[高考数学]高考数学函数典型例题

[高考数学]高考数学函数典型例题
[高考数学]高考数学函数典型例题

函数

31.(本小题满分14分)

已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()

()g x f x x

=

(1)若曲线()y f x =上的点P 到点(0,2)Q m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.

32.(2010年高考福建卷理科10)对于具有相同定义域D 的函数f(x)和g(x),若存在函数

h(x)=kx+b(k,b 为常数),对任给的正数m,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有

0()()0()()

f x h x m

h x g x <-

<-?,则称直线l:y=kx+b 为曲线y=f(x)和y=g(x)的“分渐近线”.给出定义域均为D={}x|x>1的四组函数如下:

①2

f(x)=x , ; ②-x

f(x)=10+2,2x-3

g(x)=

x

;

③2x +1f(x)=x ,xlnx+1g(x)=lnx ; ④2

2x f(x)=x+1

,-x g(x)=2x-1-e )(.

其中, 曲线y=f(x)和y=g(x)存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④

33.

(2010年高考天津卷理科

16)设函数2()1f x x =-,对任

3[,)2x ∈+∞,2()4()(1)4()x

f m f x f x f m m

-≤-+

恒成立,则实数m 的取值范围是 。

34.(2010

年高考江苏卷试题11)已知函数21,0()1,

0x x f x x ?+≥=?

的x 的范围是__▲___。

35.(2010年高考江苏卷试题14)将边长为1m 正三角形薄片,沿一条平行于底边的直线

剪成两块,其中一块是梯形,记2

(S =梯形的周长)

梯形的面积

,则S 的最小值是____▲____。

36已知函数()(1)ln 1f x x x x =+-+.

(Ⅰ)若2

'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .

37(2010年高考江苏卷试题20)(本小题满分16分)

设)(x f 是定义在区间),1(+∞上的函数,其导函数为)('x f 。如果存在实数a 和函数

)(x h ,其中)(x h 对任意的),1(+∞∈x 都有)(x h >0,使得)1)(()('2+-=ax x x h x f ,则称

函数)(x f 具有性质)(a P 。 (1)设函数)(x f 2

ln (1)1

b x x x +=+

>+,其中b 为实数。 (i)求证:函数)(x f 具有性质)(b P ; (ii)求函数)(x f 的单调区间。 (2)已知函数)(x g 具有性质)2(P 。给定1212,(1,),,x x x x ∈+∞<设m 为实数,

21)1(x m mx -+=α,21)1(mx x m +-=β,且1,1>>βα,

若|)()(βαg g -|<|)()(21x g x g -|,求m 的取值范围。

38. (2010年全国高考宁夏卷21)(本小题满分12分)

设函数2

()1x

f x e x ax =---。 (1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围

39.(江苏卷20)若()1

13x p

f x -=,()2

223

x p f x -=,12,,x R p p ∈为常数,

且()()()()()()()1122

12,,f x f x f x f x f x f x f x ≤??=?>??

(Ⅰ)求()()1f x f x =对所有实数成立的充要条件(用12,p p 表示); (Ⅱ)设,a b 为两实数,a b <且12,p p (),a b ,若()()f a f b =

求证:()f x 在区间[],a b 上的单调增区间的长度和为2

b a

-(闭区间[],m n 的长度定义为n m -)

40.(江西卷22).(本小题满分14分)

已知函数(

)f x =

()0x ,∈+∞. ()1.当8a =时,求()f x 的单调区间; ()2.对任意正数a ,证明:()12f x <<.

41.(天津)设函数)( sin )(R x x x x f ∈=.

(Ⅰ)证明x k x f k x f sin 2)()2(ππ=-+,其中为k 为整数;

(Ⅱ)设0x 为)(x f 的一个极值点,证明2

40

2

01)]([x x x f +=

(Ⅲ)设)(x f 在(0,+∞)内的全部极值点按从小到大的顺序排列 ,,,,21n a a a , 证明

),2,1( 2

1 =<-<+n a a n n ππ

(1)已知:)0(∞+∈x ,求证x

x x x 11ln 11<+<+; (2)已知:2≥∈n N n 且,求证:1

1

211ln 13121-+++<<+++n n n 。

(1)令t x =+11,由x>0,∴t>1,1

1

-=t x

原不等式等价于1ln 1

1-<<-t t t

令f(t)=t-1-lnt ,

∵t

t f 11)(-='当),1(+∞∈t 时,有0)(>'t f ,∴函数f(t)在),1(+∞∈t 递增 ∴f(t)>f(1)

即t-1

另令t t t g 11ln )(+-=,则有01

)(2

>-=

't t t g ∴g(t)在),1(+∞上递增,∴g(t)>g(1)=0 ∴t

t 11ln -> 综上得

x

x x x 11ln 11<+<+ (2)由(1)令x=1,2,……(n-1)并相加得

1

12111ln 23ln 12ln 13121-+++<-+++<+++n n n n 即得1

1211ln 13121-+++<<+++n n

利用导数求和

42利用导数求和: (1); (2)。

单调区间讨论

43设0>a ,求函数),0()(ln()(+∞∈+-=

x a x x x f 的单调区间.

分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.

44 已知函数2

()(2ln ),(0)f x x a x a x

=-+->,讨论()f x 的单调性.

分离常数

45已知函数()ln f x x x =.(Ⅰ)求()f x 的最小值;(Ⅱ)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.

46已知()()2,ln 2

3

+-+==x ax x x g x x x f

(Ⅰ)求函数()x f 的单调区间;

(Ⅱ)求函数()x f 在[]()02,>+t t t 上的最小值;

(Ⅲ)对一切的()+∞∈,0x ,()()22'

+≤x g x f 恒成立,求实数a 的取值范围.

47已知函数()ln f x x =,()(0)a

g x a x

=>,设()()()F x f x g x =+.(Ⅰ)求函数()F x 的单调区间;

(Ⅱ)若以函数()((0,3])y F x x =∈图像上任意一点00(,)P x y 为切点的切线的斜率12

k ≤恒成立,求实数a 的最小值;

48设函数)1ln()(2

++=x b x x f ,其中0≠b ;

(Ⅰ)若12b =-,求)(x f 在[1,3]的最小值;

(Ⅱ)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围; (Ⅲ)是否存在最小的正整数N ,使得当N n ≥时,不等式311

ln n n n n

+->恒成立.

49设函数2()()f x x x a =--(x ∈R ),其中a ∈R .

(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;

(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.

50设函数3

2

9()62

f x x x x a =-

+-.(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.

51已知函数2()1f x x x =+-,,αβ是方程f (x)=0的两个根()αβ>,'()f x 是f (x)的导数;设

11a =,1()

'()

n n n n f a a a f a +=-

(n=1,2,……) (1)求,αβ的值;

(2)证明:对任意的正整数n ,都有n a >a ; (3)记ln

n n n a b a a

β

-=-(n=1,2,……),求数列{b n }的前n 项和S n 。

52设二次函数2()f x x ax a =++,方程()0f x x

-=的两根1x 和2x 满足1201x x <<<.

(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与1

16

的大小.并说明理由. .

53设()f x 的定义域为(0,)+∞,()f x 的导函数为()f x ',且对任意正数x 均有

()

()f x f x x

'>

, (Ⅰ) 判断函数()

()f x F x x

=

在(0,)+∞上的单调性; (Ⅱ) 设1x ,2x (0,)∈+∞,比较12()()f x f x +与12()f x x +的大小,并证明你的结论; (Ⅲ)设1x ,2x ,

n x (0,)∈+∞,若2n ≥,比较12()()()n f x f x f x +++与

12()n f x x x ++

+的大小,并证明你的结论.

54 已知函数f (x ) =

2

1x 2

+ ln x . (I )求函数f (x )在[1,e ]上的最大、最小值;

(II )求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x ) =3

2x 3

的图象的下方; (III )求证:[f '(x )]n -f '(x n )≥2n -2(n ∈N*).

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高考数学典型例题---数学归纳法解题

数学归纳法 每临大事,必有静气;静则神明,疑难冰释; 积极准备,坦然面对;最佳发挥,舍我其谁? 结合起来看效果更好 体会绝妙解题思路 建立强大数学模型 感受数学思想魅力 品味学习数学快乐 数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法. ●难点磁场 (★★★★)是否存在a、b、c使得等式1·22+2·32+… +n(n+1)2= 12)1 ( n n (an2+bn+c). ●案例探究 [例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:a n+c n>2b n.

命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目. 错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(a k -c k )(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a . 证明:(1)设a 、b 、c 为等比数列,a =q b ,c =bq (q >0且q ≠1) ∴a n +c n =n n q b +b n q n =b n (n q 1+q n )>2b n (2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2 c a +)n (n ≥2且n ∈N *) 下面用数学归纳法证明: ①当n =2时,由2(a 2 +c 2 )>(a +c )2 ,∴222)2 (2c a c a +>+ ②设n =k 时成立,即,)2 (2k k k c a c a +>+ 则当n =k +1时, 4 1 211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=41 (a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2 c a +)k +1 [例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -2 1 成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和. 命题意图:本题考查了数列、数学归纳法、数列极限等基础知识. 知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =- 3 21 -k 应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{ n S 1}是以{11S }为首项,2 1 为公差的等差数列,

高中数学经典例题

高中数学经典例题讲解高中数学经典例题讲解典型例题一例1下列图形中,满足唯一性的是 (). A.过直线外一点作与该直线垂直的直线 B.过直线 外一点与该直线平行的平面C.过平面外一点与平面平行的直 线D.过一点作已知平面的垂线分析:本题考查的是空间线线 关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条..过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为 ,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作

已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是(). A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系; - 1 - 高中数学经典例题讲解(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如E、FGBC在

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

高考数学百大经典例题不等式证明

典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步 骤是:判断符号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 22 2a b ab +≥(当且仅当a b =时取等号) 两边同加2 2 2 2 2 ():2()()a b a b a b ++≥+

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高考数学 题型全归纳 如何由递推公式求通项公式典型例题

如何由递推公式求通项公式 高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。 下面就递推数列求通项的基本类型作一个归纳,以供参考。 类型一:1()n n a a f n +-= 或 1 () n n a g n a += 分析:利用迭加或迭乘方法。即:112211()()+()n n n n n a a a a a a a a ---=-+-+-+…… 或1 21 121n n n n n a a a a a a a a ---=…… 例1.(1) 已知数列{}n a 满足11211 ,2n n a a a n n +==++,求数列{}n a 的通项公式。 (2)已知数列{}n a 满足1(1)1,2n n n a a s += =,求数列{}n a 的通项公式。 解:(1)由题知:121 1 1 1 (1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++…… 1111111 ()()()121122 n n n n =-+-++-+---…… 312n = - (2)2(1)n n s n a =+Q 112(2)n n s na n --∴=≥ 两式相减得:12(1)(2)n n n a n a na n -=+-≥ 即:1(2) 1n n a n n a n -=≥- 12 1 121 n n n n n a a a a a a a a ---∴=??…… 121 121n n n n -=??--……

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

高考数学典型题归纳

高考数学典型题归纳 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.满分150分,考试时间120分钟. 第Ⅰ卷(共60分) 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个 选项中,只有一项是符合题目要求的.) 1.若全集U ={1,2,3,4,5,6},M ={1,4},N ={2,3},则集合等于 A .{2,3} B .{2,3,5,6} C .{1,4} D .{1,4,5,6} 2.设复数满足,则z 的共轭复数z = A . B . C . D . 3. “x <0”是“ln(x +1)<0”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.抛物线()2 40y ax a = ≠的焦点坐标是 A. ()0,a B. (),0a C. 10,16a ? ? ??? D. 1,016 a ?? ??? 5. 设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n = A. 5 B. 6 C. 7 D. 8 6. 已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这个几何体的体积是 A. 4 3 3cm B. 833cm C.33cm D.4 3cm 7. 已知实数满足约束条件11y x x y y ≤?? +≤??≥-? ,则的 最大为 A . B. C. D. 8. 若执行如图所示的程序框图,则输出的值是 ,x y 2z x y =+3323 2 -3-k ()N M

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

高考数学典型例题详解

高考数学典型例题详解 奇偶性与单调性 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场 (★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. ●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目. 知识依托:主要依据函数的性质去解决问题. 错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域. 技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值. 解:由? ??<<-<

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2f (0)对所有θ∈[0, 2 π ]都成立? 若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由. 命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目. 知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题. 错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ), 即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t - 2 m )2 -4 2 m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正. ∴当 2 m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2 m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-221,即m >2时,g (1)=m -1>0?m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.

数学百大经典例题-曲线和方程

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.

相关文档
最新文档