完整版二进制八进制十进制十六进制之间转换详解

合集下载

二进制、八进制、十进制、十六进制之间转换(含小数部分)

二进制、八进制、十进制、十六进制之间转换(含小数部分)

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制分析:(2)例1分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。

那么,我们可以得出结果将0.45转换为二进制约等于0.0111上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:1)十进制转换为二进制,需要分成整数和小数两个部分分别转换2)当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法3)注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111。

(3)二进制转换为十进制不分整数和小数部分1)2)二、(1)②将二进制数1101.1转换为八进制得到结果:将1101.1转换为八进制为15.4(2)将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。

二进制八进制十进制十六进制之间的进制转换

二进制八进制十进制十六进制之间的进制转换

二进制八进制十进制十六进制之间的进制转换详情可参考百度百科:进制转换这个词条【主要搞懂1和2两条,其他的进制之间的转化就迎刃而解,很好懂了】1. 十进制-> 二进制:将这个十进制数连续除以2的过程,第一步除以2,得到商和余数,将商再继续除以2,得到又一个商和余数,直到商为0。

最后将所有余数倒序排列,得到的数就是转换成二进制的结果。

2. 二进制-> 十进制:二进制数第1位的权值是2的0次方,第2位的权值是2的1次方,第3位的权值是2的2次方。

(例如1258这个十进制数,实际上代表的是:1x1000+2x100+5x10+8x1=1258)那么1011这个二进制数,实际上代表的是:1x8+0x4+1x2+1x1=11(十进制数11)。

(这里的8就是2的3次方,4就是2的2次方,2就是2的1次方,1就是2的0次方)3. 十进制-> 八进制:十进制数转换成八进制的方法,和转换为二进制的方法类似,唯一变化:除数由2变成8。

4. 八进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成8,第1位表示8的0次方,第二位表示8的一次方,第三位表示8的2次方,第四位表示8的3次方。

例如1314这个八进制数,十进制数就是1x512+3x64+1x8+4x1=716(十进制)5. 十进制-> 十六进制10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。

十六进制是0123456789ABCDEF这十六个字符表示。

那么单独一个A就是10,单独一个B就是11,CDEF,就分表表示12,13,14,15。

而10这个十六进制数,实际就是十进制中的16。

6. 十六进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成16,第1位表示16的0次方,第二位表示16的一次方,第三位表示16的2次方,第四位表示16的3次方。

7. 二进制<--->八进制,之间的相互转换,更简单一些,因为8本身是2的三次方。

进制进制进制十六进制之间转换含小数部分

进制进制进制十六进制之间转换含小数部分

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

完整版二进制八进制十进制十六进制之间转换详解

完整版二进制八进制十进制十六进制之间转换详解

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分① 整数部分方法:除2 取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0 为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168 转换为二进制得出结果将十进制的168 转换为二进制,(10101000)2 分析:第一步,将168除以2, 商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5 余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2 取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125 换算为二进制得出结果:将0.125 换算为二进制(0.001 )2分析:第一步,将0.125 乘以2,得0.25, 则整数部分为0, 小数部分为0.25;第二步, 将小数部分0.25 乘以2,得0.5, 则整数部分为0, 小数部分为0.5;第三步, 将小数部分0.5 乘以2,得1.0, 则整数部分为1,小数部分为0.0;第四步, 读数, 从第一位读起,读到最后一位, 即为0.001 。

二进制 八进制 十进制 十六进制之间的转换方法

二进制  八进制  十进制  十六进制之间的转换方法

一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

二进制,八进制,十进制,十六进制之间的转换

二进制,八进制,十进制,十六进制之间的转换

二进制,八进制,十进制,十六进
制之间的转换
方法是:小数除以2得到余数,即小数除以2,余数就是砝码上的数,得到的商值继续除以2。

根据这个步骤,它将继续向下操作,直到商360被重新知道为0。

例如:把十进制数 150 转换为二进制数:如下:
•2
二进制转换为十进制的方法是:将二进制数按重量展开,相加得到十进制数。

•3
二进制转换为八进制的方法是:三个二进制数通过重量展开相加得到一个八进制数。

(请注意,3位二进制到八进制的转换是从右向左开始的,不足时加0)。

•4
八进制数转换成二进制数的方法如下:八进制数除以2得到二进制数,每个八进制数由三个二进制数组成。

不足时,在最左边补零。

•5
二进制到十六进制的方法类似于二进制到八进制的方法,八进制是三合一,十六进制是四合一。

(注意,4位二进制到十六进制的转换是从右到左,不足时加0)。

•6
十六进制转换成二进制的方法是:将十六进制数除以2得到二进制数,每个十六进制数为4个二进制数。

油量不足时,在最左边加零。

•7
十进制转八进制或者十六进制
将十进制转换为八进制或十六进制,然后除以8或16,直到商为0。

•8
将八进制或十六进制转换成十进制的方法是:将八进制和十六进制香烟组的二进制数按重量展开相加得到十进制数。

•9
八进制 >十六进制方法:将八进制转换为二进制,然后再将二进制转换为十六进制,小数点位置不变。

•10
十六进制 >八进制
方法:将十六进制转换成二进制,再将二进制转换成八进制,小数点位置不变。

二进制,八进制,十进制,十六进制之间的转换算法

二进制,八进制,十进制,十六进制之间的转换算法
2)直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:
①整数部分
方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。
2) 要能求出每位的值
二、 二进制与八进制之间的转换
首先,我们需要了解一个数学关系,即23=8,24=16,而八进制和十六进制是用这
关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。
接着,记住4个数字8、4、2、1(23=8、22=4、21=2、20=1)。现在我们来练习二进制与八进制之间的转换。
①将二进制数101110.101转换为八进制
得到结果:将101110.101转换为八进制为56.5
② 将二进制数1101.1转换进制为15.4
(2) 将八进制转换为二进制
方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。例:
那么,我们可以得出结果将0.45转换为二进制约等于0.0111
上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:
1) 十进制转换为二进制,需要分成整数和小数两个部分分别转换
2) 当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法
3) 注意他们的读数方向
因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111。

二进制、八进制、十进制、十六进制之间的转换

二进制、八进制、十进制、十六进制之间的转换

⼆进制、⼋进制、⼗进制、⼗六进制之间的转换⼆进制是Binary,简写为B⼋进制是Octal,简写为O⼗进制为Decimal,简写为D⼗六进制为Hexadecimal,简写为H⽅法为:⼗进制数除2取余法,即⼗进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为⽌。

读数要倒叙读。

⼩数:乘2取整法,即将⼩数部分乘以2,然后取整数部分,剩下的⼩数部分继续乘以2,然后取整数部分,剩下的⼩数部分⼜乘以2,⼀直取到⼩数部分为零。

如果永远不能为零,就同⼗进制数的四舍五⼊⼀样,按照要求保留多少位⼩数时,就根据后⾯⼀位是0还是1,取舍,如果是零,舍掉,如果是1,向⼊⼀位。

换句话说就是0舍1⼊。

读数要从前⾯的整数读到后⾯的整数,即读数要顺序读。

0.125 转⼆进制第⼀步,将0.125乘以2,得0.25,则整数部分为0,⼩数部分为0.25;第⼆步, 将⼩数部分0.25乘以2,得0.5,则整数部分为0,⼩数部分为0.5;第三步, 将⼩数部分0.5乘以2,得1.0,则整数部分为1,⼩数部分为0.0;第四步,读数,从第⼀位读起,读到最后⼀位,即为0.001。

积整数部分0.125 x 2 = 0.25 00.25 x 2 = 0.5 00.5 x 2 = 1.0 1150.125 转⼆进制10010110.0010.45 转⼆进制(保留到⼩数点第四位)第⼀步,将0.45乘以2,得0.9,则整数部分为0,⼩数部分为0.9;第⼆步, 将⼩数部分0.9乘以2,得1.8,则整数部分为1,⼩数部分为0.8;第三步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;第四步, 将⼩数部分0.6乘以2,得1.2,则整数部分为1,⼩数部分为0.2; 算到这⼀步就可以了,因为只需要保留四位⼩数第五步, 将⼩数部分0.2乘以2,得0.4,则整数部分为0,⼩数部分为0.4;第六步, 将⼩数部分0.4乘以2,得0.8,则整数部分为0,⼩数部分为0.8;后⾯会⼀直循环重复第七步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1) 十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数, 而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000) 2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0o第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001 ) 2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步,将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步,将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步3读数,从第一位读起,读到最后一位3即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看岀,当第五次做乘法时候,得到的结果是0.4 , 那么小数部分继续乘以2,得0.8 , 0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。

那么,我们可以得出结果将0.45转换为二进制约等于0.0111上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:1)十进制转换为二进制,需要分成整数和小数两个部分分别转换2)当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法3)注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数168.125转换为二进制为10101000.001,或者十进制数转换为二进制数约等于10101000.0111c(3)二进制转换为十进制不分整数和小数部分方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数。

例将二进制数101.101转换为十进制数。

得出结果:(101.101 )2=(5.625)10大家在做二进制转换成十进制需要注意的是1)要知道二进制每位的权值2)要能求出每位的值二、二进制与八进制之间的转换首先,我们需要了解一个数学关系,即"3=8, "4=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数。

接着,记住4 个数字8、4、2、1 ("3=8、2A2=4> 2T=2、2A0=1)。

现在我们来练习二进制与八进制之间的转换。

(1)二进制转换为八进制方法:取三合一法,即从二进制的小数点为分界点,向左(向右)每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数。

如果向左(向右)取三位后,取到最高(最低)位时候,如果无法凑足三位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足三位。

例①将二进制数101110.101转换为八进制得到结果:将101110.101转换为八进制为56.5②将二进制数1101.1转换为八进制得到结果:将1101.1转换为八进制为15.4(2)将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧。

例:①将八进制数67.54转换为二进制因此,将八进制数67.54转换为二进制数为110111.101100,即110111.1011大家从上面这道题可以看出,计算八进制转换为二进制首先,将八进制按照从左到右,每位展开为三位,小数点位置不变然后,按每位展开为22, 21, 20 (即4、2、1)三位去做凑数,即aX 2.2.+ bX21 +cX20=该位上的数(a=1 或者a=0, b=1 或者b=0, c=1或者c=0),将abc排列就是该位的二进制数接着,将每位上转换成二进制数按顺序排列最后,就得到了八进制转换成二进制的数字。

以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是1)他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换2)大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边(即整数的最高位和小数的最低位)才能添0或者去0, 否则将产生错误三、二进制与十六进制的转换方法:与二进制与八进制转换相似,只不过是一位(十六)与四位(二进制)的转换,下面具体讲解(1)二进制转换为十六进制方法:取四合一法,即从二进制的小数点为分界点,向左(向右)每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数。

如果向左(向右)取四位后,取到最高(最低)位时候,如果无法凑足四位,可以在小数点最左边(最右边),即整数的最高位(最低位)添0,凑足四位。

①例:将二进制11101001.1011转换为十六进制得到结果:将二进制11101001.1011转换为十六进制为E9.B②例:将101011.101转换为十六进制因此得到结果:将二进制101011.101转换为十六进制为2B.A(2)将十六进制转换为二进制方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧。

①将十六进制6E.2转换为二进制数因此得到结果:将十六进制6E.2转换为二进制为01101110.0010即110110.001四、八进制与十六进制的转换方法:一般不能互相直接转换,一般是将八进制(或十六进制)转换为二进制,然后再将二进制转换为十六进制(或八进制),小数点位置不变。

那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转五、八进制与十进制的转换(1) 八进制转换为十进制方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数。

例:①将八进制数67.35转换为十进制(2) 十进制转换为八进制十进制转换成八进制有两种方法:1) 间接法:先将十进制转换成二进制,然后将二进制又转换成八进制2) 直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:①整数部分方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数。

②小数部分方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8, —直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入。

例:将十进制数796.703125转换为八进制数解:先将这个数字分为整数部分796和小数部分0.703125整数部分小数部分因此,得到结果十进制796.703125转换八进制为1434.55上面的方法大家可以验证一下,你可以先将十进制转换,然后在转换为八进制,这样看得到的结果是否一样六、十六进制与十进制的转换十六进制与八进制有很多相似之处,大家可以参照上面八进制与十进制的转换自己试试这两个进制之间的转换。

通过上面对各种进制之间的转换,我们可以将前面的转换图重新完善一下:本文介绍了二进制、十进制、八进制、十六进制四种进制之间相互的转换,大家在转换的时候要注意转换的方法,以及步骤,特别是十进制转换为期于三种进制之间,要分为整数部分和小数部分,最后就是小数点的位置。

但是要保证考试中不出现错误还是需要大家经常练习,这样才能熟能生巧。

二进制,八进制,十进制,十六进制转换99 :二进制是1100011八进制是143十六进制是63113:110001 161 71127:100100111 447 127192: 11000000 300 C0324: 101000100 504 144算法:十进制与二进制转换之相互算法十进制转二进制:用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为100101110二进制转十进制从最后一位开始算,依次列为第0、1 > 2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1 +2 + 0 + 8+0 + 32 + 64+0 = 107.二进制01101011=十进制107.一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。

这种做法称为"按权相加" 法。

二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

1・十进制整数转换为二进制整数十进制整数转换为二进制整数采用“除2取余,逆序排列”法。

具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

相关文档
最新文档