对数

合集下载

对数公式

对数公式

推导公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b) loga(b)logb(a)=1 loge(x)=ln(x) lg(x)=log10(x)
求导数
(xlogax)'=logax+1/lna 其中,logax中的a为底数,x为真数; (logax)'=1/xlna 特殊的即a=e时有 (logex)'=(lnx)'=1/x
运算法则
① ② ③ ④ (M,N∈R+) 如果,则m为数a的自然对数,即,e=2.…为自然对数 的底,其为无限不循环小数。定义:若则 基本性质: 1、 2、 3、
换底公式
换底公式推导一: 设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ① 对①取以a为底的对数,有:log(a)(b)=m ② 对①取以c为底的对数,有:log(c)(b)=mn ③ ③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a) 推导二: 注:log(a)(b)表示以a为底b的对数。 换底公式拓展: 以e为底数和以a为底数的公式代换: logae=1/(lna)
性质
基本知识
恒等式及证 明
①; ②; ③负数与零无对数. ④ =1; ⑤;
对数公式运算的理解与推导by寻韵天下(8张)a^log(a)(N)=N (a>0,a≠1)推导:log(a) (a^N)=N恒等式 证明
在a>0且a≠1,N>0时 设:当log(a)(N)=t,满足(t∈R) 则有a^t=N; a^(log(a)(N))=a^t=N; 证明完毕
对数公式
数学中的一种常见公式

对数总结知识点

对数总结知识点

对数总结知识点一、对数的定义1.1 对数的基本概念对数是指数的倒数,它描述了某个数在底数为固定值时的指数。

设a和b是两个实数,并且a>0且a≠1,若a的x次幂等于b,即a^x=b,则称x是以a为底b的对数,记作x=loga(b)。

其中,a称为对数的底数,b称为真数,x称为指数。

对数的底数a通常取2、e或者10。

1.2 对数的特性对数有几个重要的特性:(1)当b=a^1时,对数的值为1,即loga(a)=1;(2)当b=1时,对数的值为0,即loga(1)=0;(3)当b=a^0时,对数的值不存在,即loga(0)是无意义的,因为0没有对数;(4)当b=a^(-1)时,对数的值等于-1,即loga(a^(-1))=-1;(5)当a=1时,对数不存在,因为1的任何次幂都是1,没有唯一的对数。

以上就是对数的基本概念和特性,通过这些概念,我们可以初步了解对数的意义和性质。

接下来,我们将介绍对数的性质和运算规则。

二、对数的性质和运算规则2.1 对数的性质对数具有一些重要的性质,这些性质在对数的运算中起着重要的作用。

下面我们来介绍对数的性质:(1)对数的反函数性质:指数函数和对数函数是互为反函数的,即a^loga(x)=x,loga(a^x)=x;(2)对数的除法性质:loga(x/y)=loga(x)-loga(y),即对数的商等于对数的差;(3)对数的乘法性质:loga(xy)=loga(x)+loga(y),即对数的积等于对数的和;(4)对数的幂性质:loga(x^k)=k*loga(x),即对数的幂等于指数与对数的乘积。

通过以上性质,我们可以在对数的运算中简化表达式,更方便地进行计算和推导。

接下来,我们来介绍对数的运算规则。

2.2 对数的运算规则对数的运算规则主要包括:换底公式、对数的乘除法、对数的幂运算等。

(1)换底公式:当底数相同时,不同的对数可以相互转化,即loga(b)=logc(b)/logc(a),其中a、b、c为正数,且a≠1,c≠1。

高中数学对数的知识点总结

高中数学对数的知识点总结

高中数学对数的知识点总结一、对数的定义1. 对数的概念对数是指数的逆运算。

设a为正实数且a≠1,a的正实数b的对数写作logₐb,读作“以a为底b的对数”。

其中a称为底数,b称为真数。

即logₐb=c,是等价的关系式a^c=b。

例如,log₂8=3,即等式2^3=8成立。

2. 对数的性质(1)底数为1时,b=1,a=1,log₁1=0;即logₐa=0。

(2)底数为正数时,即a>0,且a≠1时⒈对于任意正数b,1≠b,底数相等时,对数相等,即a>0,a≠1时,logₐb=logₐc,当且仅当b=c。

即对于任意正数b,0<a≠1,等式a^x=b的解是唯一的。

⒉对于任意正数a,b,c,当a>0,a≠1时,loga(b*c)=loga(b)+loga(c)。

⒊对于任意正数a,b,c,当a>0,a≠1时,loga(b/c)=loga(b)-loga(c)。

⒋对于任意正数a,b,当a>0,a≠1时,loga(b^c)=c*loga(b),其中c是常数。

3. 对数的求值对数的求值即是用对数的性质,把对数的计算用其它运算替代。

4. 对数的应用对数是一个非常重要和常见的概念,在数学中有着广泛的应用。

在科学、工程、经济和社会等领域中,对数都有着重要的作用。

例如在地震、声音、强度、音乐、语言学和政治领域等,都用到对数。

二、对数的基本概念1. 对数方程的解法对数方程的解法是通过对数的性质来解对数方程。

分为以下几种类型:(1)把一个对数方程转化为同底数的对数方程,通过对数的定义和性质,解方程找到x的值。

(2)两个底数不同的对数方程,通过换底公式进行计算,转换成相同底数的对数方程。

2. 对数不等式的解法对数不等式的解法是把对数引入不等式组成的方程中,然后进一步思考分析,解不等式。

对数不等式常见的类型有以下几种:(1)把对数不等式分解为多个对数方程,然后再求解。

3. 对数方程组的解法对数方程组的解法是将多个对数方程组合成一个方程,然后根据对数的性质和方程组的解法,求解出方程组的解集。

对数的概念

对数的概念

2 3
16
A.①②
B.③④
② logx8=6
2

lg 100=x
1 2
④ -ln e2=x -2
C.②④
D.②③
【思路导引】利用指数、对数的互化求解验证.
【解析】选C.由log64x=
2 3
得,x=
2
64 3
1
,所以①错误;由logx8=6得,
16
x6=8,所以x2=2且x>0,
所以x= 2 ,所以②正确; 由log10100=x得,10x=100.所以x=2,所以③错误; 由-ln e2=x得,x=-2,所以④正确;
D.4
2
【解析】选B.因为logx8=3,所以x3=8,解得x=2.
3.(教材二次开发:练习改编) 若10m= 3 ,则m=_______. 【解析】因为10m= 3 ,则m=lg 3 . 答案:lg 3
4.ln(lg 10)=_______. 【解析】ln(lg 10)=ln 1=0. 答案:0
D.2 2
【思路导引】1.先利用指数运算性质拆分,再利用对数恒等式求值. 2.利用指数对数互化表示出x,再代入利用对数恒等式求值.
【解析】1.选A. 21log2 2 21 2log2 2 1 2 2 .
2
2
2.由x=log43,
则2·4x+4-x=2· 4log43 4-log43 =2×3+ 答案:19
3
1 =6 1 19.
4log4 3
33
【解题策略】关于对数恒等式的应用 首先利用指数运算性质变形,变形为 alogab 的形式,再利用对数恒等式计算 求值.
【跟踪训练】
(2020·绍兴高一检测)若a=log23,则2a+2-a=_______.

数学 对数

数学 对数

数学对数
对数(Logarithm)是指某个数a,经过换底公式后,与另一个正数b
之积相等的指数p的值(p也称为以a为底b的对数,即loga b=p)。

即。

b=a^p。

对于任意的正整数a和b,a^(loga b) = b。

其中a称为底数,b称
为真数,loga b称为对数,p称为指数。

对数的性质包括:
1.对数具有唯一性,即两个不同的数不可能有相同的对数。

2.对数的值域为实数。

3.相同底数的对数可以用乘法法则和幂法则计算。

4.不同底数的对数可以用换底公式进行转换。

5.对数的基本运算有加减乘除四则运算法则。

常用的对数包括:
1.自然对数(以e为底的对数):loge x(通常表示为ln x)。

2.常用对数(以10为底的对数):log10 x(通常不写底数,直接表
示为log x)。

3.二进制对数(以2为底的对数):log2 x。

对数在数学中有广泛的应用,如在指数函数中、在计算质数等方面。

数学对数知识点总结

数学对数知识点总结

数学对数知识点总结一、对数的定义对数是指数的逆运算。

设a是一个正数且不等于1,b是一个正数,则称指数y是对数a 的b的(用符号表示为y=logab),当且仅当a^y=b。

其中,a称为对数的底数,b称为真数。

对数的定义是由指数的概念推广而来的。

指数运算是将一个数乘以自身多次,而对数运算则是找到一个数是底数的多少次方。

对数的定义可以推广到任意的底数,不仅仅限于正数,也可以是复数、矩阵等。

在实际应用中,我们通常使用对数的底数为10(常用对数)或者自然对数(底数为自然常数e)。

二、对数的性质1. 对数的基本性质对数有一系列基本性质:(1)对数的底数不等于1;(2)对数的底数不能为0或者负数;(3)对数的真数必须是正数。

2. 对数的运算性质在对数运算中,有一系列运算性质:(1)对数与幂的运算法则:loga(mn)=logam+log an;对数与商的运算法则:loga(m/n)=logam−logan。

(2)换底公式:logab=logcb/logca。

(3)对数的负数和零:loga(1)=0,loga(a)=1,loga(1/a)=-1。

(4)对数的乘方法则:logaax=x。

3. 对数函数的性质对数函数是一个重要的函数类型,它有一系列的性质:(1)对数函数的图像是一条直线,斜率为1,截距为0。

(2)对数函数是单调增函数,即x1<x2时,logax1<logax2。

4. 对数的极限性质对数函数在极限计算中有一些特殊性质:(1)lim(x→+∞) logax=+∞。

(2)lim(x→0+) logax=−∞。

5. 对数的导数性质对数函数的导数性质是:(1)(logax)′=1/(xlna)。

三、对数的应用对数在数学和其他学科的应用中有着广泛的应用。

以下是对数的一些典型应用:1. 计算问题对数在计算中有很多应用。

例如在计算机科学中,对数是一种常用的数据结构。

对数的运算性质可以帮助我们在计算中简化复杂的问题,提高计算的效率。

对数的概念(高中数学)

对数的概念(高中数学)

(2)由log3(lg x)=0得lg x=1,∴x=10.]
22
1.若本例(2)的条件改为“ln(log3x)=1”,则x的值为________. 3e [由ln(log3x)=1得log3x=e,∴x=3e.] 2.在本例(2)条件不变的前提下,计算x-12的值. [解] ∵x=10,∴x-12=10-12= 1100.
31
(2)由log2x=-23,可得x=2-23,
∴x=1223= 3 14=322. (3)由x=log2719,可得27x=19, ∴33x=3-2,∴x=-23. (4)由x=log1216,可得12x=16, ∴2-x=24,∴x=-4.
a>0, a≠1, 解得0<a<5且a≠1,故选B.]
4.ln 1=________,lg 10= ________.
10
0 1 [∵loga1=0,∴ln 1= 0,又logaa=1,∴lg 10=1.]
11
合作探究 提素养
12
指数式与对数式的互化 【例 1】 将下列对数形式化为指数形式或将指数形式化为对数形式: (1)2-7=1128;(2)log1232=-5; (3)lg 1 000=3;(4)ln x=2.
5
10 e
6
思考:为什么零和负数没有对数? 提示:由对数的定义:ax=N(a>0 且 a≠1),则总有 N>0,所以转化为 对数式 x=logaN 时,不存在 N≤0 的情况.
7
B [∵a2=M,∴logaM=2,故 1.若 a2=M(a>0 且 a≠1),则有 选B.] () A.log2M=a B.logaM=2 C.log22=M D.log2a=M
2.若 log3x=3,则 x=( ) A.1 B.3 C.9 D.27

对数与对数函数

对数与对数函数

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: logaa=1;如果a=1或=0那么logaa 就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象Oxyy = l o g x a ><a <a111( ))底数互为倒数的两个对数函数的图象关于x (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是1 11111 1xxxxy y y yOO OOABC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是yyO x yO x yABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B.答案:C9.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1Oxy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f(x 2)]<f (221x x +)成立的函数是 A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47.(2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.(2004年苏州市模拟题)已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169. 小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数是由苏格兰数学家纳皮尔发明的,纳皮尔为了简化天文学问题的球面三角计算,在没有指数概念的情况下发明了对数,并于1614年在《奇妙对数定律说明书》中,介绍了他的方法和研究成果.
18世纪的欧拉深刻地揭示了指数与对数的密切联系,他曾说“对数源出于指数”。

在纳皮尔的著作发表40年后,对数传入我国,logarithm一词被译成“比例数”,后又逐步演变成“对数”,意指“对(照)表中的数”,清代数学家戴照等,经过独立的刻苦研究,也取得了很多成就。

现在通用的“常用对数”,是与纳皮尔同时期的英国数学家布里格斯引入的,并于1617年出版了常用对数表.1622年,英国数学家斯皮德尔给出了以e为底的自然对数表.
恩格斯在他的著作《自然辩证法》中,曾经把笛卡儿的坐标系、纳皮尔的对数、牛顿和莱布尼茨的微积分共同称为17世纪的三大数学发明.法国著名的数学家、天文学家拉普拉斯曾说:对数可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”
由此可见,对数的发明对于人们研究科学和了解自然起了重大作用.。

相关文档
最新文档