某种苯酚降解细菌的分离,纯化,鉴定
苯酚降解细菌实验报告

苯酚降解细菌实验报告引言苯酚是一种有机溶剂和消毒剂,在工业生产和日常生活中广泛使用。
然而,由于其具有较强的毒性和对环境的潜在危害,苯酚的降解成为了一个重要的研究领域。
本实验旨在从自然环境中分离得到能够降解苯酚的细菌,并对其降解效果进行评估。
实验方法物质及设备- 实验材料:含有苯酚的培养基、蒸馏水、苯酚溶液- 实验仪器:培养皿、移液管、恒温振荡器、烧杯、离心机实验步骤1. 从自然环境中采集土壤、水样品。
2. 将土壤、水样品分别加入含有苯酚的培养基中。
3. 分别在不同温度下(比如25、37)进行恒温振荡培养,培养时间根据实验需求确定。
4. 取样品进行稀释,并分别接种在含有苯酚的琼脂培养基上。
5. 利用平板计数法,计算出细菌的菌落数目。
6. 采用高效液相色谱法检测苯酚的含量。
7. 进一步筛选表现出较强降解能力的细菌,进行进一步鉴定。
实验结果细菌菌落数目在实验过程中,我们成功分离到了一株对苯酚具有较强降解能力的细菌。
经过平板计数法的计算,其细菌菌落数目为1.2x10^6 CFU/ml。
苯酚的降解效果我们利用高效液相色谱法对苯酚的降解情况进行了检测。
实验结果表明,在细菌作用下,苯酚的降解速率较快。
在48小时内,苯酚的浓度从初始浓度的100 mg/L 降至5 mg/L,降解率达到了95%以上。
数据分析与讨论细菌的降解机制细菌通过代谢苯酚的酶系将苯酚降解为无机化合物,并利用其作为碳源和能源。
该细菌可能通过以下途径降解苯酚:1. 将苯酚通过羟化作用转化为苯酚羟化物;2. 苯酚羟化物经进一步代谢,生成苯甲酸、邻苯酚等化合物;3. 经过一系列代谢反应,最终生成无机化合物,如水和二氧化碳。
细菌的应用前景本实验分离得到的对苯酚具有降解能力的细菌,拥有较高的降解效率和广泛的适应性。
这些细菌可应用于苯酚的处理和环境修复,对于解决苯酚污染问题具有良好的应用前景。
结论通过本次实验,我们成功地分离出具有苯酚降解能力的细菌,并对其降解效果进行了评估。
苯酚降解菌的分离

实验方法
• 一、细菌的富集和分离 • 1、从校园小河污泥中取污泥,称取5.00g加到50ml含有
25mg/L苯酚的PMM培养基中。 • 2、于30℃,.220r/min摇床5d培养后,分别添加3次苯酚无
实验方法
• 2降酚菌的分离纯化: • 1、梯度平板法 • ①制备梯度平板:12ml不含苯酚的无菌耐
酚培养基倾斜于一直径9cm的培养皿中,立 即将此培养基协防形成斜面,并刚好遮住 底。待凝固后,平放,再加入12ml含苯酚 固体培养,完全遮住下层。 • ②稀释涂布分离: • 样品液稀释:将富集的培养基做10倍系列 稀释(至10^-3)
• 实验技术不成熟,甚至不会,可能实验结 果没有是由于实验技术的原因,所以组员 要自己课下学习。
• 实验的未知性:目前分离的苯酚降解菌都 是在苯酚污染的环境中的分离出来的,学 校湖中的污泥不确定是否会分离出目的菌。
• 苯酚的毒性
Thanks
湖水污泥微生物中苯酚降解菌的 分离与特性测定
实验意义
苯酚是染料、农药、医药等行业 的重要生产原料和中间体,是工业废水 中的常见污染物之一。由于它具有较 强的生物毒性,许多国家已将其列入重 点污染物名单之中,并且采取各种措施 来消除环境中的苯酚污染。而且它的 水体污染很难去除。 所以在这些措施中,生物修复是一种低 成本的环境友好型污染消除方式,它的 关键是获得具有苯酚降解功能的微生 物。
机培养液。 • 隔3天后第一次添加PMM培养液,使苯酚终浓度分别增加
至100mg/l;隔3天后第二次添加PMM培养液,使苯酚终 浓度分别增加至200mg/l;第三次隔3天后,添加PMM培 养液,使苯酚终浓度分别增加至300mg/l 。 • 3、最后取培养液进行系列稀释后涂布于苯酚浓度为 300mg/L的PMM固体培养基平板上,30℃培养3d后挑取 形态上有差异的单菌落,。 • 以上所有培养均用黑布遮盖。
2022-2023学年江苏省淮安市涟水县一中高二5月月考生物试题

2022-2023学年江苏省淮安市涟水县一中高二5月月考生物试题1.下列有关种群及种群特征的叙述中,不正确的是()A.五岛湖公园的湖水中所有鲫鱼构成一个种群B.种群密度是种群最基本的数量特征,某种群的个体数量越多,其种群密度就越高C.出生率和死亡率、迁入率和迁出率是决定种群数量变化的主要因素D.年龄结构、性别比例都可用于预测种群数量变化2.使用化学农药、采用生物防治的方法都可防治农作物害虫。
下列有关叙述中,不正确的是()A.使用化学农药治理害虫,农药会污染水体、大气和土壤B.使用化学农药治理害虫,会使害虫的抗药性增强,并杀死害虫的天敌C.采用生物防治,可降低农业的生产成本,提高经济效益D.可利用生物之间的捕食、寄生、互利共生等种间关系,进行生物防治3.下列是关于生物群落、及其结构与群落演替的叙述,不正确的是()A.自然生态系统中,生物群落通常由各种动物、植物、微生物构成B.群落结构有垂直结构和水平结构两大类型C.在火山岩上、冰川泥上发生初生演替,火灾后森林发生次生演替D.人类活动会改变群落演替的方向和速度4.下列是关于生态位的叙述,错误的是()A.生态位是指生态系统中一个种群在空间上所占据的位置及其与相关种群之间的功能关系B.群落结构越复杂,生态位多样性越大,生物利用环境资源的能力就越强C.研究某种动物的生态位,通常要研究它的栖息地、食物、天敌以及与其他物种的关系等D.研究某种植物的生态位,通常要研究它在研究区域内的出现频率、种群密度、株高等特征等5.传统美食的制作体现了生物发酵技术,下列相关叙述正确的是()A.酸奶和泡菜制作中均需要及时通氧,保证乳酸菌的有氧呼吸B.通过传统发酵技术可以从微生物细胞中提取单细胞蛋白,用作动物饲料C.果酒、果醋制作所利用的菌种均能够进行有氧呼吸D.为降低杂菌污染,发酵前需要对器具、原料等进行灭菌6.下列关于微生物分离和培养的叙述,错误的是()A.应根据微生物代谢类型选择合适的培养基并控制好培养基的pHB.待培养基冷却至室温后,在酒精灯火焰附近倒平板C.使用过的培养基应进行灭菌,不应直接丢弃D.实验操作时应避免已灭菌的材料用具与周围物品接触7.某研究性学习小组拟培育一种名贵花卉的脱毒苗,其技术路线为“取材→消毒→愈伤组织培养→生芽、生根→移栽”。
高效苯酚降解菌Bacillus sp. L5-1的分离及其降解特性

中国环境科学 2021,41(5):2441~2448 China Environmental Science 高效苯酚降解菌Bacillus sp. L5-1的分离及其降解特性刘庆辉,李剑*,杨航,王志宇,李艳,张玮川,贾银娟,张秋根,罗旭彪(南昌航空大学,重金属污染物控制与资源化国家地方联合工程研究中心,江西南昌 330063)摘要:从污水处理厂活性污泥中分离筛选出一株高效苯酚降解菌L5-1,经菌落形态观察和16S rDNA基因测序,结果表明菌株L5-1为蜡样芽胞杆菌(Bacillus cereus),美国国家生物信息中心(NCBI)的注册号为MN784421.将苯酚设置为唯一碳源,对其生长和苯酚降解特性展开研究.结果表明: 菌株L5-1在10%接种量、温度30~35℃、pH值7~8的条件下,均能高效降解培养基中苯酚(培养基体积为100mL,初始苯酚浓度为500mg/L,14h时降解率>93%).而在最优降解条件下(10%接种量,培养温度为35,pH℃值7.0,NaCl浓度为1%),初始苯酚浓度为500mg/L,菌株在14h内的苯酚降解率可达97.1%;而当初始苯酚浓度为1000mg/L,菌株也可在46h内达到97.71%的降解率.运用Haldance方程动力学模拟菌株在不同浓度苯酚下的生长过程,其最大比生长速率为0.355h-1,半饱合常数104.27mg/L,抑制常数为322.83mg/L,R2=0.997. 菌株L5-1为目前已报道的Bacillus菌属中降解苯酚能力较强的菌株,为实际处理含酚废水中提供理论参考.关键词:Bacillus cereus;苯酚;生物降解;动力学中图分类号:X172 文献标识码:A 文章编号:1000-6923(2021)05-2441-08Isolation and degradation characteristics of highly efficient phenol-degrading bacteria Bacillus sp. L5-1. LIU Qing-hui, LI Jian*, YANG Hang, WANG Zhi-yu, LI Yan, ZHANG Wei-chuan, JIA Yin-juan, ZHANG Qiu-gen, LUO Xu-biao (National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China). China Environmental Science, 2021,41(5):2441~2448Abstract:A highly efficient phenol-degrading bacterium named L5-1 was isolated and screened from the activated sludge from a sewage treatment plant. The colony morphology observation and 16S rDNA gene sequencing showed that the strain L5-1 was Bacillus cereus, with the registration number of MN784421 in the US National Center for Biotechnology Information (NCBI). A series of experiments with Phenol as the only carbon source were conducted to study the growth and phenol degradation characteristics of this strain L5-1. The results showed that under the conditions of 10% inoculum, temperature range of 30 to 35℃, pH range of 7 to 8 , the strain L5-1 effectively degraded phenol in the culture medium (with the 100mL of medium volume and the initial phenol concentration of 500mg/L), the degradation rate was better than 93% in 14h. Under optimal degradation conditions (10% inoculum, culture temperature at 35℃, pH 7.0, and NaCl concentration at 1%), The phenol degradation rate reached 97.1% within 14 hours when the initial concentration was set at 500mg/L. When the initial phenol concentration was set to 1000mg/L, the strain L5-1 still reached 97.71% degradation rate within 46 hours. The Haldane kinetic model was used to simulate the growth process of strains under different concentrations of phenol. The maximum specific growth rate was 0.355h-1, the semi-saturation constant was 104.27mg/L, the inhibition constant was 322.83mg/L, R2=0.997. This study confirmed Strain L5-1 was a Bacillus strains with strong phenol degradation ability among the reported strains of the genus Bacillus, and provided certain theoretical references for the actual treatment of phenol-containing wastewater.Key words:Bacillus cereus;phenol;biodegradable;kinetics苯酚污染废水是一种典型的高毒性工业废水,是纺织加工、煤炭气化、石油精炼、皮革制造、树脂合成、医药制造、香料生产、合成纤维等许多工业过程中常见的有机污染物[1].并且苯酚具有很强的流动性,在浓度很低时(1mg/L)也能快速渗透到周围生态环境中,导致水体有难闻的气味和味道,对动植物有长效性和生物积累性[2].美国和中国也先后将苯酚列入首批水中优先控制污染物名单[3].目前含酚废水的处理方法主要有物理法、化学法和生物法.利用生物法替代物理化学法矿化废水中的苯酚具有成本低、效率高等特点,且降解后的最终产物多为环境无害物质,如低碳化合物,二氧化碳和水[4-5].因此,利用生物法处理含酚废水受到广泛关注.近年来,国内外学者就如何利用微生物降解苯收稿日期:2020-09-25基金项目:国家自然科学基金资助项目(21467018);江西省教育厅项目(GJJ170576);江西省重点研发计划项目(20181ACG70021)* 责任作者, 副教授,***************.cn2442 中国环境科学 41卷酚污染废水进行了大量的研究, 筛选出多种菌株,有根瘤菌(rhizobia)[6]、不动杆菌如Acinetobacter calcoaceticus[7]和Acinetobacter sp.AQ5NOL 1[8]、红球菌如Rhodococcus erythropolis[9]和Rhodococcus spp.CM-HZX1[10]、产碱杆菌(Alcaligenes sp.)[11]等.其中有许多能降解高浓度苯酚并具有良好耐受性的微生物,如Jiang等[12]从湖北某药厂的生物池中分离出Candida genus,能在72h内降解800mg/L苯酚.陈晓华等[13]从北京一处人工湿地分离出的Ochrobactrum sp.可耐受1300mg/L苯酚并在48h内对1000mg/L苯酚降解率达到82.2%,王图锦等[14]从一个焦化厂受污染的土壤中分离出不动杆菌,能在60h内完全降解初始浓度1200mg/L苯酚. Shourian 等[15]从制药处理废水中分离出的Pseudomonas sp.能在85h内降解1000mg/L苯酚.在目前发现的众多苯酚降解菌中,有不少研究报道Bacillus菌属能有效降解苯酚. Bacillus thuringiensis J20 在120h内对700mg/L的苯酚降解率为88.6%[16],Bacillus brevis 降解1000mg/L苯酚需132h[17].其中Bacillus cereus 降解废水中苯酚的研究较少,苯酚降解效率也较低,菌株Bacillus cereus F6在8h内仅能降解100mg/L 苯酚[18],Bacillus cereus B3降解800mg/L的苯酚需72h[19].本文取江西南昌象湖污水处理厂的曝气池活性污泥,在实验室模拟工业含酚废水逐步驯化苯酚降解菌,筛选出一株对高浓度苯酚耐受并且降解效果优异的菌株L5-1,探讨了培养条件(接种量、温度、pH值、盐度、初始苯酚浓度)对L5-1生长及苯酚降解的影响.并将实验数据与Haldance方程动力学模型相拟合,探究了菌株生长和初始苯酚浓度之间的关系,以期为微生物处理苯酚污染废水提供理论参考.1材料与方法1.1菌种的来源本研究用来分离筛选菌株的样品取自江西南昌象湖污水厂曝气池活性污泥(黑色絮状).1.2培养基的制备无机盐培养基(g/L):NH4NO31.50,KH2PO4 1.50, K2HPO4 1.2, NaCl 5.00, MgSO4 0.06, MnSO4 0.02, H3BO3 0.02,ZnSO4.7H2O 0.03, FeSO4 0.05,通过1mol/L的NaOH和HCl调节pH值.定容至指定体积后灭菌备用.富集培养基(g/L):牛肉浸膏4,蛋白胨8,NaCl 4.定容至指定体积后灭菌备用.固体培养基:在已配好的液体培养基中加入1.8%(质量分数)的琼脂粉制成固体培养基,经高压灭菌锅中灭菌后倒入无菌培养皿冷却备用.1.3菌种的富集与驯化将适量活性污泥加入到100mL无菌生理盐水中,在30,150r℃/min下充分振荡1h,取10%体积的菌液,在无菌环境下接种到灭菌后的富集培养基中.在30,150r℃/min下培养到对数增长期后,取10mL富集菌液接种到90mL的无机盐培养基中,并添加苯酚作为唯一碳源.在同样的培养条件下重复此操作,以100mg/L为增加量逐步提升苯酚浓度至1000mg/L.选择生长较好的培养基进行下一步实验.1.4苯酚降解菌的筛选与纯化用无菌水将培养至对数期的菌液稀释成不同浓度梯度.在无菌环境下均匀地涂布在固体培养基表面.在恒温培养箱中倒置培养,定时观察,挑取形态及大小、颜色不同的单一菌落,于事先配置好的300mg/L苯酚的固体无机盐培养基上划线,得到单一纯菌.将分离的单一纯菌富集培养至OD600为1.0左右,作为接种体备用.以10%(体积比)的接种量加入到无机盐培养基中,添加苯酚作为唯一碳源.在30℃、150r/min,以相同条件下没有加入菌液但添加了相同浓度苯酚的无机盐培养基作为对照组,通过定时检测各培养基的苯酚浓度选择出降解效果最好的菌株,最后再反复划线确保得到单株菌种.并用斜面低温保存.1.5菌株生长和苯酚降解率的测定细菌生长量的测定:采用不含菌液的无机盐培养基作为对照参比,在波长600nm处测定菌种吸光值(OD600).代入公式(1)计算菌体质量浓度(DCW)[19].600DCW(mg/L)314.5OD=× (1) 苯酚浓度采用4-氨基替比林法测定苯酚浓度[20],代入公式(2)计算培养基苯酚降解率(%)100%=−×苯酚降解率初始苯酚度微生物浓处浓浓理后苯酚度初始苯酚度(2)1.6菌株的鉴定及系统发育树的构建5期 刘庆辉等:高效苯酚降解菌Bacillus sp. L5-1的分离及其降解特性 24431.6.1 形态学及生理生化鉴定 将菌株接种于固体培养基中观察其菌落形态,采用扫描电镜(SU1510)在10000倍下观察菌株L5-1的表面形态.测定菌株革兰氏染色、好氧性等生理生化指标.1.6.2 16S rDNA 序列分析 将要鉴定的菌株在固体培养基中划线培养至对数期后,用试剂盒(上海生工)提取分离出菌株L5-1的基因组DNA,采用细菌通用引物27F 和反向引物1492R 扩增反应DNA 序列[21].将产物电泳检测后进行测序分析(上海生工).测序结果在BLAST 和MEGA4.1软件中进行基因库比对分析和以邻位相接法构建系统发育树,初步获得菌株的生物学分类地位. 1.7 菌株生长及降解苯酚特性以不同体积比的接种量(6%、8%、10%、12%、14%)、不同培养温度(15, 20, 25, 30, 35, 40, 45℃)、不同pH 值(4, 5, 6, 7, 8, 9, 10)、不同NaCl 浓度(0%、2%、4%、6%、8%、10%、12%、14%、16%)在体积为100mL,初始苯酚浓度为500mg/L 的无机盐培养基中进行单因素试验,在150r/min 的振荡培养箱中培养, 间隔1h 取一次样,测定培养基中生物量和苯酚降解率,确认其最适宜的苯酚降解条件.菌株在不同初始苯酚浓度下的降解:根据以上试验确定的最佳接种量、温度、pH 值以及NaCl 浓度接种于不同初始苯酚浓度(200~1400mg/L)的无机盐培养基中,在150r/min 的培养箱中间隔2h 取一次样,测定培养基中的生物量和苯酚含量.以上试验均重复3次.1.8 苯酚降解动力学分析在微生物降解苯酚的过程中,降解底物苯酚既作为微生物的唯一碳源,又因为其毒性会对微生物生长产生抑制作用[22].因此本研究采用Haldane 方程来描述初始苯酚浓度对菌株L5-1生长的影响[23], 如公式(3)所示max phenol2phenolphenol =s iC C K C K µµ++(3)式中: µ为微生物比生长速率, h -1;µmax 为最大比生长速率, h -1;C phenol 为苯酚质量浓度, mg/L ;K s 为半饱和常数, mg/L;K i 为抑制常数, mg/L.并用Origin8.0将实验数据与动力学方程拟合. 2 结果与讨论2.1 苯酚降解菌的筛选与鉴定图1 菌株L5-1的扫描电镜图Fig.1 Scanning electron micrograph of strain L5-1×10000图2 菌株L5-1的16S rDNA 序列进化树Fig.2 The 16S rDNA sequence phylogenetic tree of strain L5-12444 中国环境科学 41卷通过多次富集驯化和分离纯化后,本研究得到4株对高浓度苯酚具有较高降解效果且能够良好生长的菌株,其中一株菌株具有良好的苯酚耐受性以及高效的苯酚降解率,将该菌株命名为L5-1,观察其菌落形态和部分生理生化特征,结合16S rDNA鉴定其菌种.经观测,L5-1菌落形态为白色,圆形,不透明,表面粗糙.革兰氏染色呈红色,为革兰氏阳性菌.进行琼脂柱穿刺实验发现其为兼性好氧菌.扫描电镜(10000×)结果如图1所示,可以看出菌体为杆状,表面较为平整,不透明,大小在1.5~2µm左右,且生长状况良好.测定16Sr DNA核酸序列,并将序列在GenBank 数据库中作比对分析,构建了菌株L5-1与其他相近菌株之间的系统发育关系(图2).结果显示菌株L5-1与蜡样芽孢杆菌(Bacillus cereus. MH19)相似性为99.6%,根据同源性分析结果,该菌株归属于Bacillus sp.,鉴定结果为蜡样芽孢杆菌(Bacillus cereus).该菌株的基因序列已提交至NCBI基因库,其注册号为MN784421.2.2接种量对菌株L5-1降解苯酚的影响图3 不同接种量对菌株L5-1降解苯酚的影响Fig.3 Effect of different inoculation amount on phenoldegradation by Strain L5-1接种量的多少会对菌株降解苯酚产生直接影响,接种量过少会导致菌株更容易受到苯酚的抑制作用,接种量过高则会增加投入成本,会造成菌株之间对碳源的竞争,影响降解效果.如图3所示,接种量为6%菌液时,培养基中菌株在14h内对500mg/L苯酚的降解率为74.4%,菌株降解苯酚的停滞期随着接种量的增高而明显缩短,培养基中苯酚的浓度也在不断降低,接种量为10%、12%时,在14h内培养基中浓度为500mg/L的苯酚均被完全降解,接种量为14%时,在14h内培养基中苯酚降解率为96.8%.说明适当的提高接种量是提升菌株降解苯酚效果的一种有效途径.可以看出接种量超过10%时菌株对苯酚的降解效果提升不明显,接种量过大时反而影响到菌株的降解效果,且会增加经济成本,综合考虑选择10%作为菌株L5-1的最佳接种量.2.3温度对菌株L5-1生长和降解苯酚的影响温度是影响微生物生长繁殖的重要因素,选择出合适的温度能有效提高微生物酶活性,有助于提升参与苯酚降解的酶促反应速率[23].从图4中可以看出,菌株L5-1的最佳生长和降解苯酚温度为35,℃并在30~35℃之间对500mg/L苯酚在14h的降解率都大于95%(30℃为95.4%,35℃为96.9%),且生长状况良好.该菌株具有典型的嗜中温特点,培养温度在15和45℃时生物量和降解率都达到最低(15℃时降解率19.7%,45℃时降解率24.6%).这可能是因为培养温度过低会使参与酚类降解的微生物酶活性降低,细菌新陈代谢速率变慢,温度过高则容易让微生物酶失去活性[24].OD60图4 温度对菌株L5-1生长及苯酚降解的影响Fig.4 The effect of temperature on the growth of strainL5-1and degradation of phenol初始苯酚浓度500mg/L,14h2.4pH值对菌株L5-1生长和降解苯酚的影响如图5所示,菌株L5-1的最佳生长和降解苯酚pH值为7.0,14h内对500mg/L苯酚降解率为97%,培养基中pH值低于7.0后,随着pH值的下降菌株对苯酚的降解率逐渐下降,当培养基中pH值为4.05期 刘庆辉等:高效苯酚降解菌Bacillus sp. L5-1的分离及其降解特性 2445时,菌株基本不生长.当pH 值超过7.0后,菌株在碱性条件下对苯酚的降解率和生长状况相比酸性条件下有明显提高(pH 值为5.0时31.3%,pH 值为6.0时70.6%,pH 值为8.0时93.4%,pH 值为9.0时61.7%,pH 值为10.0时7.8%).这是因为苯酚在降解过程中会产如己二酸、丙酮酸等有机酸,致使培养基的pH 值逐渐降低,所以中性和偏碱性环境相比酸性环境更有利于菌株降解苯酚[25-26].并且在偏酸和偏碱的条件下,菌株L5-1的生长和苯酚降解效率都明显下降.这可能由于pH 值影响到了微生物的生长和代谢,进而影响到微生物对培养基中营养物质的吸收和苯酚的降解[27].在pH 值为6.0~9.0条件下,菌株L5-1在14h 内对苯酚的降解率都大于60%,表面菌株L5-1对pH 值有良好的耐受范围且该菌株更耐碱性环境.O D600pH 值图5 pH 值对菌株L5-1生长及苯酚降解的影响 Fig.5 Effect of pH on the growth of strain L5-1 anddegradation of phenol初始苯酚浓度500mg/L,14h2.5 NaCl 对菌株L5-1生长和降解苯酚的影响在工业废水的排放过程中,除了高浓度含酚污染物之外,通常还含有大量盐分,过高的盐分会抑制菌株的生长且对微生物有一定的毒害作用[28].如图6所示,菌株最适宜NaCl 浓度为1%.当NaCl 浓度在2%~6%范围内时,菌株L5-1和苯酚降解率在68h 内对500mg/L 苯酚降解率都为97%左右,当培养基中NaCl 浓度超过6%时,菌株的生长和苯酚降解随着NaCl 浓度的升高而明显受到抑制.当培养基中NaCl 浓度增加至10%时,菌株L5-1的生长量和苯酚降解率仍达到0.58和62.7%,表明菌株对盐浓度有很好的耐受性.王丽娟等[29]发现Bacillus ZU -R6在5%的盐度下降解500mg/L 苯酚,72h 时内降解率仅在50%左右,在8%的盐度下降解500mg/L 苯酚,72h 时降解率仅在20%左右.黄中子等[30]发现一株Virgibacillu sp.在5%的盐度下降解500mg/L 苯酚,72h 内的去除率达98%.因此,菌株L5-1与现有的菌株相比具有较宽的盐浓度适应范围和较快的降解速率,在处理含盐苯酚废水中有一定的优势.O D600图6 NaCl 浓度对菌株L5-1生长及苯酚降解的影响 Fig.6 Effect of NaCl concentration on the growth of strainL5-1 and degradation of phenol初始苯酚浓度500mg/L,68h2.6 菌株生长与苯酚的降解菌株L5-1在最佳降解条件下(10%的接种量、温度为35℃、pH 值为7.0、NaCl 浓度为1%)接种至初始苯酚浓度为500mg/L 的无机盐培养基中,其随时间的生长与苯酚降解曲线如图7所示.O D600图7 最佳条件下菌株L5-1的生长及苯酚降解曲线 Fig.7 Growth and phenol degradation curve of strain L5-1under optimal conditions 500mg/L由图7可知,L5-1经历了近4h 的停滞期,在此期2446 中国环境科学 41卷间苯酚浓度下降缓慢,5~9h进入对数生长期,细菌数量增长极其迅速,苯酚含量随着细菌数量的增加而迅速下降,并在接种13h后达到静止期,此时培养基中细菌总数达到最大,其OD600值为0.93.到14h时,对500mg/L苯酚的降解率达到97.1%.2.7初始苯酚浓度对降解率的影响菌株在不同初始苯酚浓度下,苯酚浓度随时间降解效果如图8所示.当初始苯酚浓度为200mg/L时,在6h内苯酚降解率达到89%.46h对1000mg/L苯酚的降解率达到97.71%.随着初始苯酚浓度的提高,菌株的停滞期也相应的增加,菌株降解相同含量的苯酚所需的时间逐渐延长.当初始苯酚浓度为1200mg/L时,66h才将培养基中苯酚浓度降解到32mg/L左右,降解率为97.4%.而当初始苯酚浓度为1400mg/L时,苯酚66h内的降解率仅为29.0%,由此可见,高浓度苯酚对菌株L5-1的生长有强烈的抑制或毒害作用,使得菌株降解苯酚速率变得尤为缓慢.图8 不同初始苯酚浓度对菌株L5-1降解苯酚的影响Fig.8 Degradation of phenol by strain L5-1 at different initialconcentrations of phenol2.8菌株L5-1对苯酚的降解动力学研究将微生物比生长速率和苯酚初始质量浓度通过非线性最小二乘法按照方程拟合(图9),方程动力学参数为:µmax=0.355h-1,K s=104.27mg/L,K i为322.83mg/L,降解苯酚最适浓度为183.78mg/L.实验数据与模型拟合吻合良好,相关系数R2为0.997.结果表明,苯酚是一种抑制底物,初始苯酚浓度低于183.78mg/L时,菌株L5-1的比生长速率与初始苯酚浓度成正比关系,这是因为培养基中降解菌缺乏足够的碳源供其生长,此时培养基中底物的浓度对菌株的生长速率起主导作用.初始苯酚浓度高于183.78mg/L时,菌株L5-1的比生长速率成负相关,此时初始苯酚浓度的升高使其对菌株抑制作用逐渐增强.表1中为目前已报道的几种微生物苯酚降解动力学参数,其中µmax表示最大比生长速率,K s饱和常数大小表示菌株对苯酚的亲和性,K s越小表示菌株对苯酚的亲和性越大,菌株的比生长速率也就更快, K i抑制常数则表示苯酚对菌株的抑制强度和毒害大小,K i值越大,苯酚对菌株的抑制和毒害作用也就越小,菌株耐受苯酚程度就越大[22].由表可以看出,菌株L5-1比较于其它苯酚降解菌的最大比生长速率和饱和常数相差不大,属于一般水平,其抑制常数大于Ochrobactrum sp.CH10[13]、波茨坦短芽孢杆菌[22]和Trichosporo n.sp[31]等其它苯酚降解菌,说明菌株L5-1具有良好的苯酚耐受能力.表1不同微生物的苯酚降解动力学Haldhance方程参数Table 1 Haldhance equation parameters of phenol degradation kinetics of different microorganisms菌种µmax(h-1) K s(mg/L) K i(mg/L)R2 Bacillus sp.L5-1(本文) 0.355 104.27 322.83 0.997 Ochrobactrum sp. CH10[13]0.441 77.77 110.6 0.973 Brevibacillus borstelensis[22]0.334 14.07 196.89 0.992 Halomonas sp. H17[23] 0.31 191.63 683.050.997Trichosporon.sp[31] 0.667 51.14 271.70.997Alcaligenes faecalis[32] 0.150 22.20 245.40 0.987图9 菌株L5-1苯酚降解动力学Fig.9 Kinetics of degradation of phenol by strain L5-13结论3.1从污水处理厂活性污泥中分离出一株苯酚降5期刘庆辉等:高效苯酚降解菌Bacillus sp. L5-1的分离及其降解特性 2447解菌.鉴定分析为芽孢杆菌属(Bacillus sp.),命名为L5-1.该菌株对苯酚具有高效的降解能力.其中最佳降解条件是接种量为10%,生长温度为35,pH℃值7.0,NaCl浓度为1%.3.2菌株降解不同初始浓度苯酚动力学与Haldance模型吻合良好,经拟合其生长参数为µmax= 0.355h-1,K s=104.27mg/L,K i=322.83mg/L.相关性系数(R2)为0.997.3.3该菌株相比于其他Bacillus cereus降酚菌株具有较宽的环境适应范围和更高的降解效率,14h对500mg/L苯酚的降解率达到97.71%,46h对1000mg/L苯酚的降解率达到97.7%.因此,该菌株在含酚废水的生物降解领域有极大的应用潜力.参考文献:[1] Mao Z, Yu C, Xin L. Enhancement of phenol biodegradation byPseudochrobactrum sp. through ultraviolet-induced mutation [J].International Journal of Molecular Sciences. 2015,16(12):7320-7333. [2] Massalha N, Shaviv A, Sabbah I. Modeling the effect ofimmobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions [J]. Water Research, 2010,44(18): 5252-5259.[3] 王兵,刘璞真,任宏洋,等.非均相催化臭氧化降解水中苯酚动力学[J]. 环境工程学报, 2016,10(7):3427-3433.Wang B, Liu P Z, Ren H Y, et al. Degradation kinetics of catalytic ozone oxidation of phenol in water [J]. Chinese Journal of Environmental Engineering. 2016,10(7):3427-3433.[4] 陈治希,刘昭文,杨凯,等.微生物降解酚类污染物的研究进展 [J].广州化学, 2015,40(1):72-78.Chen Z X, Liu Z W, Yang K, et al. Progress of phenolic compounds degradation by microbes [J].Guangzhou Chemistry, 2015,40(1):72-78.[5] Lu Z, Guo X, Li H, et al. High-throughput screening for a moderatelyhalophilic phenol-degrading strain and its salt tolerance response [J].International Journal of Molecular Sciences. 2015,16(12):11834- 11848.[6] Wei G H, Yu J F, Zhu Y H, et al. Characterization of phenoldegradation by Rhizobium sp. CCNWTB 701isolated from Astragalus chrysopteru in mining tailing region [J]. Journal of Hazardous Materials, 2008,151(1):111-117.[7] 陈明,张维,徐玉泉,等.醋酸钙不动杆菌PHEA-2对苯酚的降解特性研究 [J]. 中国环境科学, 2001,21(3):226-229.Chen M, Zhang W, Xu Y Q, et al. Study on characteristics of Acinetobater calcoaceticus PHEA-2 for phenol degradation [J]. China Environmental Science, 2001,21(3):226-229.[8] Ahmad S A, Shamaan N A, Arif N M, et al. Enhanced phenoldegradation by immobilized Acinetobacter sp. strain AQ5N OL 1[J].World Journal of Microbiology and Biotechnology, 2012,28(1): 347-352.[9] 刘艳霞.降酚菌的定向驯化及其对含酚废水的降解作用 [D]. 北京:北京化工大学, 2011.Liu Y X. The teaming of phenol-degraded bacteria and its biodegradability to phenolic wasterwater [D]. Beijing: Beijing University of Chemical Technology, 2011.[10] 魏霞,周俊利,谢柳,等.苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究 [J]. 环境科学学报, 2016,36(9):3193-3199.Wei X, Zhou J L, Xie L, et al. Isolation, identification and characterization of phenol-degrading strain CM-HZX1 [J]. Acta Scientiae Circumstantiae. 2016,36(9):3193-3199.[11] 徐庆.苯系物降解菌的筛选及其降解特性研究 [D]. 曲阜:曲阜师范大学, 2017.Xu Q, Screening of benzene series degradation bacteria and study on their degradation characteristics [D]. Qufu: Qufu Normal University. [12] Jiang Y, Yang K, Wang H, et al. Characteristics of phenol degradationin saline conditions of a halophilic strain JS3 isolated from industrial activated sludge [J]. Marine Pollution Bulletin, 2015,99(1/2):230-234.[13] 陈晓华,魏刚,刘思远,等.高效降酚菌株Ochrobactrum sp. CH10生长动力学和苯酚降解特性的研究 [J]. 环境科学, 2012,33(11):3956- 3961.Xu X H, Wei G, Liu S Y, et al. Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10 [J].Environmental Science, 2012,33(11):3956-3961.[14] 王图锦,潘瑾,刘雪莲.高效苯酚降解菌PDB1的筛选及降解特性研究 [J]. 科学技术与工程, 2017,17(2):301-304.Wang T J, Pan J, Liu X L, et al. Breeding of Phenol-degradation Bacteria and Studyon Phenol Biodegradation by the Strain PDB1[J].Science Technology and Engineering, 2017,17(2):301-304.[15] Shourian M, N oghabi K A, Zahiri H S, et al. Efficient phenoldegradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewaters [J]. Desalination, 2009,246(1-3): 577-594.[16] Ereqat S I, Abdelkader A A, N asereddin A F, et al. Isolation andcharacterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine [J]. Journal of Environmental Science and Health, Part A. 2018,53(1):39-45.[17] Arutchelvan V, Kanakasabai V, Elangovan R, et al. Kinetics of highstrength phenol degradation using Bacillus brevis [J]. Journal of Hazardous Materials. 2006,129(1-3):216-222.[18] 刘鸿杰,何熙璞,李浩,等.苯酚降解菌F6的筛选鉴定及降解特性[J]. 基因组学与应用生物学, 2017,36(1):233-238.Liu H J, He X P, Li H, et al. Isolation and identification of phenol degradation strain F6 and its degradation characteristic [J]. Genomics and Applied Biology, 2017,36(1):233-238.[19] 于彩虹,陈飞,胡琳娜,等.一株苯酚降解菌的筛选及降解动力学特性 [J]. 环境工程学报, 2014,8(3):1215-1220.Yu C H, Chen F, Hu L N, et al. Selection of phenol degradation bacteria and characteristic of degradation kinetics [J]. Chinese Journal of Environmental Engineering, 2014,8(3):1215-1220.[20] HJ 503-2009 水质水中挥发酚类测定4-氨基安替比林分光光度法 [S].HJ 503-2009 Water quality-ddetrmination of volatile phenolic compounds-4-AAP spectrophotometric method [S].[21] 冯玉雪,毛缜,吕蒙蒙.一株DDT降解菌的筛选及其降解特性 [J].2448 中国环境科学 41卷中国环境科学, 2018,38(5):1935-1942.Feng Y X, Mao Z, Lv M M. Screening and degradation characteristics of a DDT-degrading bacteria [J]. China Environmental Science, 2018,38(5):1935-1942.[22] 葛启隆,王国英,岳秀萍.波茨坦短芽孢杆菌降解苯酚特性及动力学研究 [J]. 生物技术通报, 2014,(3):117-122.Ge Q L, Wang G Y, Yue X P. Phenol degradation by Brevibacillus borstelensis and kinetic analysis [J]. Biotechnology Bulletin, 2014,(3):117-122.[23] 赵娜娜,许继飞,宋晓雪,等.嗜盐高效降酚菌株Halomonas sp. H17的筛选及降解苯酚特性 [J]. 环境科学学报, 2019,39(2):318-324.Zhao N N, Xu J F, Song X X, et al. Screening and phenol-degrading characteristics of a highly efficient phenoldegrading halophilic bacterial strain Halomonas sp.H17 [J]. Acta Scientiae Circumstantiae, 2019,39(2):318-324.[24] Levén L, N yberg K, Schnürer A. Conversion of phenols duringanaerobic digestion of organic solid waste – A review of important microorganisms and impact of temperature [J]. Journal of Environmental Management, 2012,95(1):S99-S103.[25] Kuang Y, Zhou Y, Chen Z L, et al. Impact of Fe and N i/Fenanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values [J]. Bioresource Technology, 2013,136(Complete):588-594.[26] 张安龙,王晔,王雪青,等.一株高效苯酚降解真菌的分离鉴定及其菌剂的制备 [J]. 微生物学通报, 2018,45(7):1450-1461.Zhang A L, Wang Y, Wang X Q, et al. Isolation and identification of a high-efficiency phenol-degrading fungi and the preparation of its microbial inoculum [J]. Microbiology China, 2018,45(7):1450-1461. [27] 张立国,刘建忠,班巧英,等.弱酸性条件下丙酸富集培养物的降解特性 [J]. 中国环境科学, 2016,36(12):3724-3728.Zhang L G, Liu J Z, Ban Q Y, et al. Degradation characteristics of a propionate enriched culture at slightly acidic conditions [J]. China Environmental Science, 2016,36(12):3724-3728.[28] Li H, Meng F, Duan W, et al. Biodegradation of phenol in saline orhypersaline environments by bacteria: A review [J]. Ecotoxicology and Environmental Safety, 2019,184:109658.[29] 王丽娟,钱子雯,沈海波,等.一株耐盐菌的分离及其降解特性 [J]. 化工进展, 2017,36(3):1047-1051.Wang L J, Qian Z W, Shen H B, et al. Separation and biodegradation characteristics of a halotolerant strain [J]. Chemical Industry and Engineering Progress, 2017,36(3):1047-1051.[30] 黄中子,李辉,刘勇弟,等.一株中度嗜盐菌Virgibacillu sp.PDB-F2对苯酚的降解特性 [J]. 环境科学与技术, 2015,38(12):1-5.Huang Z Z, Li H, Liu Y D, et al. Characteristics of phenol biodegradation by a moderately halophilic bacterium Virgibacillu sp.PDB-F2 [J]. Environmental Science & Technology, 2015,38(12):1-5. [31] 马溪平,艾娇,徐成斌,等.耐低温苯酚降解菌的降解动力学研究[J]. 环境保护科学, 2009,35(5):18-21.Ma X P, Ai J, Xu C B, et al. Study on kinetics of phenol biodegradation by low temperature- resistance strain [J].Environmental Protection Science, 2009,35(5):18-21.[32] Jiang Y, Wen J, Bai J, et al. Biodegradation of phenol at high initialconcentration by Alcaligenes faecalis [J]. Journal of Hazardous Materials, 2007,147(1/2):672-676.作者简介:刘庆辉(1998-),男,江西吉安人,南昌航空大学硕士研究生,主要从事挥发性有机物的生物降解研究.。
微生物降解苯酚污染的研究进展

许雅洁,张怡洋,刘阳,等.微生物降解苯酚污染的研究进展[J ].中南农业科技,2023,44(5):233-241.苯酚是一种具有强毒性且难去除的工业污染物,是从工业过程中排放出来的,如纺织加工、煤气化、炼油、皮革制造、树脂合成、香水生产等[1-5]。
苯酚具有毒性、致突变性和致癌性,对环境有严重的破坏作用[6]。
由于大规模的工业应用,苯酚不可避免地被引入水或土壤环境,造成水体和土壤污染,由于其毒性大,即使在低浓度下也可能构成严重的生态危害。
苯酚及酚类化合物对水体的污染主要以焦化废水为主(焦化废水是指化工类企业在工业加工过程中产生的高毒性、高污染废水),其主要来源于生产煤和汽油的企业,以及加工液化气、运输制冷等过程。
同时化工厂附近的土壤也会受到一定程度的污染,进而污染农作物及其制作的食品,最终危害人类健康。
苯酚不仅在环境中具有明显的累积效应,而且容易与其他有机化合物共存形成新的复合污染物,或在水中发生取代或其他化学反应转化为比苯酚毒性更高的酚类化合物,如氯酚、甲基酚和烷基酚等,而且在生物体内难以分解。
酚类化合物的毒性随结构和官能团的不同而变化,这些物质的顽固性和持久性更大,增加了对苯酚污染治理的难度,间接增加了对人体的危害程度[7,8]。
苯酚作为重要的有机化工原料和工业商品,生产的相关下游产品涉及人们生活的很多方面,如可生产作为汽车外壳涂料的双酚A 以及生产为水杨酸[7]。
此外,苯酚还可用作溶剂、试验试剂和消毒剂等,如作为具有杀菌特性的乳膏和剃须皂,或被用作内部防腐剂和胃麻醉剂。
因此,苯酚在染料、制药、化肥、塑料、玻璃纤维、食品工业和石化等各种行业都有应用[9,10]。
2019年,全球苯酚需求量约为1200万t ,预计未来需求量还会增加。
随着中国经济的飞速发展,国内产业对苯酚的需求也在不断上升,2016—2021年中国苯酚消费量呈稳步增长态势,2021年中国苯酚表观消费量为367.3万t ,依据往年增长速率预计2023年中国苯酚表观消费量将达到400万t 以上[11,12]。
发酵简答题

1. 简述菌种保藏的基本原理和方法?2. 酶解法制备淀粉水解糖的优点和缺点有哪些?3. 简述发酵过程的组成部分?4. 简述发酵工业对微生物菌种的要求七、回答题(本大题共2小题,第一小题7分,第二小题6分,共13分)1.分析发酵时泡沫产生的原因、泡沫对发酵的影响,并说明常见除去泡沫的方法。
2.分析发酵工业中杂菌污染的危害、原因和预防措施五、1.菌种保藏的原理是将菌种在低营养水平、缺氧状态,干燥和低温等条件下贮藏,使菌种处于“体眠”状态,抑制其繁殖能力,从而减少其变异。
方法有斜面低温保藏法、蒸馏水保藏法、麸皮保藏法、冷冻干燥法、液氮保藏法等。
2.以酶为催化剂,在常温常压下将淀粉水解为葡萄糖的方法。
优点:反应条件温和;副反应少;可在较高淀粉浓度下水解,对原料要求不高;糖液的质量高、营养物质较丰富。
缺点:水解时间长,酶制备较复杂,设备较多。
3.菌种的培养基原料来源广、廉价;培养条件易控制;发酵周期短;菌株高产;菌种抗性强,如抗病毒(噬菌体)能力强;菌株性状稳定,不易变异退化;菌种安全性高,不产生有害物质。
4.危害有:杂菌产生的一些物质会影响产量或产品质量、消耗大量的营养物质而影响生产菌的正常生长,杂菌产生的一些物质可以抑制生产菌的生长,杂菌会寄生于生产菌体内,杀死生产菌。
评分标准:根据答案要点及书写情况酌情给分。
六、原因:①机械泡沫。
②发酵泡沫。
影响:减少发酵的有效容积、增加了染菌的机会;泡沫严重时,影响通气搅拌的正常进行,影响生产率。
消泡方法:化学消泡和机械消泡。
评分标准:根据答案要点及书写情况酌情给分。
五、论述绘图题1、列举膜分离技术并作相应说明。
2. 绘图并说明氧从气相传递到液相的菌体中需要克服的几种阻力。
第页共9 页 3. 噬菌体的特点、感染过程危害程度及治理措施。
39.发醇过程中异常现象(发酵液转稀、发酵液过浓、耗糖缓慢、pH不正常)处理措施?40.Monod(莫诺)方程表明了什么和什么的重要关系?简介Monod(莫诺)方程?41.补料分批发酵技术的特点, 与分批发酵,连续发酵的区别?42 通风发酵设备中的机械搅拌发酵罐必须满足的基本条件?六、论述题:(每小题10分,本大题共20分)43.如何提高高产菌的稳定性?44.发酵过程中溶解氧的控制措施?(从供氧和需氧量方面考虑)39.发酵液pH对发酵的影响包括哪些方面?40.比底物消耗速率方程?41.补料分批发酵的适用范围?42.优良的发酵装置应具有的基本特征包括哪些内容?六、论述题:(每小题10分,本大题共20分)43.试述对微生物反应器设计的基本要求?44.大规模微生物发酵工程生产, 选择菌种应遵循的原则是什么?(微生物发酵工程对微生物菌种的要求主要包括哪些内容)三、简答题(6题,每题4分,共24分)4、简述种子制备过程中种子级数对发酵过程的影响?答:过多会增加发酵操作环节,造成衰退菌体细胞过多,发酵过程控制难度增大。
苯酚降解菌的筛选、鉴定及其降解特性的研究

上海师范大学硕士学位论文苯酚降解菌的筛选、鉴定及其降解特性的研究姓名:何小丽申请学位级别:硕士专业:微生物学指导教师:肖明20090501上海师范大学硕士学位论文摘要论文题目:苯酚降解菌的筛选、鉴定及其降解特性的研究学校专业:微生物学学位申请人:何小丽指导教师:肖明摘要酚类化合物为细胞原浆毒物,属高毒性物质。
这类物质来源广泛,通常污染水源,毒死鱼虾,危害农作物,并严重威胁人类的健康。
含酚有机物的毒性还在于其只能被少数的微生物分解。
从自然界中筛选分离出能够降解特定污染物的高效菌种,有针对性的投加到已有的污水处理系统中的生物强化技术,能够快速提供大量具有特殊作用的微生物,在有毒有害污染物治理中显示出巨大的潜力。
1、本研究从胜利油田河口采油厂的飞雁滩油田土壤样品中分离得到10株能够利用并降解苯酚的菌株P1-P4、P7、P9-P13。
该10株苯酚降解菌能够在以苯酚为唯一碳源和能源的培养基上生长,经16S rDNA分子鉴定和生理生化检测,该10株降酚菌分别被鉴定到属或种。
其中降酚菌株P1、P3和P4这3株菌株分别属于劳尔氏菌属(Ralstonia)、贪噬菌属(Variovorax)和节杆菌属(Arthrobacter)里的种。
其它7株降酚菌株P2、P7、P9-P13都属于假单胞菌属(Pseudomonas)里的种。
这4个属里的细菌在国内外都已被报道有降解苯酚的特性,其中有关假单胞菌降解环境有机物的报道较多。
2、培养液中的苯酚含量通过4-氨基安替比啉分光光度法测定,通过苯酚降解效率的比较,菌株P2降解苯酚的能力较其它9株菌株要强。
于是将菌株P2作为本研究中进一步研究的对象,研究了不同的环境条件下该菌株降解苯酚和菌体生长的情况。
3、通过苯酚羟化酶特异性引物的设计,从菌株P2扩增出苯酚羟化酶大亚基基因,该基因片段编码对苯酚有催化活性的多肽,催化苯酚代谢的第一步反应;表明菌株P2能降解苯酚是由于细胞具有降解苯酚的遗传基础。
山东省师大附中2025届生物高三上期末质量检测试题含解析

山东省师大附中2025届生物高三上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:(共6小题,每小题6分,共36分。
每小题只有一个选项符合题目要求)1.研究发现,某种水稻害虫的基因X发生突变后产生了抗药性,则下列叙述正确的是()A.基因突变一定导致基因碱基排列顺序发生改变B.基因X的突变导致嘌呤数与嘧啶数的比值发生了改变C.基因X的突变为害虫的进化提供了方向D.农药的使用使基因X产生了抗药性变异2.苯酚是工业生产排放的有毒污染物质,自然界中存在着降解苯酚的微生物。
某工厂产生的废水中含有苯酚,为了降解废水中的苯酚,研究人员从土壤中筛选获得只能利用苯酚的细菌菌株,筛选的主要步骤如下图所示,①为土壤样品。
下列相关叙述错误的是()A.图示②中不同浓度碳源的培养基不会影响细菌的数量B.图示②培养目的菌株的选择培养基中应加入苯酚作为碳源C.若图中④为对照实验,则其中不应加入苯酚作为碳源D.使用平板划线法可以在⑥上获得单菌落3.糖元沉积病贮积病是由于遗传性糖代谢障碍,致使糖元在组织内过多沉积而引起的疾病,临床表现为低血糖等症状。
下图为人体糖代谢的部分途径。
糖元沉积病Ⅰ型是6-磷酸葡萄糖酶基因(E)突变所致。
据图分析,下列说法正确的是A.抑制葡萄糖激酶会制约糖元的合成,并未制约体内的细胞呼吸B.以葡萄糖为底物,细胞呼吸过程会合成ATP,不需要ATP供能C.血糖浓度低时,正常人体分泌胰岛素增加,使血糖浓度恢复到正常水平D.给糖元沉积病Ⅰ型患者注射胰高血糖素不能使血糖浓度恢复到正常水平4.2019年诺贝尔生理学或医学奖揭示了人体细胞适应氧气变化的分子机制,在缺氧条件下,缺氧诱导因子(HIF)会增加,激活相关基因表达促进红细胞生成,下列说法正确的是()A.缺氧条件下,红细胞进行无丝分裂增加红细胞数量B.氧气含量低时,HIF可能会被保护而不会被降解C.若细胞中的HIF被抑制可便该细胞中氧气含量增加D.在红细胞的细胞核内可完成相关基因的表达过程5.在植物的抗冷胁迫过程中,脱落酸(ABA起到关键的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某种苯酚降解细菌的分离、纯化、鉴定
一、引言
近年来,环境污染问题日益突出,其中有机污染物的排放成为了一个
备受关注的话题。
苯酚作为一种有机化合物,其在工业生产和生活中
被广泛使用,但是其排放也给环境造成了不小的压力。
寻找一种能够
高效降解苯酚的细菌成为了当下研究的热点之一。
本文将围绕某种苯
酚降解细菌的分离、纯化、鉴定展开讨论。
二、苯酚降解细菌的分离
1. 采样地点选择
在开始分离苯酚降解细菌之前,首先需要明确采样地点的选择。
一般
来说,苯酚的排放源比较集中,因此我们可以选择一些工业废水排放口、化工厂周围土壤和水体等地点进行采样。
2. 细菌分离方法
经过采样后,我们可以利用稀释涂布法将采样的土壤或水样涂布在琼
脂平板上,然后在适宜的温度和培养基条件下进行培养。
通过分离光
圈和纯化培养,我们可以获得一系列有苯酚降解能力的细菌菌落。
三、苯酚降解细菌的纯化
1. 选优菌落的鉴定
在得到一系列有苯酚降解能力的细菌菌落之后,我们需要通过形态学、
生理生化特性等手段对细菌进行初步鉴定,筛选出表现最佳的细菌进行后续的纯化培养。
2. 纯化培养方法
对选优细菌进行纯化培养可以采用多次转接法,即将单一细菌菌落进行二次以上的转接,以获得单一细菌培养物。
四、苯酚降解细菌的鉴定
1. 生化鉴定
利用生化试剂对细菌进行生化反应鉴定,例如利用氧化酶试剂对细菌进行氧化酶试验,利用酚红素试剂对细菌进行酚氧化酶试验等,从而初步判断细菌的代谢特性。
2. 分子生物学鉴定
通过16S rRNA基因测序鉴定细菌的亲缘关系,确定其属种级别的分类位置。
五、个人观点和总结
苯酚降解细菌的分离、纯化、鉴定是一项具有挑战性的工作,需要从多个角度进行综合分析和判断。
通过本文的探讨,我们不仅仅了解了苯酚降解细菌的基本分离和纯化方法,还深入了解了细菌鉴定和分类的相关技术。
希望通过这些工作,能够为环境污染治理和资源开发提供一些有益的参考和借鉴。
苯酚是一种常见的工业化合物,在工业生
产和生活中被广泛使用。
然而,苯酚的排放对环境造成了严重的污染,因此寻找一种能够高效降解苯酚的细菌成为了当下研究的热点之一。
本文将继续探讨苯酚降解细菌的分离、纯化、鉴定的过程,并介绍一
些新的研究进展和技术方法。
在进行苯酚降解细菌的分离过程中,除了选择适合的采样地点外,还
可以引入一些新的分离方法。
可以利用基于生物信息学的方法,针对
苯酚降解相关基因进行筛选,然后从土壤或水样中直接采集携带这些
基因的细菌。
这种方法能够快速高效地筛选出具有苯酚降解能力的细菌,极大地提高了分离效率。
在苯酚降解细菌的纯化过程中,除了传统的多次转接法外,还可以引
入一些新的分离技术。
可以利用质谱技术对细菌代谢产物进行分析,
从而快速准确地鉴定出有苯酚降解能力的细菌。
还可以利用基因工程
技术构建表达苯酚降解相关基因的细菌菌株,从而提高其降解能力和
稳定性。
在苯酚降解细菌的鉴定过程中,除了传统的生化和分子生物学鉴定方
法外,还可以引入一些新的技术手段。
可以利用代谢组学技术对细菌
的代谢产物进行全面分析,从而深入了解其降解途径和代谢特性。
还
可以利用生物信息学的方法对细菌的全基因组进行测序和分析,从而
揭示其降解相关基因的组织结构和功能。
苯酚降解细菌的分离、纯化、鉴定是一项复杂而具有挑战性的工作,需要利用多种技术手段和方法进行综合分析和判断。
随着科学技术的不断进步,相信在不久的将来,我们将能够找到更多更有效的方法和途径,为环境污染治理和资源开发提供更多有益的参考和借鉴。
希望通过这些努力,能够为保护地球环境、促进可持续发展作出更多的贡献。