以取消
c

1

u
x 11 1
v


y
单元体能量随时间的变化率
4 个微分方程含有4 个未知量(u、v、p、t),方程组封闭。 原则上,方程组对于满足上述假定条件的对流换热(强迫、 自然、层流、紊流换热)都适用。
第三节 边界层换热微分方程组的解
3.1 流动边界层
边界层厚度: 0. 99 u 处离壁的距离
u y
0.99u

u
x
流场划分: 主流区与边界层区;层流、过度流与紊流(利用临界距离
f t f tw y
与边界层区(粘性区)。
0.99 f
3.2 热边界层
t

x
热边界层厚度:0.99 f
处离壁的距离
w 0
3.3 数量级分析与边界层微分方程 数量级分析的基本思想:
相同量纲的量进行比较,区别不同量的量级大小; 每个基本量纲选定一个比较标准; 选一组独立的完备的标准量;
与标准量相当的量,记为 O1 的量级,简记为1,比标 准量小得多的量,记为O 的量级,简记为 ,即 1
目 标: 对微分方程组中的各项进行数量级比较,略去高阶 小量,简化方程组。
[例]:二维稳态受迫流动边界层对流换热微分方程组的数量级 分析
标准量:速度 u , 温度 f ,长度量 l 。
t y w,x
t ,u ,
第二节 对流换热微分方程组
连 续 性 方 程 对 流 换 热 微 分 方 程 组动 量 方 程 能 量 方 程 对 流 换 热 微 分 方 程 式
本节讨论常物性不可压缩牛顿型流体二维对流换热问题。
连续性方程: u v 0 x y
u x

v y

0结论:v

u
1 δ
1


u
u x
v
u y



p x


2u x2

2u y 2


1

11 1
1

1
δ
2
1 12
1
2
结论: ~ 2
2u x2

2
t Pr1/3
t x
hx

0.332
λ x
Re1x/
2
Pr1/
3
hx x1/ 2
特征数关联式:
普朗特数 Pr 物理意义:分子动量扩散与热扩散能力之比
x 方向动量方程:

u
u u vu x y
Du

p
Fx 体积力
x
压力梯度
x2u2y2u2
粘性力

D
惯性力
y 方向动量方程:


v

u
v x

v
v y
第五章 对流换热分析
本章主要内容: 阐述对流换热机理、求解对流换热的基本方 法,包括:1)理论分析方法;2)两传类比方 法,又称半经验方法;3)相似理论及换热准 则关联式,又称经验方法。
第一节 对流换热概述
1.1 牛顿冷却公式
q htw t f
因此求解 h 是对流换热计算的核心问题
1.2 对流换热影响因素

Fy

p y


2v x 2

2v y 2

能量方程:
c t
u t v t x y



xt xt
t y
t
y

Dt
单元体热扩散净得热量
D
1






2
x2

2

1 1

2
y 2
1
2

结论:x22


2
y 2
通过比较发现:对于体积力可以忽略的稳态受迫对流换热,比 较 x 和 y 方向的动量微分方程,可忽略 y 方向的动量微分方程。
数量级分析简化后的微分方程组为: u v 0 x y
流体的热物性 :
粘度定义: Ns/m2
u/y 粘度大,流动弱,热对流传递热量的能力小;
体积膨胀系数:


1v
v T

p
体积膨胀系数大,浮升力大,自然对流强,换热得 到加强。
定性温度:用以确定物性参数的特征温度。
三种常见选择方案 t f ,t w , tm t f tw / 2
h 的影响因素
流动起因 流动状态 流体的热物性 流体相变 几何因素
流动起因: 受迫流动:流速一般较大,换热系数大 自然对流:流速一般较小,换热系数小
流动状态: 层流:热扩散机理主要为分子扩散,热扩散系数一般小 紊流:流体掺混作用强化了热扩散,热扩散系数一般大
流体的热物性 : 导热系数大,热扩散能力强,对流换热系数大; 比热、密度大,热对流传递热量的能力强,壁面附 近温度梯度大,有利于对流换热;
与临界雷诺数进行判断);紊流核心与层流底层。
层流
过度流
紊流
u y u
xc
y u
c
层流底层
hx hx ,l
hx,t x
总结边界层特征,主要有四点:
(1)边界层极薄, l ;
(2)边界层内速度梯度大;
(3)边界层内分层流与紊流,紊流边界层包括紊流核心与
层流底层; (4)流场分为主流区(无粘区)
流体相变:相变热强化换热
几何因素:几何形状,尺寸,相对位置
1.3 对流换热微分方程式
hx tw t f
x


(
t y
)
w,x
对流换热 界面导热
y
t
u

y w,x
hx


t
x
(
t y
)
w,
x

hx



f ,x
(

y
)
w,x
tw tt f
相关文档
最新文档