温度数据采集系统

合集下载

基于单片机的多通道温度精确采集系统设计

基于单片机的多通道温度精确采集系统设计
图 3 AD 590 的基本接法
213 系统的功能流程 图 4 为系统的功能流程图, 系统开机后首先进行
初始化处理, 进而判断M CU 的约定管脚电平情况, 以 确定进行数据采集还是上传。 如判断为采集, 则进行 相应的程控顺序执行数据的采集、运算放大、A D 转 换及存储任务。如判断为上传, 则响应传输子程序, 判 断上位机 (PC 机) 发来的握手信号, 符合约定则进行 数据的上行传送。
(参考文献和英文摘要转第 21 页)
2008 年第 2 期 机 械 工 程 与 自 动 化
·21·
次保存到产品数据库时只需将零件数量累加。
图 2 数据提取与入库过程图
图 3 属性块遍历对话框
6 结束语 标题栏、 明细表信息以产品数据的, 用户可以根据零件 代号快速检索到零件图号、 图纸文件的存取路径等信
图 2 M A X 191 外围电路图
212 AD 590 T I 变换器 AD 590 是常用的T I(温度 电流) 变换器, 是一个
二端器件, 成本低。它是以电流为输出来指示温度, 使 用时不需要考虑传输线上的电压信号损失和噪声干
扰, 具有很高的测量精度, 广泛应用于远距离测温、远 距离控温和多点测温等控制系统中。图3 为AD 590 的 基本接法。
[ 4 ] 刘小康, 彭东林, 张兴红. 12 位A D 转换器M A X 191 及其 应用[J ]. 电子设计应用, 2002 (11) : 90291.
[ 5 ] 张西. 基于M CS- 51 单片机的测温系统[J ]. 测控技术与 设备, 2002 (6) : 31233.
D esign of the Prec ise M ulti-channel Tem pera ture Collection System Ba sed on M CU

温度采集电子系统设计报告

温度采集电子系统设计报告

温度采集电子系统设计报告1. 简介本报告介绍了一个温度采集电子系统的设计。

该系统可以实时采集环境温度,并将数据传输到计算机进行处理和显示。

本报告将详细介绍系统的硬件设计和软件实现。

2. 硬件设计2.1 传感器选择为了实时采集温度数据,我们选择了一款精度高、响应快的温度传感器。

该传感器具有数字输出和I2C接口,能够方便地与单片机进行通信。

2.2 单片机选择我们选用了一款功能强大的单片机作为系统的主控芯片。

该单片机具有丰富的外设接口和强大的计算能力,能够满足系统的需求。

同时,该单片机还有丰富的开发资源和社区支持,使得开发过程更加便捷。

2.3 电路设计系统的电路设计主要包括传感器和单片机之间的连接电路和稳压电路。

传感器与单片机的连接采用了I2C接口,通过外部电阻进行电平转换和保护。

稳压电路采用了线性稳压芯片,确保供电电压的稳定性。

3. 软件实现3.1 硬件驱动为了与传感器进行通信,我们编写了相应的硬件驱动程序。

该驱动程序通过配置单片机的I2C接口,实现了与传感器的数据交换和控制。

3.2 数据采集与处理在软件实现中,我们使用了单片机的定时器和ADC模块来定期采集温度数据。

通过ADC转换,我们可以将模拟温度信号转换成数字信号。

随后,我们对这些数据进行滤波和校准,以获取准确的温度值。

3.3 数据传输与显示为了将采集到的温度数据传输到计算机,我们使用了串口通信。

通过配置单片机的UART模块和计算机的串口接口,我们可以实现数据的传输。

在计算机端,我们编写了相应的数据接收和显示程序,实现了温度数据的实时显示。

4. 实验结果与分析经过实验测试,系统能够准确、稳定地采集温度数据,并进行实时显示。

通过与其他温度计的比较,我们发现系统的测量误差在可接受范围内。

系统的响应速度也非常快,能够在短时间内实时更新温度数据。

5. 总结通过设计和实现温度采集电子系统,我们成功地实现了温度数据的实时采集和显示。

该系统具有稳定性高、响应速度快的特点,可以满足实际应用的需求。

DS18B20温度采集系统

DS18B20温度采集系统

3.单片机的晶振电路:
4.单片机的复位电路:
三、显示电路
a fg b
ed c h
1.数码管的分类
数码管按段数分为七段数码管和八段数码管,八段
数码管比七段数码管多一个发光二极管单元(多一个小 数点显示);按能显示多少个“8”可分为1位、2位、4 位等等数码管;按发光二极管单元连接方式分为共阳极 数码管和共阴极数码管。共阳数码管是指将所有发光二 极管的阳极接到一起形成公共阳极(COM)的数码管。共 阳数码管在应用时应将公共极COM接到+5V,当某一 字段发光二极管的阴极为低电平时,相应字段就点亮。 当某一字段的阴极为高电平时,相应字段就不亮。共阴 数码管是指将所有发光二极管的阴极接到一起形成公共 阴极(COM)的数码管。共阴数码管在应用时应将公共极 COM接到地线GND上,当某一字段发光二极管的阳极 为高电平时,相应字段就点亮。当某一字段的阳极为低 电平时,相应字段就不亮。
P1口、P2口(P1.0-P1.7,1-8脚;P2.0-p2.7,21-28脚): 都是上拉电阻的8位准双向I/O端口。每一位可以驱动4个LS 型TTL负载。在访问片外EPROM/ROM时,P2口可以输出高 8位地址。
P3口(P3.0-P3.7,10-17脚):P3口是一个带内部上拉电 阻的8位准双向I/O端口。P3每一位都能驱动4个LS型TTL负 载。P3口的引脚还具有第二功能。
P3口线的第二功能入下表所示
口 线 替代的第二功能 P3.0 RXD(串行口输入) P3.1 TXD(串行口输出) P3.2 INT0(外部中断0输入) P3.3 INT1(外部中断1输入) P3.4 T0(定时器0的外部输入) P3.5 T1(定时器1的外部输入) P3.6 WR(片外数据存储器“写选通控制”输出) P3.7 RD(片外数据存储器“读选通控制”输出)

美国MESALABS Data Trace(温度、压力、湿度)数据采集器

美国MESALABS  Data Trace(温度、压力、湿度)数据采集器

DataTrace® MPIII 数据采集系统是一款功能强大,应用范围宽广的无线数据采集系统。

它由两部分组成:结构小巧轻便的数据采集器、用于读取和编辑数据的电脑接口和软件。

可用于产品生产、存储和运输过程中温度、压力、相对湿度的监测。

深圳市一测医疗测试技术有限公司是一家专注于医疗器械测试产品和技术的研发、销售与服务为一体的“国家高新技术企业”,我们拥有自主研发的国家发明专利技术并且代理了众多国外先进专业测试产品,如气体容量校准器、称重法输液系统分析仪、输液系统分析仪、Data Trace(温度、压力、湿度)数据采集器等。

(湿度数据采集器)(温度数据采集器)(压力数据采集器)产品特性:1、无线数据采集;2、大范围高精度;3、用于现场校准,电池可更换;4、16,000 个 NIST 可追踪的数据点;5、满足 FDA 21 CFR Part 11(联邦法规 21 章第 11 款)的标准;6、本质安全应用范围:制药和医疗;食品和饮料;环氧乙烷灭菌;灭菌验证;工艺设备和消毒;产品加工和储存;纺织制造;电子、化工、航空航天和其它工业的热加工过程。

技术参数:以上就是深圳一测医疗给大家介绍美国MESALABS MPRF Temperature Logger Data Trace(温度、压力、湿度)数据采集器相关信息,如果您还想了解更多的相关事项可以拨打我们的热线电话,可以点击我们的官网在线实时咨询我们,或者关注我们的官方微信公众号,我们会有专业的工作人员为您解答。

我们通过与国际优秀的医疗器械测试仪器制造商和专业实验室的广泛深入合作以及国内行业专家的紧密交流与协作,并严格按照ISO9001:2015质量管理体系要求为医疗器械产业在研发、生产,监督、检验,在用售后、培训,教学与研究等各领域客户提供完善的医疗器械测试整体解决方案和专业的技术服务。

18B20 温度采集系统硬件电路(二)方案设计

18B20 温度采集系统硬件电路(二)方案设计

SetOutput()设置缓冲区输出数据等。
MSComm 使用时主要注意的就是数据形式的变换,代码如下:
VARIANT variant_inp = m_ctrlComm.GetInput(); //读缓冲区
COleSafeArray safearray_inp = variant_inp;
//VARIANT 型 变 量 转 换 为
位置,layer 为显示的层,width 为要显示的宽度
void Init_DS18B20(void);
//18B20 初始化
uchar ReadOneChar(void);
//从 18B20 读一个字节
void WriteOneChar(unsigned char dat); //向 18B20 写一个字节
的形式,列表框适合表示实时温度,曲线图适合观察长期的温度变化和温度变化范围。 ( 2 ) 默 认 使 用 COM1 、 19200bps 波 特 率 , 可 以 进 行 设 定 , 串 口 可 选 择
COM1/COM2/COM3,波特率可以选择 4800bps/9600bps/19200bps/38400bps。 (3)可以设定温度采集时间间隔,单位是 S,最小值是 1。(定时使用的是 SetTimer
三、上位机软件 上位机软件使用 .0 编写: 1、由于需要做出温度曲线,采用 Window API 画图较为繁琐且不易控制,这里采用专
业的图表控件 TeeChart Pro ActiveX 8.0 试用版: TeeChart Pro 是西班牙 Steema Software 公司开发的图表图形控件,它适用于 VB、
-1-
(三)实习报告
一、实现的功能: 1、下位机程序 (1)在没有连接上位机软件的时候,可以按通讯键来采集温度并用液晶显示出来,

温度采集系统课程设计

温度采集系统课程设计

1 引言1.1 单片机概述单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。

它又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O 设备。

概括的讲:一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

同时,学习使用单片机是了解计算机原理与结构的最佳选择。

1.2 温度采集设计背景随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。

在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技构中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域己经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能温度传感器目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。

基于蓝牙的无线温度采集系统设计【毕业作品】

基于蓝牙的无线温度采集系统设计【毕业作品】

BI YE SHE JI(20 届)基于蓝牙的无线温度采集系统设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月摘要:本课题设计的是一套无线温度数据采集系统,主要用于对环境温度的采集与监控。

系统采用基于无线网络的设计思想和温度采集技术。

无线传输可让远程布线所带来的施工麻烦减少,成本大的劣势。

本设计用单片机AT89C51为主的硬件,设计了包括检测温度,温度显示,系统控制,串口通信等外围电路。

单片机AT89C51作为主单片机完成测量和控制以及与通信单片机的数据通信、无线收发控制等功能。

无线温度数据采集系统是利用下位机设置温度上下限和实时温度的采集,并将结果传输到上位机,以达到对温度的比较、控制。

关键词: AT89C51 温度采集蓝牙模块 DHT11温湿度传感器指导老师签名:Based on the bluetooth wireless temperature acquisition Abstract:This paper introduces a kind of wireless monitoring system which is used to control temperature condition. The system adopts wireless network and temperature collect technique. The wireless communication can avoid the shortcoming of remote wire transmission, such as large wastage, high cost etc. This design uses AT89C51,The monolithic integrated circuit is the main hardware,In order to realize design goal this design including temperature gathering,the temperature demonstrated that,the systems control,strung together periphery electric circuit and so on mouth correspondence.The main MCU (AT89C51) takes charge of measurement,control and communication with the communication MCU. The communication MCU (AT89C51) is used to control receiving and sending data in the wireless communication. The system wireless temperature control system is uses in the lower position machine establishment temperature the lower limit,with real-time temperature gathering,transmits to on position machine,by achieves to the temperature comparison,the control.Keywords: AT89C51 Temperature gathering Bluetooth Module DHT11 Temperature Humidity SensorSignature of Supervisor:目录1 绪论2 方案论证2.1温度采集方案 (2)2.2无线数据传送方案 (2)2.3显示界面方案 (2)3 系统总体设计3.1系统总体分析 (4)3.2设计原理 (5)4、各个元器件及芯片简介4.1 AT89C51单片机介绍 (7)4.2 DHT11温度传感器简介 (8)4.3 蓝牙模块介绍 (10)4.4蓝牙串口通信助手 (12)4.5 1602液晶显示屏介绍 (14)5、各部分电路设计5.1 电源电路 (15)5.2 复位电路 (15)5.3 串口电路 (16)5.4 显示电路 (17)5.5 系统整体电路图 (18)6程序分析与设计7、制作与调试7.1 硬件调试方法 (20)7.2 软件调试方法 (20)结论 (23)参考文献 (24)致谢 (25)附录1:硬件总图 (25)附录2:温度采集部分编程 (26)1、绪论现代工业和农业的生产,对数据采集的传输大部分是有线的,因为有线传输的距离、速率和抗干扰能力都比无线好;但对那些很偏的或不方变搞线缆的地方进行温度检测时,采用无线就要优于有线了对于这个功能,设计无线数据采集与监控系统的无线传输。

基于LabView的温度采集系统

基于LabView的温度采集系统

基于LabView的温度采集系统摘要:随着工业的不断发展,对温度测量的要求越来越高,而且测量范围也越来越广。

本设计用LabView软件在PC机上编程实现了多点温度采集、动态图形显示、数据存储、报警、数据分析等功能,并重点对基于LabVIEW的虚拟温度采集系统的设计进行了讨论。

关键词:LabVIEW; 温度采集0引言进入21世纪以来,作为测试技术的一个分支,虚拟仪器的开发和研制在国内得到了飞速的发展。

它可以利用计算机显示器的显示功能来模拟传统仪器的控制面板,以多种形式表达输出检测结果。

目前,常用的温度采集系统绝大部分是由集成温度传感器和单片机构成的,设计过程繁琐、调试期长、修改不方便。

本文借助LabVlEW 图形化软件开发系统,用软件代替DAQ数据采集卡设计的这种虚拟温度采集系统,比以前的更易修改且成本低、周期短。

1 设计思想该系统的功能框图如图1所示。

图1 系统功能框图本温度采集系统的设计采用软件代替了DAQ数据采集卡,使用Demo read voltage子程序来仿真电压测量,然后把所测得的电压值转换成摄氏或华氏温度读数。

在数据采集过程中,实时地显示数据。

当采集的温度值大于设定的高限报警数值时,就会点亮高报警红色灯,同时触发条件结构里的事件发生,使系统发出蜂呜声。

当采集过程结束后,在图表上画出数据波形,并算出最大值、最小值和平均值,并自动产生数据文件的头文件,它包括操作者名字和文件名,将采集的数据附在头文件后面,以供查询。

2 子程序设计2.1 温度计子程序温度计界面程序如图2所示。

在框图程序中设定温度计的标尺范围为0.0到100.0,在前面板窗口中放入竖直开关控制用下选择“温度值单位”,即选择以华氏还是摄氏显示。

图2 温度计程序图2.2 实现步骤1、点击框图程序窗口的空白处,弹出功能模板,从弹出的菜单中选择所需的对象。

本程序用到下面的对象:Multiply(乘法)功能,将读取电压值乘以100.00,以获得华氏温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器DS18B20,数据的发送和接收采用无线数据收发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。

3.1 数字温度传感器DS18B203.1.1 DS18B20 的性能特点DS18B20 是由DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个DS18B20,很方便。

具有以下特点:(1)具有独特的1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件;(4)可以直接从数据线供电,电源电压范围在3~5.5V;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。

DS18B203 脚封装的管脚排列图如图3.1.1 所示。

图 3.1.1 DS18B20 管脚排列图DS18B20 只有三个引脚。

其中,引脚 1 和 3 分别是GND 和VDD,引脚 2 是DQ 端,是用于数据信息的输入和输出。

当给DS18B20 加电后,单片机可以通过DQ 端写入命令,并可以读出含有温度信息的数字量。

在使用寄生电源情况下,可以向DS18B20 提供电源。

3.1.2 DS18B20 的内部结构DS18B20的内部框图如图3.1.2所示。

图3.1.2 DS18B20的内部框图DS18B20主要由64位ROM、温度传感器、非易失性温度报警触发器TH和TL及暂存器四部分组成。

64位ROM存储器具有独一无二的序列号,可以看作是该DS18B20的地址系列号,是在出厂前就被光刻好的。

暂存器各字节具有不同的意义,0和1字节是用于存储温度传感器数字输出的温度寄存器;2字节和3字节分别是非易失性上限报警触发寄存器(TH)和下限报警触发寄存器(TL);4字节的配置寄存器能够用来设置温度转换的精度;5、6和7字节作为内部保留使用。

DS18B20有两种供电方式,可以使用寄生电源供电,也可以使用外部电源。

在使用寄生电源的时候,不用外部电源,而是在总线为高时由DQ端提供电源,同时向内部电容充电,以求在总线拉低时为DS18B20提供电量。

上电后,DS18B20进入空闲状态;当MCU向DS18B20发出Convert T [44h]的命令后,DS18B20 向MCU传送转换状态,开始温度测量和A/D转换。

温度数据以带符号位的补码形式存储在温度寄存器中,温度寄存器格式如图3.1.3所示。

图3.1.3 DS18B20温度寄存器格式温度的正负值是由符号为来说明的,正为0,负为1。

表3.1给出一部分数字数据与温度的对应关系。

表3.1 DS18B20温度与数据对应关系温度数字输出(二进制)数字输出(十六进制)+125℃000001111101000007D0h+25.0625℃00000001100100010191h+10.125℃000000001010001000A2h+0.5℃00000000000010000008h0℃00000000000000000000h-0.5℃1111111111111000FFF8h-10.125℃1111111101011110FF5Eh-25.0625℃1111111001101111FE6Fh-55℃1111110010010000FC90h3.1.3 DS18B20芯片ROM指令表Read ROM(读ROM)[33H] (方括号中的为16进制的命令字)这个命令允许总线控制器读到DS18B20的64位ROM。

只有当总线上只存在一个DS18B20的时候才可以使用此指令,如果挂接不止一个,当通信时将会发生数据冲突。

Match ROM(指定匹配芯片)[55H]这个指令后面紧跟着由控制器发出了64位序列号,当总线上有多只DS18B20时,只有与控制发出的序列号相同的芯片才可以做出反应,其它芯片将等待下一次复位。

这条指令适应单芯片和多芯片挂接。

Skip ROM(跳跃ROM指令)[CCH]这条指令使芯片不对ROM编码做出反应,在单芯片的情况之下,为了节省时间则可以选用此指令。

如果在多芯片挂接时使用此指令将会出现数据冲突,导致错误出现。

Search ROM(搜索芯片)[F0H]在芯片初始化后,搜索指令允许总线上挂接多芯片时用排除法识别所有器件的64位ROM。

Alarm Search(报警芯片搜索)[ECH]在多芯片挂接的情况下,报警芯片搜索指令只对符合温度高于TH或小于TL报警条件的芯片做出反应。

只要芯片不掉电,报警状态将被保持,直到再一次测得温度什达不到报警条件为止。

3.1.4 DS18B20芯片存储器操作指令表:Write Scratchpad (向RAM中写数据)[4EH]这是向RAM中写入数据的指令,随后写入的两个字节的数据将会被存到地址2(报警RAM之TH)和地址3(报警RAM之TL)。

写入过程中可以用复位信号中止写入。

Read Scratchpad (从RAM中读数据)[BEH]此指令将从RAM中读数据,读地址从地址0开始,一直可以读到地址9,完成整个RAM数据的读出。

芯片允许在读过程中用复位信号中止读取,即可以不读后面不需要的字节以减少读取时间。

Copy Scratchpad (将RAM数据复制到EEPROM中)[48H]此指令将RAM中的数据存入EEPROM中,以使数据掉电不丢失。

此后由于芯片忙于EEPROM储存处理,当控制器发一个读时间隙时,总线上输出“0”,当储存工作完成时,总线将输出“1”。

在寄生工作方式时必须在发出此指令后立刻超用强上拉并至少保持10MS,来维持芯片工作。

Convert T(温度转换)[44H]收到此指令后芯片将进行一次温度转换,将转换的温度值放入RAM的第1、2地址。

此后由于芯片忙于温度转换处理,当控制器发一个读时间隙时,总线上输出“0”,当储存工作完成时,总线将输出“1”。

在寄生工作方式时必须在发出此指令后立刻超用强上拉并至少保持500MS,来维持芯片工作。

Recall EEPROM(将EEPROM中的报警值复制到RAM)[B8H]此指令将EEPROM中的报警值复制到RAM中的第3、4个字节里。

由于芯片忙于复制处理,当控制器发一个读时间隙时,总线上输出“0”,当储存工作完成时,总线将输出“1”。

另外,此指令将在芯片上电复位时将被自动执行。

这样RAM中的两个报警字节位将始终为EEPROM中数据的镜像。

Read Power Supply(工作方式切换)[B4H]此指令发出后发出读时间隙,芯片会返回它的电源状态字,“0”为寄生电源状态,“1”为外部电源状态。

3.1.5 DS18B20 的测温原理DS18B20的温度测量原理框图如图3.4所示。

主要由斜坡累加器低温、高温系数振荡器、计数器和温度寄存器组成的。

斜坡累加器主要是用来补偿测量温度过程中产生的非线性的,从而可达到较高的分辨率,并决定计数器1的重置。

低温系数振荡器主要是用于产生脉冲信号,它受温度影响不大。

高温系数振荡器主要是作为计数器2的输入,用于决定门周期,受温度影响较大。

DS18B20的测温过程如下:(1)预置计数器1和温度寄存器。

预置值为-55℃所对应的某一基数。

(2)当低温系数振荡器产生一个脉冲时,计数器1就减1。

(3)当计数器1的预置值减到0时,温度寄存器加1,同时将计数器1重置。

(4)在计数器2减到0(即门周期结束)之前,重复对低温系数振荡器产生的脉冲进行计数。

当计数器2减至0(即门周期结束)时,温度寄存器停止累加。

此时温度寄存器中的值就是所测温度。

图3.4 DS18B20温度测量原理框图3.1.6 DS18B20 的电源DS18B20的工作电源可以有两种方式产生,一种是采用寄生电源,另一种是在端口VDD处直接接入外部电源。

连接方式如图3.5(a)、(b)所示。

采用第一种方式DS18B20的VDD和GND都接地,只从单总线中汲取电源和与外界通信。

通过单总线在信号为高电平时为内部电容充电,将电能储存起来,这样当为低电平时仍旧可以工作,直至下一高电平。

使用第二种方式时,GND接地,VDD接+3~+5V的电源。

寄生电源虽然可以节省一条电源线,但在多个节点同时温度转换的时候,可能造成供电不足,使得转换时间过长从而造成测量速度变慢。

外接电源可以避免这一状况。

图3.5(a)寄生电源连接方式图3.5(b)外接电源连接方式3.1.7 单片机对DS18B20操作流程:1. 复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。

当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。

2. 存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。

至此,通信双方已经达成了基本的协议,接下来将会是控制器与DS18B20间的数据通信。

如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

3. 控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。

ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。

其主要目的是为了分辨一条总线上挂接的多个器件并作处理。

诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别,一般只挂接单个DS18B20芯片时可以跳过ROM指令(注意:此处指的跳过ROM指令并非不发送ROM指令,而是用特有的一条“跳过指令”)。

ROM指令在下文有详细的介绍。

4. 控制器发送存储器操作指令:在ROM指令发送给DS18B20之后,紧接着(不间断)就是发送存储器操作指令了。

操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将RAM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。

存储器操作指令的功能是命令DS18B20作什么样的工作,是芯片控制的关键。

5. 执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。

相关文档
最新文档