复旦大学概率论基础第三章答案

合集下载

概率论和数理统计复旦大学课后题答案全

概率论和数理统计复旦大学课后题答案全

概率论和数理统计-复旦大学-课后题答案(全)1 概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC ∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C ∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P (A 1)=517=(17)5(亦可用独立性求解,下同)(2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的; (2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=CC /C mn m n M N M N--(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN种,n 次抽取中有m 次为正品的组合数为C m n种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M种,从N -M 件次品中取n -m 件的排列数为P n m N M--种,故P (A )=C P P P m m n mn M N Mn N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多. (3) 由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为C m n种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m mn mnnP A M N M N -=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N ,则取得m 件正品的概率为()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案. 12.【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+= 14.(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3)2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止. (1) 问正好在第6次停止的概率; (2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) 223151115()()22232p C == (2)1342111C ()()22245/325p ==16.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-=18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A ===(2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求: (1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑3312321369968967333333151515151515C C C C C C C C C C C C C C =•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%. 26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作AA 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得 ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n-≥ 即为(0.8)0.1n ≤ 故 n≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B相互独立. 【证】 (|)(|)P A B P A B =即()()()()PAB P AB P B P B = 亦即()()()()P AB P B P AB P B = ()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1)3101100C (0.35)(0.65)0.5138k k k k p -===∑ (2)10102104C (0.25)(0.75)0.2241k k k k p -===∑ 36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1)111p n =- (2)23!(3)!,3(1)!n p n n -=>- (3)12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由 0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x +>--⎡⎢+-->⎢⎢+-->⎣构成的图形,即02022a x ay a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P(A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证 P (AB )+P (AC )-P (BC )≤P (A ).【证】()[()]()P A P A B C P ABAC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设iA ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =-44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率. 【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由(|)(|),P A C P B C ≥得 ()(),P AC P BC ≥故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n kn nn n n nn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()nn ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n==++1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m n m n m n m n+==++++50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论~第三章习题参考答案与提示

概率论~第三章习题参考答案与提示
设二维随机变量xy的概率密度为6第三章习题参考答案与提示?2121yxyxyxf?xy?其中1yx?和2yx?都是二维正态密度函数且它们对应的二维随机变量的相关系数分别为13和13它们的边缘密度函数所对应的随机变量的数学期望都是0方差都是1
第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论第三章第四章习题及答案

概率论第三章第四章习题及答案
第三章 多维随机变量及其分布
9.以X记某医院一天出生的婴儿的个数,以Y记其
中男婴的个数,设X和Y的联合分布律为
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
(1)求边缘分布律 (2)求条件分布律
11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由



f ( x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
28.设随机变量(X,Y)服从区域
D ( x, y) : y 0, x y 1
2 2


上的均匀分布,定义随机变量U,V如下:
0, X 0, 0, X 3Y , U 1,0 X Y ,V 1, X 3Y . 2, X Y ,
求 (U ,V )的联合概率密度 , 并计算P UV 0 .
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布
当n 0,1,2,时 P{ X n, Y m} P{Y m | X n} P{Y n}



令事件A Y 0, Y 1 X 2 , X 3Y , 则 A的面积 1 P U 2,V 0 , (扇形角度为 ) 2 6 6
返回主目录

概率论基础第三章答案

概率论基础第三章答案

第三章 随机变量与分布函数1、直线上有一质点,每经一个单位时间,它分别以概率p 或p −1向右或向左移动一格,若该质点在时刻0从原点出发,而且每次移动是相互独立的,试用随机变量来描述这质点的运动(以n S 表示时间n 时质点的位置)。

2、设ξ为贝努里试验中第一个游程(连续的成功或失败)的长,试求ξ的概率分布。

3、c 应取何值才能使下列函数成为概率分布:(1);,,2,1,)(N k N c k f L ==(2),,2,1,!)(L ==k k c k f kλ 0>λ。

4、证明函数)(21)(||∞<<−∞=−x e x f x 是一个密度函数。

5、若ξ的分布函数为N (10,4),求ξ落在下列范围的概率:(1)(6,9);(2)(7,12);(3)(13,15)。

6、若ξ的分布函数为N (5,4),求a 使:(1)90.0}{=<a P ξ;(2)01.0}|5{|=>−a P ξ。

7、设}{)(x P x F ≤=ξ,试证)(x F 具有下列性质:(1)非降;(2)右连续;(3),0)(=−∞F 1)(=+∞F 。

8、试证:若αξβξ−≥≥−≥≤1}{,1}{12x P x P ,则)(1}{21βαξ+−≥≤≤x x P 。

9、设随机变量ξ取值于[0,1],若}{y x P <≤ξ只与长度x y −有关(对一切10≤≤≤y x ),试证ξ服从[0,1]均匀分布。

10、若存在Θ上的实值函数)(θQ 及)(θD 以及)(x T 及)(x S ,使)}()()()(exp{)(x S D x T Q x f ++=θθθ,则称},{Θ∈θθf 是一个单参数的指数族。

证明(1)正态分布),(20σm N ,已知0m ,关于参数σ;(2)正态分布),(200σm N ,已知0σ,关于参数m ;(3)普阿松分布),(λk p 关于λ都是一个单参数的指数族。

最新概率论与数理统计第三章习题及答案

最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计(经管类)第三章课后习题答案

概率论与数理统计(经管类)第三章课后习题答案
P Z 40 P X 20, Y 20 20 6
P Z 30 P X 10, Y 20 20 3
P Z 20 P X 20, Y 0 20
P Z 10 P X 10, Y 0 P X 20, Y
P Z 0 P X 10, Y 则 Z=X‐Y 的分布律为
2 10 20
Z=X‐Y ‐40 ‐30 ‐20 ‐10 0
4. 设随机变量 X,Y 相互独立,且服从[0,1]上的均匀分布,求 X+Y 的概率密度. 解: 因 X,Y 都服从[0,1]上的均匀分布,且相互独立 故fX x fY y 1, f x, y fX x fY y
设 Z=X+Y
当0 z 1时
Z ZX
FZ
f x, y dydx
Z ZX
1dydx
Z
z xdx
;
P X 1, Y 0 P X 1 P Y 0
;
P X 1, Y 1 P X 1 P Y 1
;
(X,Y)的分布律与边缘分布律为
Y
X
0
1

16
4
20
0
25 25 25
4
1
1
1
25 25
5

20 25
1 5
(2) 不放回抽样的情况:
P X 0, Y 0 P X 0 P Y 0
;
P X 0, Y 1 P X 0 P Y 1
0, 其他.
0, 其他.
关于 Y 的边缘密度为
fY y
1
√2 24xydx , 0 y
0, 其他.
1 , 6x, 0 √3 =
y
1,
√3
0, 其他.
注意积分限为 Y 的值域,后面却 要写 X 的值域哦~

概率论第3章习题解答 袁德美

概率论第3章习题解答 袁德美

概率教材第三章勘误说明:红线为要纠正的部分.(一)70页习题3.2答案:1a b +=且0,0a b ≥≥. (二)76页例3.6(2) ()(),d d x yP X Y f x y x y >>=∫∫10041d d d d 42Gxx y xy x xy y ===∫∫∫∫.(三)77页例3.7()||1000P X Y ≤−()||1000,d d x y f x y x y −≤=∫∫61d d 610Hx y =×∫∫400010006200030001d d 610x x y +=×∫∫ 1.3= (四)79页习题3.13(2)答案应为0.3 . (五)84习题3.18 单位:千小时.第3章 二维随机变量及其分布二维随机变量及其分布习题3.13.1比较二维随机变量与一维随机变量的分布函数的性质有何异同?3.2 设1(,)F x y 和2(,)F x y 都是联合分布函数,试问常数a ,b 满足什么条件时,12(,)(,)aF x y bF x y +也是联合分布函数?解:因为1(,)F x y 和2(,)F x y 都是联合分布函数,有1(, )1F ∞∞=,2(, )1F ∞∞=.若12(,)(,)aF x y bF x y +也是联合分布函数,则12(, )(, )1aF bF ∞∞+∞∞=,即1a b +=.又因为联合分布函数12(,)(,)aF x y bF x y +满足单调性,所以0,0a b ≥≥.可以验证,当0,0a b ≥≥且1a b +=时, 12(,)(,)aF x y bF x y +是联合分布函数.3.3 设二维随机变量1+, 0,0,(,)~(,) 0, x y x y xy e e e x y X Y F x y −−−−− −−≥≥=其它. 求:(1)()0.5,0.3P X Y ≤≤;(2)()0.5,0.3 1.3P X Y ≤<≤;(3)()10, 12P X Y −<≤<≤.解: (1)()0.50.30.950.5,0.3(0.5,0.3)1P X Y F ee e −−−≤≤==−−+;(2)()()()0.5,0.3 1.30.5, 1.30.5,0.3P X Y P X Y P X Y ≤<≤=≤≤−≤≤(0.5,1.3)(0.5,0.3)F F =−0.3 2.45 1.30.95e e e e −−−−=+−−;(3)()10, 12(0,2)(1,1)(0,1)(1,2)P X Y F F F F −<≤<≤=+−−−− 00000=+−−=.*3.4 设()10,00,0.1, 01,01,,0.5, 01,11,01,1,x y x y F x y x y x y << ≤<≤<= ≤<≥≥≤<其它或或 和()20, 00,0.2, 01,01,,0.5, 01,11,01,1,x y x y F x y x y x y << ≤<≤<= ≤<≥≥≤< 其它或或是两个不同的分布函数,验证它们关于X 和关于Y 的边缘分布函数相同.解: 当 0x <时, ()1,0F x y =,有1(,)0F x ∞=.当01x ≤<时,()10, 0,,0.1,01,0.5, 1.y F x y y y <=≤< ≥ 有1(,)0.5F x ∞=.当1x ≥时,()10, 0,,0.5,01,1, 1.y F x y y y <=≤< ≥有1(,)1F x ∞=.因此()1,F x y 关于X 的边缘分布函数为10,0,(,)0.5, 01,1,x F x x <∞=≤< 其它.类似可求()1,F x y 关于Y 的边缘分布函数为10,0,(,)0.5, 01,1,y F y y <∞=≤< 其它.()2,F x y 关于X 和关于Y 的边缘分布函数为20, 0,(,)0.5, 01,1,x F x x < ∞=≤< 其它 与 20,0,(,)0.5, 01,1,y F y y <∞=≤<其它.因此它们关于X 和关于Y 的边缘分布函数相同.习题3.23.5 盒子里装有2只白球,2只红球,3只黑球,在其中任取4只球,以X 表示取到白球的只数,以Y 表示取到黑球的只数,求(,)X Y 的联合分布列及边缘分布列.解: 按古典概率计算,从7只球中取4只球,共有4735C =种取法.在4只球中,白球有i 只,黑球有j 只(剩下4i j −−只红球)的取法数为: 4232iji j C C C −−种. 因此 (,)X Y 的联合分布列为423247(,)ij i jC C C P X i Y j C −−===,0,1,2i =,0,1,2,3j =,24i j ≤+≤. 于是2232473(0,2)35C C P X Y C ====, 3132472(0,3)35C C P X Y C ====, 112232476(1,1)35C C C P X Y C ====, 1212324712(1,2)35C C C P X Y C ====, 1323472(1,3)35C C P X Y C ====, 2222471(2,0)35C C P X Y C ====,211232476(2,1)35C C C P X Y C ====, 2223473(2,2)35C C P X Y C ====, (,)X Y 的联合分布列与边缘分布列为3.6 一批产品工有100件,其中一等品60件,二等品30件,三等品10件. 从这批产品中有放回的任取3件,以X 和Y 分别表示取出的3件产品中一等品、二等品的件数,求:(1) (,)X Y 的联合分布列;(2) (1,2)P X Y ≤≤.解: (1) 因为X 和Y 的可能取值为0,1,2,3, 事件{,}X i Y j ==表示取出的3件产品中一等品有i 件、二等品有j 件(三等品有3i j −−件)的取法, 取法总数为3!!!(3)!i j i j −−种,而对于每种取法的概率为 3631101010ij i j−−,因此(,)X Y 的联合分布列为33!631(,)!!(3)!101010iji jP X i Y j i j i j −−===−− , ,0,1,2,3i j =,3i j +≤.(,)X Y 的联合分布列与边缘分布列为(2)(1,2)(0,0)(0,1)(0,2)P X Y P X Y P X Y P X Y ≤≤===+==+==(1,0)(1,1)(1,2)0.325P X Y P X Y P X Y +==+==+===.3.7 设事件A ,B 满足1()4P A =,1(|)(|)2P B A P A B ==. 记 1, 0 A X A =若发生,,若不发生, 1, 0 B Y B =若发生,,若不发生. 求,)X Y (的联合分布列及边缘分布列.解(1)由于()111()()428P AB P A P B A ==×=,()()181()124P AB P B P A B ===, 所以,1(1,1)()8P X Y P AB ====,1(1,0)(()()8P X Y P AB P A P AB ====−=, 1(0,1)()()(),8P X Y P AB P B P AB ====−=(0,0)()1()P X Y P AB P A B ====−U =51()()()8P A P B P AB −−+=,所以(,)X Y 的联合分布列及边缘分布列为3.8 (,)X Y 的联合分布列为求:(1) (0)P X =;(2) (2)P Y ≤;(3) (1,2)P X Y <≤.解 (1) (0)(0,1)(0,2)(0,3)P X P X Y P X Y P X Y ====+==+==0.10.10.30.5=++=;(2) (2)1(3)1(0,3)(1,3)P Y P Y P X Y P X Y ≤=−==−==−==10.30.250.45=−−=;(3)(1,2)(0,1)(0,2)0.10.10.2P X Y P X Y P X Y <≤===+===+=.习题3.33.9 设二维随机变量()35(1)(1), 0,0,,~(,)0, x y e e x y X Y F x y −− −−≥≥= 其它.试求,)X Y (的联合概率密度(, )f x y .解 当0,0x y >>时,35(,)(1)(1)x y F x y e e −−=−−.对(, )F x y 求二阶偏导,得(, )X Y 的联合概率密度为()2,(,)F x y f x y x y∂=∂∂(35)15x y e −+=.当0x <或0y <时, (,)0F x y =, ()2,(,)0F x y f x y x y∂==∂∂.于是,)X Y (的联合概率密度(35)15, 0,0,(, )0, x y e x y f x y −+ ≥≥= 其他.3.1010 设二维随机变量()22,(,),(1)(1)AX Y f x y x y =++ 求:(1)常数A ;(2)联合分布函数(,)F x y ;(3) 概率()(),P X Y D ∈,其中D 是以(0,0),(0,1),(1,0),(1,1)为顶点的正方形区域.解 (1)由联合概率密度(,)f x y 的正则性,221(,)d d d d (1)(1)A f x y x y x y x y +∞+∞+∞+∞−∞−∞−∞−∞==++∫∫∫∫2π1A ==, 得21πA =. (2) 2221(,)(,)d d d d (1)(1)x yxyF x y f s t s t s t s t π−∞−∞−∞−∞==++∫∫∫∫21(arctan )(arctan 22x y πππ=++. (3)()(),(1,1)(0,0)(0,1)(1,0)PX Y D F F F F ∈=+−−913311648816=+−−=. 3.1.111设二维随机变量(),(,)X Y f x y ,则(1)P X >等于 (A) 1d (,)d x f x y y ∞−∞−∞∫∫. (B) 1d (,)d x f x y y ∞∞−∞∫∫.(C)1(,)d f x y x −∞∫. (D)1(,)d f x y x ∞∫.解 选(B).因为1(1)(1,)d (,)d P X P X Y x f x y y ∞∞−∞>=<<∞−∞<<∞=∫∫.3.12 设二维随机变量() (6), 02,24,,~(,)0, k x y x y X Y f x y −−<<<< =其它. 求:(1) 常数k ;(2) (1,3)P X Y <<;(3) ( 1.5)P X <;(4) (4)P X Y +<.解(1)由于联合概率密度(,)f x y 满足正则性,于是2421(,)d d d (6)d 8f x y x y x k x y y k +∞+∞−∞−∞==−−=∫∫∫∫所以81=k . (2)130213(1,3)d (6)d 88P X Y x x y y <<=−−=∫∫. (3) 1.5402127( 1.5)( 1.5,)d (6)d 832P X P X Y x x y y <=<<∞=−−=∫∫.(4)(,)f x y 的非零区域与{4}x y +<的交集{(,)|02,24}G x y x y x =<<<<−.()24024112(4),d d (6)d d d (6)d 883x x y GP X Y f x y x y x y x y x x y y −+<+<==−−=−−=∫∫∫∫∫∫.3.13 设二维随机变量()(2),01,0,,~(,)0,cy x x y x X Y f x y −≤≤≤≤ =其它. 求:(1)常数c ;(2)(1)P X Y +≤;(3)边缘概率密度.解(1)由于联合概率密度(,)f x y 满足正则性,于是1051(,)d d d (2)d 24xf x y x y x cy x y c +∞+∞−∞−∞==−=∫∫∫∫, 所以 4.8c =.(2)(,)f x y 的非零区域与{1}x y +≤的交集1{(,)|1,0}2G x y y x y y =≤≤−≤≤.()11201(1),d d 4.8(2)d d d 4.8(2)d 0.3y yx y GP X Y f x y x y y x x y y y x x −+≤+≤==−=−=∫∫∫∫∫∫.(3) , X Y ()关于X 的边缘密度函数204.8(2) 2.4(2)01()(,)0x X y x dy x x x f x f x y dy +∞−∞−=−≤≤== ∫∫其它.关于Y 的边缘密度函数124.8(2) 2.4(34)01()(,)0y Y y x dx y y y y f y f x y dx +∞−∞−=−+≤≤== ∫∫其它.3.14 设二维随机变量(,)X Y 在由x 轴、y 轴及直线22x y +=所围成的三角形区域上D 服从均匀分布,求边缘概率密度()X f x 和()Y f y .解 区域}01,0{(,)|22x y D x y x ≤≤≤≤=−的面积为1(22)d 1S x x =−=∫.因此(,)X Y 的联合概率密度为01,0122(,)0x y x f x y ≤≤≤≤− = , ,,其他., X Y ()关于X 的边缘密度函数220d 22, 01()(,)d 0, xX y x x f x f x y y −+∞−∞=−≤≤== ∫∫其它.关于Y 的边缘密度函数220d 1, 02()(,)d 20, y Y yx y f y f x y x −+∞−∞=−≤≤ ==∫∫其它. 3.15设(,)X Y 的联合概率密度分别为(1) 4,01,01,(,)0,xy x y f x y ≤≤≤≤ =其它.(2) 21, 01,02,(,)30, x xy x y f x y +<<<< = 其它.(3) , 0,(,) 0, y e x y f x y − <<= 其它.试分别求, X Y ()的边缘概率密度.解 (1) 因为, X Y ()关于X 的边缘密度函数14d 2, 01()(,)d 0, X xy y x x f x f x y y +∞−∞=≤≤ == ∫∫其它.关于Y 的边缘密度函数104d 2,01,()(,)d 0, ,Y xy x y y f y f x y x +∞−∞=≤≤==∫∫其它(2) 因为, X Y ()关于X 的边缘密度函数222012()d 2, 01()(,)d 330, X x xy y x x x f x f x y y +∞−∞+=+<< == ∫∫其它.关于Y 的边缘密度函数120111()d ,02,()(,)d 3360, .Y x xy x y y f y f x y x +∞−∞+=+<< ==∫∫其它 (3) 因为, X Y ()关于X 的边缘密度函数≤>===∫∫+∞−−∞+∞−0,00,),()(x x e dy e dy y x f x f xx y X 关于Y 的边缘密度函数≤>===∫∫−−∞+∞−,0,0,0,),()(0y y ye dx e dx y x f y f y y y Y习题3.43.16 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以X 与Y 分别表示甲和乙的命中次数,试求(,)X Y 的联合分布列及边缘分布列.解 甲命中次数(2.0.2)X B ,乙命中次数(2,0.5)Y B ,且X 与Y 相互独立,于是(,)X Y 的联合分布列为2222(,)()()0.20.80.50.5ii i j j j P X i Y j P X i P Y j C C −−======,(,0,1,2)i j =.因此(,)X Y 的联合分布列及边缘分布列为3.17 [1999[1999年1]1]设随机变量X 与Y 相互独立,试完成下表:1x a 1/8 b g 2x 1/8 c d h j p g1/6ef1解 设表中空格数据为由11211p p p +=g ,即1186p +=,得1124p =; 由于X 与Y 相互独立,有1111p p p =?g g ,即111246p =?g ,得114p =g ;由1112131p p p p ++=g ,即131112484p ++=,得13112p =;由1221p p p =?g g ,即21184p =?g ,得212p =g ;由12222p p p +=g ,即221182p +=,得2238p =;由1231p p p ++=g g g ,即311162p ++=g ,得313p =g ;由13233p p p +=g ,即2311123p +=,得2314p =;由121p p +=g g ,即2114p +=g ,得234p =g .填表如下:3.18 [1990年3]一电子仪器由两个部件构成,随机变量X 与Y 分别表示这两个部件的寿命(单位:千小时) ,已知()2221, 0,0,,~(,) 0, x y x y e e e x y X Y F x y +−−− −−+≥≥= 其它.(1) 问X 与Y 是否相互独立?(2) 求这两个部件的寿命都超过100小时的概率.解(1)(, )X Y 关于X 的边缘分布函数为()()0.51,0,,0,0,x X e x F x F x x − −≥=∞=< (, )X Y 关于Y 的边缘分布函数为()()0.51,0,,0,0,y Y e y F y F y y − −≥=∞=<因为()()(),X Y F x y F x F y =,故X 与Y 相互独立.(2)()()()()()()()0.10.1,0.10.10.110.110.1X Y P X Y P X P Y F F e−>>=>>=−−=.3.19 设X 与Y 独立同均匀分布[1,3]U ,并且13a <<,记事件{}A X a =≤,{}B Y a =≥,且()7/9P A B =U ,求常数a .解 因为X 与Y 相互独立,所以事件A 与事件B 也相互独立. 因此111()()d 22aa P A P X a x −=≤==∫,313()()d 22a aP B P Y a x −=≥==∫, ()(1)(3)()()4a a P AB P A P B −−==.于是()()()()13(1)(3)72249a a a a P A B P A P B P AB −−−−=+−=+−=U ,解得53a =或73.3.2020 某码头只能容纳一只船,现预知某日将有两只船独立来到,且在24小时内各时刻来到的可能性相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一只船要在江中等待的概率.解 设X ,Y 分别表示此二船到达码头的时间,则X , Y 的概率密度函数分别为1,024()240, ,X x f x ≤< = ,其它 1,024()240, ,Y y f x ≤< = ,其它则X 与Y 相互独立,其联合概率密度为()21,024,024,,()()240,X Y x y f x y f x f y ≤<≤<== 其他, 于是按题意,所求概率为(34).P Y X −≤−≤ 区域{(,)|024,024,34}G x y X Y Y X =≤≤≤≤−≤−≤ 所求概率为(34)P Y X −≤−≤21(,)d d 24Gf x y x y G ==×∫∫的面积3110.271152==. 3.21 设X 与Y 独立同均匀分布[0,1]U ,求方程20t Xt Y ++=有实根的概率. 解 X , Y 的概率密度分别为1, 01()0, ,X x f x << = ,其它 1, 01()0, ,Y y f x << =,其它由于X 与Y 相互独立,其联合概率密度为()1,01,01,,()()0,X Y x y f x y f x f y <<<< ==其他. 方程20t Xt Y ++=有实根的充要条件是判别式240X Y ∆=−≥,概率22211240401(40)(,)d d d d d 412x x y x P X Y f x y x y x y x −≥−≥====∫∫∫∫∫. 3.22二维随机变量(,)X Y 在区域D 上服从均匀分布,求边缘概率密度()X f x ,()Y f y ,并判断X 和Y 是否相互独立.(1){(,)|01,23}D x y x y =≤≤≤≤;(2)22{(,)|1}4y D x y x =+≤;(3)22{(,)|2}D x y x y y =+≤.解(1)因为区域D 的面积1,D S = , X Y ()的联合概率密度1, (,),(,)0, .x y D f x y ∈ = 其他因为, X Y ()关于X 的边缘密度函数32d 1, 01()(,)d 0, X y x f x f x y y +∞−∞=≤≤ == ∫∫其他.关于Y 的边缘密度函数10d 1, 23,()(,)d 0, ,Y x y f y f x y x +∞−∞=≤≤==∫∫其他所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y =故X 与Y 是相互独立的. (2)因为区域D 的面积2π,D S = , X Y ()的联合概率密度1, (,),(,)2π0, .x y D f x y ∈ = 其他 因为, X Y ()关于X 的边缘密度函数1()(,)d 0, X y x f x f x y y +∞−−∞=≤ ==∫∫其它. 关于Y 的边缘密度函数2()(,)d 0 Y y f y f x y x +∞−∞≤== ∫,,其它; 所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y ≠故X 与Y 是相互独立的.(3)因为区域D 的面积π,D S = , X Y ()的联合概率密度1, (,),(,)π0, .x y D f x y ∈ = 其他因为, X Y ()关于X 的边缘密度函数111d 1()(,)d 0, X y x f x f x y y π+∞−∞=≤ ==∫∫其它.关于Y 的边缘密度函数02()(,)d 0 Y y f y f x y x +∞−∞≤≤== ∫,,其它; 所以,对任意实数x ,y 均有(,)()(),X Y f x y f x f y ≠故X 与Y 是相互独立的.习题3.53.23 设(,)X Y 的联合分布列为求在1X =条件下,Y 的条件分布列.解 (1)(1,0)(1,1)(1,2)P X P X Y P X Y P X Y ====+==+==0.20.10.10.4=++= 在1X =条件下,Y 的条件分布列为(1,0)0.21(0|1)(1)0.42P X Y P Y X P X ========,(1,1)0.11(1|1)(1)0.44P X Y P Y X P X ========,(1,2)0.11(2|1)(1)0.44P X Y P Y X P X ========.或写成0 1 2111(1)24|4Y P Y k X ==.3.24 设二维随机变量(),X Y 的概率分布表为求:(1) (),X Y 关于X 的边缘分布列;(2) ()2P X Y +≤;(3)()00P Y X ==. 解 (1)(),X Y 关于X 的边缘分布列为0 20.3 0.7X P ;(2) ()()212,110.30.7P X Y P X Y +≤=−===−=.(3)()()()0,00.220000.33P X Y P Y X P X ========. 3.25 设二维随机变量 ()3, 0,0,,~(,)2 0, x xyx ex y X Y f x y −− >> =其它. 求:(1)边缘概率密度()X f x ;(2) 条件概率密度|(|)Y X f y x . 解 (1) 因为, X Y ()关于X 的边缘密度函数320d , 0,()(,)d 220, x xy xX x x e y e x f x f x y y ∞−−−∞−∞=>==∫∫其它. (2) 当0>x 时,条件概率密度|, 0,(,)(|)()0, 0.xy Y X X xe y f x y f y x f x y − >== ≤(3) 当12X =时,条件概率密度 2|11, 0,(|)220, 0.yY X e y f y y − > =≤ 3.26 设直线1x =,0y =以及曲线2y x =所围区域为G , (,)X Y 在区域G 上服从二维均匀分布,试求:(1) (,)X Y 的联合概率密度(,)f x y ;(2) 条件概率密度|(|)Y X f y x 及|(|)X Y f x y ;(3) |(|1)Y X f y 及()|1/9X Y f x .解(1) 如图,区域2}01,0{(,)|x y x G x y <<<<=的面积为1201d 3S x x ==∫因此(,)X Y 的联合概率密度为201,03(,)0x y x f x y <<<< =, ,,其他.(2) , X Y ()关于X 的边缘密度函数 例3.26插图220 3 d 3, 01()(,)d 0, x X y x x f x f x y y +∞−∞=<<== ∫∫其它.关于Y 的边缘密度函数13(1 01()(,)d 0, Y x y f y f x y x +∞−∞=<<== ∫其它.当01x <<时,条件概率密度|(|)Y X f y x22|2031(,)(|)3() 0Y X X y x f x y f y x x xf x << ===, ,,其他. 当01y <<时,条件概率密度|(|)X Y f x y1(,)(|)() 0X Y Y x f x y f x y f y <<== ,,其他. (3) 当1x =时,条件概率密度|101(|1)0Y X y f y << =, ,,其他.当19y =时,条件概率密度|3111(|2390X Y x f x << =, ,,其他. 习题3.63.27 有一本100页的书,每页错别字数服从参数为0.01的泊松分布,假定各页错别字数相互独立,求这本书上错别字总数的概率分布. 解 设i X 表示此书第i 页上的错别字数, 则(0.01)i X P , 其中1,2,,100i =L .因为相互独立的泊松随机变量的和仍服从泊松分布,因此这本书上错别字总数1001()ii XP λ=∑ , 其中1000.011λ=×=.3.23.288设两个随机变量X 和Y 相互独立且同分布:()()111/2P X P Y =−==−=,()()111/2P X P Y ====,则下列各式成立的是(A)()12P X Y ==.(B)()1P X Y ==.(C)()104P X Y +==.(C)()114P XY ==. 解 因为X 与Y 相互独立,由边缘分布列可得联合分布列..111111442111144211122i jY p X p −− 由此得()()()1111,11,1442P X Y P X Y P X Y ===−=−+===+=,故(A)正确,(B)错误.另外,由()()()11101,11,1442P X Y P X Y P X Y +===−=+==−=+=知(C)错误,由{}00P XY ==知(D)错误.*3.29 设随机变量X 服从二项分布(,)B n p ,Y 服从二项分布(,)B m p ,且X 与Y 相互独立,证明X Y +服从二项分布(,)B n m p +. 证: 因(,)X B n p ,(,)Y B m p ,所以()(1)k kn k n P X k C p p −==−,0,1,2,,.k n =L ()(1)k k m k m P Y k C p p −==−,0,1,2,,.k m =L而X Y +可能取值为0,1,2,,n m +L ,且X 与Y 相互独立,由卷积公式有00()()()= (1)(1)iik k n k i k i km i k n m k k P X Y i P X k P Y i k C p p C p p −−−−+==+====−−−∑∑= (1)= (1)ik i k i n m i i i n m in m n m k C C p p C p p −+−+−+=−−∑,0,1,2,,i n m =+L . 注:由超几何分布列的正则性可知,01k i k in m ik n mC C C −=+=∑.因此0ik i k in m n m k C C C −+==∑. 3.30设X 与Y 独立同分布,X 的分布列为1{}2k P X k ==,1,2,k =L .试求:(1)Z X Y =+的分布列;(2) min{,}Z X Y =的分布列.解 (1)Z X Y =+可能取值为2,3,L ,且X 与Y 相互独立,由卷积公式有1111()()()()= 222nnk n k nk k nP Z n P X Y n P X k P Y n k −====+====−=∑∑,2,3,n =L . (2)min{,}Z X Y =可能取值为1,2,3,L ,且X 与Y 相互独立,()(min{,})P Z n P X Y n ===11(,)(,)(,)k n k n P X n Y n P X n Y k P X k Y n ∞∞=+=+===+==+==∑∑11()()()()()()k n k n P X n P Y n P X n P Y k P X k P Y n ∞∞=+=+===+==+==∑∑12211111111322122222412n n n k n n n k n ∞+−=+=+=+=−∑’ 即min{,}Z X Y =的分布列为3()4n P Z n ==,1,2,n =L .3.31设X 与Y 相互独立,X 服从均匀分布[0,1]U ,Y 服从参数为2的指数分布,求: (1),X Y ()的联合概率密度;(2)(1)P X Y +≤.解 (1)X 与Y 的概率密度分别为()1, 01,0, X x f x ≤≤ = 其他 与 ()22e , 00, 0y Y y f y y − = ≤ >由于X 与Y 独立,因此,X Y ()的联合概率密度为()()()22e ,01,0,0, .y X Y x y f x y f x f y − ≤≤== >, 其他(2)()11122220111(1), d d d 2e d (1e )d 22xy x x y P X Y f x y x y x y x e−−−+≤+≤===−=+∫∫∫∫∫. 3.32 设X 与Y 独立同均匀分布[0,1]U ,求Z X Y =+的概率密度. 解 Z X Y =+的概率密度1()()()d ()d Z X Y Y f z f x f z x x f z x x ∞−∞=−=−∫∫作变量变换, 令t z x =−,得1()()d zZ Y z f z f t t −=∫当0z <时, ()0Z f z =. 当 01z ≤<时, 1()()d d zzZ Y z f z f t t t z −===∫∫.当 011z ≤−<时, 即 12z ≤<时, 1111()()d d 2Z Y z z f z f t t t z −−===−∫∫.当11z −≥时, 即 2z ≥时, 11()()d 0Z Y z f z f t t −==∫.于是Z X Y =+的概率密度为, 01,()2, 12,0, Z z z f z z z <≤=−<≤当当其他.*3.33 设()(2)2,0,0,,~(,) 0, x y e x y X Y f x y −+ >>= 其它.求随机变量2Z X Y =+的分布函数.解 随机变量2Z X Y =+取值为(0,)∞当0z ≤时, ()()(2)0Z F z P Z z P X Y z =≤=+≤=; 当0z >时, 设区域{(,)|0,0,2}G x y x y x y z =>>+≤,(){}{}2Z F z P Z z P X Y z =≤=+≤()()22,2x y x y zf x y dxdy edxdy −++≤==∫∫∫∫G220d 2d 1z xzx y z z e x e y e ze −−−−−==−−∫∫.于是,随机变量Y X Z 2+=的分布函数为()1,00,0z z Z e ze z F z z −− −−≥= <.★可进一步求得随机变量Z 的密度函数为(),00,0z Z ze z f z z − ≥= <.*3.34设X 与Y 独立同标准正态分布(0,1)N ,随机变量Z =,验证Z 的概率密度为()2/2, 0,0,z z ze z f z − ≥ = 其它, 称Z 服从瑞利(Rayleigh)分布.解 已知X 、Y 的分布密度分别为22()xXf x−=,22()yYf y−=,由相互独立性得X与Y的联合密度函数为221()21(,)()()2x yX Yf x y f x f y eπ−+=⋅=由于0Z=≥,知当0z<时, ()()0ZF z P Z z=≤=;当0z≥时, ()222())()ZF z P Z z P z P X Y z=≤=≤=+≤222222221()21(,)d d d d2x yx y z x y zf x y x y e x yπ−++≤+≤==∫∫∫∫22222220011d d2[]122r r zz ze r r e eπθπππ−−−=−=−∫∫极坐标.将()ZF z关于z求导数,得Z的概率密度为()2/2,0,0,zzze zf z−≥=其它.3.35 对某种电子装置的输出测量了5次,得到的观察值为12345,,,,X X X X X. 设它们独立同分布,概率密度为2/8,0,()40,xxe xf x−>=其它.求:(1)12345max{,,,,}Z X X X X X=的分布函数;(2){4}P Z>.解(1)设12345,,,,X X X X X的分布函数为()XF x,则当0x≤时, ()0XF x=.当0x>时, 有()22x/8/8d14x xXxF x e x e−−−∞==−∫.即2/81,0,()0,xXe xF x−−>=其它.因此12345max{,,,,}Z X X X X X=的分布函数25851,0,()()(())0,.zZ Xe zF Z P Z z F z−−>=≤==其他25(2)(4)1(4)1(4)1(1)0.5167.z P Z P Z F e −>=−≤=−=−−=3.36 设随机变量,X Y ()的联合分布列为求:(1) =max(,)U X Y 的分布列;(2) =min(,)V X Y 的分布列;(3) =W X Y +的分布列;(4) (1|2)P X Y ==,(3|0)P Y X ==.解 (1)由X ,Y 的可能取值知=max(,)U X Y 的可能值为:0,1,2,3. 且有 (0)(1,0)(0,0)0.150.060.21P Z P X Y P X Y ===−=+===+=,(1)(1,1)(0,1)(1,1)(1,0)P Z P X Y P X Y P X Y P X Y ===−=+==+==+==0.020.050.150.10.32=+++=,(2)(1,2)(0,2)(1,2)P Z P X Y P X Y P X Y ===−=+==+==0.150.020.050.22=++=,(3)1(0)(1)(2)10.310.320.220.15P Z P Z P Z P Z ==−=−=−==−−−=. 所以=max(,)U X Y 的分布列 0 1 2 3 0.21 0.32 0.22 0.15U P (2由X ,Y 的可能取值知=min(,)V X Y 的可能值为:-1,0,1. 且有(1)(1,0)(1,1)(1,2)(1,3)P Z P X Y P X Y P X Y P X Y =−==−=+=−=+=−=+=−=0.150.020.150.070.39=+++=,(0)(0,0)(0,1)(0,2)(0,3)P Z P X Y P X Y P X Y P X Y ====+==+==+==(1,0)0.060.050.020.030.10.26P X Y +===++++=,(1)1(1)(0)10.390.260.35P Z P Z P Z ==−=−−==−−=.所以=min(,)V X Y 的分布列为 1 0 1 0.39 0.26 0.35V P − (3) 由X ,Y 的可能取值知=W X Y +的可能值为:-1, 0,1,2,3, 4. 且有 (1)(1,0)0.15P W P X Y =−==−==,(0)(1,1)(0,0)0.020.060.08P W P X Y P X Y ===−=+===+=,(1)(1,2)(0,1)(1,2)P W P X Y P X Y P X Y ===−=+==+==0.150.050.10.3=++=,(2)(1,3)(0,2)(1,1)P W P X Y P X Y P X Y ===−=+==+==0.070.020.150.24=++=,(3)(0,3)(1,2)0.030.050.08P W P X Y P X Y ====+===+=,(4)(1,3)0.15P W P X Y =====.所以=W X Y +的分布列为1 0 1234 0.15 0.08 0.3 0.24 0.08 0.15W P −. (4) (2)(1,2)(0,2)(1,2)P Y P X Y P X Y P X Y ===−=+==+==0.150.020.050.22=++=,(0)(0,0)(0,1)(0,2)(0,3)P X P X Y P X Y P X Y P X Y ====+==+==+== 0.060.050.020.030.16=+++=,(1,2)0.055(1|2)(2)0.2222P X Y P X Y P Y ========, (0,3)0.033(3|0)(0)0.1616P X Y P Y X P X ========.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
而 (2.6) 0.995 所以 1 a 2.6, a 5.2。 2
8、 证 :( 1)设 x2
非降。
x1, F ( x2 ) F ( x1 )
P{ x1
x2 } 0 ,所以 F ( x2 ) F (x1) ,F ( x)
(2)设 x
xn xn 1
x1 x0 , x1 x 由概率的可加性得
P ( xi 1
ex 0
5、 解 :( 1) P(6
1
1
1
9) P (6 10) ( 10) (9 10)
2
2
2
1
1
P 1 ( 10)
2
2
1 ( 2) 0.285788
2
(2) P(7
1
1
1
12) P (7 10) ( 10) (12 10)
2
2
2
11
P1
( 10) 1
22
1 1 ( 1 ) 0.774538
2
( 3) P(13
F ' (x) 是其密度函数,从而定出 c 1 。至此得证 服从 [0,1] 均匀分布。
11、证:( 1) f ( x )
几乎处处可微。设 x1 , x2 (0,1) ,当 x1 x [0,1]( i 1,2) 时,由题设得
F (x1 x) F (x1) P{ x1
x1 x}
P{ x2
x2 x} F ( x2 x} F ( x2)
等式两端都除以 x ,再令 x 0 可得,由 F '( x1 ) 存在可推得 F ' ( x2 ) 也存在,而且 F ' (x2 ) F '( x1) 。从而对任意 x (0,1) 有 F '( x) c 。当 x [0,1] 时显然有 F ' ( x) 0 。 一点的长度为 0,由题设得 P{ 0} P{ 1} 0 。由上所述可知 是连续型随机变量,
所以 的概率分布为
p{ k} pk q q 2 p, k 1,2, 。
3、 解: ( 1) 1
N
f (k)
k1
c N,
N
k
( 2) 1 c
c(e 1) ,
k 1 k!
c 1。 c (e 1) 1 。
4、 证: f (x) 0 ,且
f ( x)dx f ( x) 是一个密度函数。
1 e
|x|dx
2
e |x| dx
得 x2 60 (61.5 60) 58.5 。
7、 解 :( 1) (1.3) 0.90 ,而 P{
1 (a
5)
1.3 解得 a
7.6 。
2
1 a} P (
2
1 5) (a 5)
2
1 (a 5) ,令
2
(2)由 P{|
5 | a} 0.01 得 P{
5
a}
0.005 ,从而 P
1 (
2
1 5) a =0.995 ,
1
1
1
15) P (13 10) ( 10) (15 10)
2
2
2
11
1
P1
( 10) 2
22
2
1
1
2
(1 ) 0.0 6 0 5 9 7
2
2
6、 解: 7+24+38+24+7=100 , P{ x4} (100 7) / 100 0.93, P{ x3}
P{ x3} (7 24 38) /100 0.69 ,查表得 (1.5) 0.93, (0.5) 0.69 。由题
0
1
2
(1
p)n
C
1 n
p(1
p)n 1
C
2 n
p
2
(1
p)n 2
n pn 。
Sn 的分布列为
n
n2
n4
(1
p)n
C
1 n
p(1
p)n 1
C
2 n
p
2
(1
p)n 2
n pn 。
2、 解: P{ 1} P{ 失成} P{ 成失 } pq qp , P{ 2} P{ 失失成 } P{ 成成失 } ppq qqp p 2q q 2 p,
则 F (nx) nF (x) ,或者 1 F ( x) F ( x ) 。从而对有理数 m ,若 m x 与 x 都属于 [0,1] ,则
n
n
n
n
有F mx n
m F (x) 。再由 F ( x) 的左连续性可得, 对任意无理数 a ,若 ax 与 x 都属于 [0,1] , n
则 F (ax) aF (x) 。
因为区间 [ 0,1) 与 [0,1] 的长度相等,由题设得
F (1) P{ 0
1} P{ 0
1} 1 .
由此及上段证明得,对任意 x [ 0,1] 有 F ( x) xF (1) x ,即 F ( x) 为
F ( x)
0, x 0 x, 0 x 1 1, x 1
∴ 服从 [0,1] 上均匀分布。
证法二 :如同证法一中定义 的分布函数 F ( x) ,由 F ( x) 单调知它对 [0,1] 上的 L -测试
设得
( x) P 1 ( 60) 1 ( y 60) x P{ y}
3
3
令x
1(y 3
60)
1.5 , 解 得 y
64.5 , 即 x4
1 60 (64.5 60) 55.5 。再令 ( y 60) 0.5,解得 y
3
64.5 。 由 对 称 性 得 x1 61.5 ,即 x3 61.5 。由对称性
n
m
n
由 单 调 性 得 l i mF ( x) 与 lim F ( x) 均 存 在 且 有 穷 , 由 0 F ( x) 1 及 上 式 得
x
x
F ( ) 0, F ( ) 1 。
9、 证: P{ x1
x2 } P{ x2} P{ x1} P{ x2} (1 P{ x2})
P{ x2} P{
∴不等式成立。
10、证法一 :定义 F ( x)
x1} 1 (1 ) (1 ) 1 1 (
).
0,
Байду номын сангаас
x ( ,0]
P{ 0
x}, x (0,1] 则 F (x) 是 的分布函数。 由题设得,
1,
x (1, )
对任意 2x [0,1] 有 P{ 0
x} P{ x
2x} ,即有
P{ 0
2x} 2P{ 0
x} 。由此得 F (2x) 2F (x) 。逐一类推可得,若 nx [0,1] ,
复旦大学《概率论基础》习题答案
(第一版)
第三章 随机变量与分布函数
1、 解: 令 n 表在 n 次移动中向右移动的次数,则 n 服从二项分布,
P{ n k} Cnk p k (1 p)n k , k 0,1, n 以 Sn 表时刻时质点的位置,则
Sn n ( n n ) 2 n n 。
n 的分布列为
xi ) P{ x
x0}
i0
F ( xi ) F ( xi 1 ) F (x0 ) F ( x) 。
i0
由此得
F ( x0 )
F ( x)
lim
n
F ( x0 )
F (x) ,
F (x) lim F ( xn ) F ( x 0), F ( x) 右连续。 n
(3) 1 P{
}
P{ n
n
n 1}
F (n 1) F (n) lim F( n) lim F (m) 。
相关文档
最新文档