单片机外部中断线的作用
ARM7(sc44b0)外部中断笔记

ARM7(sc44b0)外部中断笔记对于sc44b0它也是一种单片机,一种比较高级的单片机而已,所以他也跟51单片机一样有外部中断,不同51单片机的是,他有8个外部中断源,对应的是8个管脚,(51只有两个,int0和int1,P3.3和P3.4),分别是Port G八个管脚。
而对于外部中断4 \5\6\7很多都是共用寄存器,他们是通过或逻辑公用一个中断请求线。
下面就具体来说说使用外部中断的一些必要的配置。
一,对管脚的配置,因为Port G有三种功能用法,要通过对rPCONG(端口G配置寄存器)的配置来选用Port G的外部中断的功能。
其配置表如下所以应该将其配置为11(设置为中断功能状态);二,中断模式的选择,中断模式有两种,FIQ(快速中断模式)和 IRQ(中断模式)两种,一般没有特殊要求都用IRQ模式即可。
可以通过对中断模式寄存器rINTMOD配置获得。
如表下三,是否允许中断,即中断使能位。
通过对中断控制寄存器INTCON的配置即可,如表下通过对中断控制寄存器的配置即可,可以看出只要让intcon的【1】位置零即可使中断使能。
四,外部中断方式的选择,低电平或上升沿触发呢,还是别的,这就要对外部中断方式寄存器(EXTINT)的配置,其表如下由上表可知,如果要用下降沿触发,就可将EXTINT 的值给0x22222222;将所有的外部中断都设置为下降沿触发。
五,当中断捕抓到以后,要引起什么变化呢?或者说用什么来捕抓呢?在sc44b0中用了两个寄存器来捕抓,一个中断挂起寄存器(INTPND),和外部中断挂起寄存器(EXINTPND),一开始不明白挂起是什么意思,后来才懂,差不多就相当与51单片机的标志位一样,当中断发生后,就将挂起寄存器的对应的某一位置一或置零,外部中断挂起寄存器如表下中断挂起寄存器:当中断产生后,是将INTPND的【21】位置一的;所以,判断有无外部中断,就可以通过读取挂起寄存器对应的为,即可知道是否有无中断。
单片机的中断与异常处理方法

单片机的中断与异常处理方法在单片机的工作过程中,中断和异常处理是非常重要的概念和方法。
它们能够有效地提高单片机的响应能力和灵活性,使其能够应对各种不同的工作需求和问题。
本文将介绍单片机中断的概念、中断的种类以及针对不同中断的处理方法,同时也会探讨单片机异常处理的原理和方法。
一、中断的概念和种类中断是指在一个程序执行的过程中,由于某种特殊的事件发生,导致程序的正常执行被打断,转而去执行一个与当前任务无关的子程序,完成该事件的相应处理。
中断可以分为外部中断和内部中断两种。
1. 外部中断外部中断是指当单片机外部引脚的电平或信号发生变化时,引发中断事件,使单片机停止当前任务的执行,去处理由该外部事件引发的中断服务程序(ISR)。
外部中断常用于与外部设备的交互,如按键输入、传感器检测等。
在编程中,我们可以通过设置中断触发条件和编写相应的中断服务程序来实现对外部中断的处理。
2. 内部中断内部中断是指当单片机内部某个特定的事件发生时,由硬件或软件触发中断请求,并且将控制权交给中断服务程序进行相应的处理。
内部中断的发生可以是由于某个特定条件的满足,如定时器溢出中断、串口接收中断等;也可以是由软件的运行结果触发,如除法溢出中断、地址错误中断等。
不同的内部中断需要通过编程实现相应的中断服务程序。
二、中断的处理方法中断处理是指在中断发生时,单片机通过中断向量表找到相应的中断服务程序,并对中断事件进行处理的过程。
下面将介绍两种常用的中断处理方法。
1. 优先级中断处理优先级中断处理是指对多个中断源按照优先级进行划分和处理的方法。
在单片机的中断系统中,每个中断源都被赋予了一个优先级,高优先级的中断可以打断当前正在执行的低优先级中断,从而增加了中断的响应速度和灵活性。
优先级中断处理需要在编程时设置中断的优先级,并根据不同的中断事件编写相应的中断服务程序。
2. 嵌套中断处理嵌套中断处理是指当一个中断正在执行的过程中,又发生了另一个中断时,将当前中断挂起,转而处理新发生的中断,并在处理完毕后返回原中断继续执行的方法。
单片机各个引脚功能概述

单片机各个引脚功能概述单片机是一种集成电路,其中具有多个引脚,每个引脚都具有不同的功能。
下面是单片机各个引脚的功能概述:1.VCC:VCC引脚为单片机的电源引脚,通常连到电池或电源电压上。
它为单片机提供正向电源,电压通常为3.3V或5V。
2.GND:GND引脚为单片机的接地引脚,通常使用地线连接到电路板的地方。
该引脚为单片机提供回路的参考点。
3.XTAL1和XTAL2:XTAL1和XTAL2引脚是单片机的振荡器引脚,通常连接到晶体振荡器或陶瓷谐振器中的引脚。
这些引脚提供时钟脉冲,以控制单片机的时序和计时。
4.RESET:RESET引脚是单片机的复位引脚,通常使用它来将单片机恢复到初始状态。
当RESET引脚被拉低时,单片机将重新启动。
5.P0.0-P0.7:P0.0-P0.7是单片机的I/O端口0引脚,用于连接外部设备。
这些引脚可以被配置为输入或输出端口,以与外部设备通信。
6.P1.0-P1.7:P1.0-P1.7是单片机的I/O端口1引脚,用于连接外部设备。
这些引脚也可以被配置为输入或输出端口,以与外部设备通信。
7.P2.0-P2.7:P2.0-P2.7是单片机的I/O端口2引脚,用于连接外部设备。
这些引脚可以被配置为输入或输出端口,以与外部设备通信。
8.P3.0-P3.7:P3.0-P3.7是单片机的I/O端口3引脚,用于连接外部设备。
这些引脚也可以被配置为输入或输出端口,以与外部设备通信。
9.INT0和INT1:INT0和INT1引脚是单片机的外部中断引脚,用于检测外部中断事件。
这些引脚通常用于响应外部事件,例如按下按钮或检测外部信号。
10.TXD和RXD:TXD引脚是单片机的串行传输引脚,用于发送串行数据。
RXD引脚是单片机的串行接收引脚,用于接收串行数据。
这些引脚通常用于单片机与其他设备(例如计算机或传感器)之间的通信。
11.ADC0-ADC7:ADC0-ADC7引脚是单片机的模拟输入引脚,用于连接模拟传感器或外部设备。
单片机中断系统

单片机中断系统一、单片机中断系统的概念单片机中断系统是指在程序运行过程中,由于出现特殊情况(如外部设备的输入信号、定时器溢出等),使得单片机暂时停止当前任务的执行,转而执行相应的中断服务程序(ISR),以处理中断事件。
中断处理完毕后,再返回到中断点继续执行原来的任务。
这种特殊的中断机制,使得单片机能够同时处理多个任务,实现了实时性较高的应用程序设计。
二、单片机中断系统的结构单片机中断系统主要由以下几个部分组成:1、中断源:产生中断的外部设备或内部定时器。
2、中断请求寄存器:用于存储各个中断源的中断请求状态。
3、中断优先级寄存器:用于确定多个中断源的优先级。
4、中断服务程序(ISR):用于处理中断事件,执行相应的操作。
5、中断返回:中断处理完毕后,返回原程序继续执行。
三、单片机中断系统的处理过程当单片机检测到某个中断源发出中断请求时,会暂停当前任务的执行,按照优先级顺序执行相应的中断服务程序(ISR)。
在ISR中,程序会读取中断源的中断请求状态,并对相应的中断源进行处理。
处理完毕后,程序会返回原程序继续执行。
如果此时还有其他的中断源发出中断请求,则根据优先级顺序再次执行相应的ISR。
四、单片机中断系统的应用单片机中断系统在实时控制、数据采集、通信等领域有着广泛的应用。
例如,在工业控制中,当某个传感器发出中断请求时,单片机可以暂停当前任务的执行,转而执行相应的中断服务程序(ISR),对传感器数据进行采集和处理。
处理完毕后,再返回原程序继续执行。
这样,单片机可以在不丢失任何数据的情况下,实时地响应外部设备的请求。
五、总结单片机中断系统是实现实时控制和数据处理的重要手段之一。
通过合理的配置和使用中断系统,可以提高单片机的实时性能和数据处理能力。
在实际应用中,需要根据具体的需求和硬件条件选择合适的单片机型号和中断系统配置方案,以满足系统的实时性和稳定性要求。
单片机的中断系统在嵌入式系统设计中,单片机因其体积小、性价比高、可靠性强等特性被广泛应用。
单片机各个引脚功能概述

单片机各个引脚功能概述
1、VCC和GND:VCC是电源正极,GND是电源负极,需要将它们接上相应的正负极,
以便正常供电和操作。
2、XTAL1和XTAL2:是晶振输入引脚,为外接振荡器所用,可兼容内部晶振。
3、RESET:复位信号引脚,若短接RESET和GND,则使MICROCONTROLLER复位。
4、ALE、A0-A13:地址线输出端引脚,相应芯片模式下,取出地址信息,即从数据总
线上输出地址信息,也可位当前器件的复位端。
5、RD、WR:读写控制信号引脚,控制内部存储器端数据的读写操作。
6、T0、T1:定时器脚,如想使用定时器,则需要把T0与T1连接起来。
7、INT、NMI:中断引脚,可连接外部中断源,以触发中断事件,也可选择不产生中
断事件。
8、P0、P2……P15:通用IO口,可控制或输出信号。
9、RST:复位口,可用于复位电路,也可做为可编程IO口。
10、PSEN:片选信号,用于使总线上的片选控制站可以工作。
11、CLK:时钟信号,用于控制系统内部计时器工作。
12、EXEN:外部状态机使能信号,可用于LED显示器、键盘等外围设备的使能。
13、EA/VPP:电场/高压功能有多种,根据具体芯片来定,一般用于CPU的复位、高
低电平转换等操作。
14、VSS、VDD:高低电压夹电源,用来调节内部器件电源电压及提高稳定性。
15、S0-S3:模式控制口,用于连接专用信号线,以确定单片机的工作模式。
16、PS:开关控制接口,用于控制某些单片机的工作状态,如打断状态、启动状态等。
单片机实验报告四 外部中断实验

南昌大学实验报告学生姓名:学号:专业班级:实验类型:⃞验证⃞综合⃞设计⃞创新实验日期:2019. 4.30 实验成绩:实验四外部中断实验(一)实验目的1.掌握单片机外部中断原理;2.掌握数码管动态显示原理。
(二)设计要求1.使用外部中断0和外部中断1;2.在动态数码管上显示中断0次数,中断1用作次数清0,数码管采用74HC595驱动。
(三)实验原理1.中断:计算机执行主程序过程中,由于临时重要事件,需要暂停当前程序的运行,转到中断服务程序去处理临时事件,处理完后又返回原程序的断点处继续运行。
图1STC15单片机的中断系统包含21个中断源,2个中断优先级,二级中断服务嵌套,中断允许寄存器IE、IE2和INT_CLKO控制中断允许。
中断优先级寄存器IP、IP2管理中断优先级。
同优先级中断同时提出中断请求时,由内部的查询逻辑确定响应次序。
中断请求源中的外部中断0(INT0)和外部中断1(INT1)详述如下:1)外部中断0(INT0):中断信号由P3.2引脚输入。
通过IT0来设置中断请求的触发方式。
当IT0为“1”时,外部中断0为下降沿触发;当IT0为“0”时,无论是上升沿还是下降沿,都会引发外部中断0.一旦输入信号有效,则置位IE0标志,向CPU申请终端。
2)外部中断1(INT1):中断信号由P3.3引脚输入。
通过IT1来设置中断请求的触发方式。
当IT1为“1”时,外部中断0为下降沿触发;当IT1为“0”时,无论是上升沿还是下降沿,都会引发外部中断0.一旦输入信号有效,则置位IE0标志,向CPU申请终端。
2.LED数码管是显示数字和字母的常见显示器件,由8个发光二极管构成,结构如图2:图2段码:a、b、c、d、e、f、g、dp段的二进制代码(a为最低位),控制显示字型。
位选:公共端com,控制数码管是否显示。
3.数码管动态显示原理:任何时刻只有一个数码管处于显示状态,单片机采用“扫描”方式控制各个数码管轮流显示,通常将所有数码管段码线的相应段并联在一起,由一个8位I/O 端口控制。
单片机外部中断详解及程序

单片机外部中断详解及程序单片机在自主运行的时候一般是在执行一个死循环程序,在没有外界干扰(输入信号)的时候它基本处于一个封闭状态。
比如一个电子时钟,它会按时、分、秒的规律来自主运行并通过输出设备(如液晶显示屏)把时间显示出来。
在不需要对它进行调校的时候它不需要外部干预,自主封闭地运行。
如果这个时钟足够准确而又不掉电的话,它可能一直处于这种封闭运行状态。
但事情往往不会如此简单,在时钟刚刚上电、或时钟需要重新校准、甚至时钟被带到了不同的时区的时候,就需要重新调校时钟,这时就要求时钟就必须具有调校功能。
因此单片机系统往往又不会是一个单纯的封闭系统,它有些时候恰恰需要外部的干预,这也就是外部中断产生的根本原由。
实际上在第二个示例演示中,就已经举过有按键输入的例子了,只不过当时使用的方法并不是外部中断,而是用程序查询的方式。
下面就用外部中断的方法来改写一下第二个示例中,通过按键来更改闪烁速度的例子(第二个例子)。
电路结构和接线不变,仅把程序改为下面的形式。
#include ;unsigned int t=500; //定义一个全局变量t,并设定初始值为500次//===========延时子函数,在8MHz晶振时约1ms=============void delay_ms(unsigned int k){unsigned int i,j;for(i=0;i<k;i++){for(j=0;j<1140;j++);}}//============主函数==================================void main( void ){DDRB = 0xFF; //设置端口B为输出方向PORTB = 0xFF; //设置端口B的输出为全高电平DDRD = 0x00; //设置端口D为输入方向PORTD = 0xFF; //设定端口D为内部上拉方式,无信号输入时处于高电平状态MCUCR = 0x0A; //设定INT0、INT1为下降沿触发GICR = 0xC0; //使能INT0、INT1中断SREG = 0x80; //使能总中断while(1){PORTB = 0x55; //让接在端口B上的LED显示01010101 delay_ms(t); //延时t个msPORTB = 0xAA; //让接在端口B上的LED显示01010101 delay_ms(t); //延时t个ms}}//============中断函数(外部0)==========================#pragma vector = INT0_vect__interrupt void INT0_Server(void){t = 100; //设定t的值为100次}//============中断函数(外部1)==========================#pragma vector = INT1_vect__interrupt void INT1_Server(void){t = 500; //设定t的值为500次}把上述程序进行编译并下载到单片机中,可以看到结果与第二个示例中的完全一致。
实验04:外部中断INT0、INT1控制流水灯左移、右移

实验四:外部中断系统实验一、实验目的1.结合理论教学,进一步熟悉外部中断INT0和INT1的基本概念和原理;2.理解掌握定时器控制寄存器TCON、中断允许控制寄存器IE、中断优先级别控制寄存器IP的功能和设置方法;3.了解并熟悉MCS-51单片机外部中断INT0和INT1的电路设计特点和应用特点;4.能够针对MCS-51单片机,进行外部中断INT0和INT1的初始化设置,能够完成简单中断服务程序的功能应用设计。
5.进一步熟悉、掌握MCS-51单片机指令系统和应用软件的编程方法和技巧。
二、实验设备、材料1.微型计算机(PⅣ以上);2.编程、汇编与模拟平台软件Keil uVision4;3.电子技术专业仿真软件protues运行平台;4.单片机实训开发电路板。
三、实验内容和实验步骤1.系统仿真电路参考原理图12.系统参考源程序1(用INT0控制流水灯左移1位,用INT1控制流水灯右移1位)已在实验板上演示ORG 0000HAJMP MAINORG 0003H ;INT0中断入口地址LJMP IN0ORG 0013H ;INT1中断入口地址LJMP IN1ORG 0020HMAIN:MOV TCON,#05HMOV IE,#85HMOV P2,#0FEHMOV A,#0FEHSJMP $IN0:CLR EARL A //左移MOV P2,ASETB EARETIIN1:CLR EARR A //右移MOV P2,ASETB EARETIEND3.系统参考源程序1(用8位发光二极管代表8位二进制数,用INT0控制加1递增,用INT1控制减1递减)已在实验板上演示ORG 0000HAJMP MAINORG 0003H ;INT0中断入口地址LJMP IN0ORG 0013H ;INT1中断入口地址LJMP IN1ORG 0020HMAIN:MOV TCON,#05HMOV IE,#85HMOV R0,#00HMOV A,#00HMOV P2,ASJMP $ IN0:INC R0MOV A,R0CPL AMOV P2,ARETIIN1:INC R0MOV A,R0CPL AMOV P2,ARETIEND4.系统参考源程序2(用INT0控制流水灯左移1位,用INT1控制流水灯右移1位)已在实验板上演示ORG 0000HAJMP MAINORG 0003H ;INT0中断入口地址CLR F0RETIORG 0013H ;INT1中断入口地址SETB F0RETIORG 0030HMAIN:MOV P2,#0FFHMOV TCON,#05HMOV IE,#85HMOV A,#7FHRRR:JNB F0,LLLRR A //右移MOV P2,AACALL DELAYSJMP RRRLLL:JB F0,RRRRL A //左移MOV P2,AACALL DELAYSJMP LLLDELAY:MOV R7,#8FH ;延时程序DELAY1:MOV R6,#0FFHDELAY2:MOV R5,#02HDELAY3:DJNZ R5,DELAY3DJNZ R6,DELAY2DJNZ R7,DELAY1RETEND。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机外部中断线的作用
这张图是一条外部中断线或外部事件线的示意图,图中信号线上划有一条斜线,旁边标志19字样的注释,表示这样的线路共有19套。
图中的蓝色虚线箭头,标出了外部中断信号的传输路径。
首先外部信号从编号1的芯片管脚进入,经过编号2的边沿检测电路,通过编号3的或门进入中断挂起请求寄存器,最后经过编号4的与门输出到NVIC中断检测电路,这个边沿检测电路受上升沿或下降沿选择寄存器控制,用户可以使用这两个寄存器控制需要哪一个边沿产生中断,因为选择上升沿或下降沿是分别受2个平行的寄存器控制,所以用户可以同时选择上升沿或下降沿,而如果只有一个寄存器控制,那么只能选择一个边沿了。
接下来是编号3的或门,这个或门的另一个输入是软件中断/事件寄存器,从这里可以看出,软件可以优先于外部信号请求一个中断或事件,即当软件中断/事件寄存器的对应位为“1”时,不管外部信号如何,编号3的或门都会输出有效信号。
一个中断或事件请求信号经过编号3的或门后,进入挂起请求寄存器,到此之前,中断和事件的信号传输通路都是一致的,也就是说,挂起请求寄存器中记录了外部信号的电平变化。
外部请求信号最后经过编号4的与门,向NVIC中断控制器发出一个中断请求,如果中断屏蔽寄存器的对应位为“0”,则该请求信号不能传输到与门的另一端,实现了中断的屏蔽。
明白了外部中断的请求机制,就很容易理解事件的请求机制了。
图中红色虚线箭头,标出了外部事件信号的传输路径,外部请求信号经过编号3的或门后,进入编号5的与门,这个与门的作用与编号4的与门类似,用于引入事件屏蔽寄存器的控制;最后脉冲发生器的一个跳变的信号转变为一个单脉冲,输出到芯片中的其它功能模块。
从这张图上我们也可以知道,从外部激励信号来看,中断和事件的产生源都可以是一样的。
之所以分成2个部分,由于中断是需要CPU参与的,需要软件的中断服务函数才能完成中断后产生的结果;但是事件,是靠脉冲发生器产生一个脉冲,进而由硬件自动完成这个事件产生的结果,当然相应的联动部件需要先设置好,比如引起DMA操作,AD转换等;。