某重级工作制吊车梁设计与计算
疲劳计算与吊车梁设计

静力荷载
脉冲循环
完全对称循环
变幅循环
2)应力幅 ——在循环荷载作用下,应力从最大max 到最 小min重复一次为一次循环,最大应力与最小应力之差为 应力幅。即 =maxmin 上图中b到e图为等幅循环
(5)应力循环次数(n)对疲劳强度的影响
纵坐标为疲劳强度,横坐标为致损循环次数或疲劳寿命 应力循环次数: 指在连续重复荷载作用下应力由最大到最小的循环次数。
吊车梁直接承受动力荷载,故计算时不考虑塑性变形在截面上的发展
(2).带制动梁的吊车梁
适用于Q≥50t、l=6m
由吊车梁上的上翼缘板、水平腹板和专设槽钢组成 与支柱的相对位置
竖向荷载
吊车梁
Mx
横向水平荷载T
制动桁架 My
由于制动梁作为吊车梁的侧向支承,因而对这种形式的吊车梁不用验算整体稳定, 只需验算强度 当为实腹制动梁时,吊车梁上翼缘强度按下式验算
Wnx为吊车粱的净截面对x轴的弹性截面模量 W'ny为制动梁截面在吊车梁上翼缘 外侧对y轴的净截面弹性截面模量
(3)带制动桁架的吊车梁
适用于吊车梁跨度 L≥12m(A6~A8) L≥18m(A1~A5) 为增加吊车梁和制动梁的整体刚 度,在制动梁的另一侧需设置于吊 车梁同样高度的辅助桁架。 在吊车梁的下翼缘和辅助桁架的 下弦平面内设置水平支撑,使吊车 梁和制动梁系构成一箱型截面。 为增加截面刚度,在吊车梁的跨 度的L/3-L/4处还需设置垂直交叉支 撑。
4.焊接缺陷的存在,如:气孔、夹渣、咬肉、未焊透等;
5.非焊接结构的孔洞、刻槽等; 6.构件的截而突变; 7.结构由于安装、温度应力、不均匀沉降等产生的附加应力集中 构件和连接中应力集中大小和残余应力对钢结构的疲劳强度影响显著
钢结构吊车梁设计一般规定、荷载计算

钢结构吊车梁设计一般规定、荷载计算一、设计一般规定1.吊车梁及吊车的工作级别(1)吊车的使用等级根据《起重机设计规范GB/T 3811-2008》3.2.1,吊车按照吊车可能完成的总工作循环数将使用等级划分为U0~U9共10个等级,吊车使用总工作循环数Cr与吊车使用等级及使用频繁程度的关系见《起重机设计规范GB/T 3811-2008》3.2.1表1,如下:表1 起重机的使用等级(2)吊车的起升荷载状态级别根据《起重机设计规范GB/T 3811-2008》3.2.2,起重机的起升载荷,是指起重机在实际的起吊作业中每一次吊运的物品质量(有效起重量)与吊具及属具质量的总和(即起升质量)的重力;起重机的额定起升载荷,是指起重机起吊额定起重量时能够吊运的物品最大质量与吊具及属具质量的总和(即总起升质量)的重力。
其单位为牛顿(N)或千牛(kN)。
起重机的起升载荷状态级别是指在该起重机的设计预期寿命期限内,它的各个有代表性的起升载荷值的大小及各相对应的起吊次数,与起重机的额定起升载荷值的大小及总的起吊次数的比值情况,据此载荷状态级别被分为Q1~Q4共4个级别。
详见《起重机设计规范GB/T 3811-2008》3.2.2表2。
表2起重机的载荷状态级别及载荷谱系数(3)吊车的工作级别根据吊车的10个使用等级与吊车的4个起升荷载状态级别,将吊车整机的工作级别分为A1~A8共8个级别,详见《起重机设计规范GB/T 3811-2008》3.2.3表3。
表3 吊车的工作级别在《建筑结构荷载规范GB 5009-2012》(简称《荷规》)中,工作级别与吊车的荷载系数(《荷规》6.2)、动力系数(《荷规》6.3)及吊车荷载的组合值系数、频遇值系数、准永久值系数(《荷规》6.4)有关,为方便设计,在吊车荷载的条文说明中将吊车的工作制与工作级别的对应关系做如下规定:表4 吊车的工作制等级与工作级别的对应关系2吊车梁荷载吊车梁荷载分为竖向荷载(吊车的竖向轮压)与水平荷载,水平荷载又分为纵向水平荷载与横向水平荷载,吊车纵向水平制动力产生纵向水平荷载,对于轻、中级工作制吊车(A1-A5),横向水平荷载考虑由小车的水平制动力产生,对于重级、特重级工作制吊车(A6-A8),横向水平荷载还需考虑吊车的摇摆力,根据《钢结构设计标准GB50017-2017》3.2.2,计算强度、稳定性以及连接的强度时,此水平力不宜与小车产生的水平制动力同时考虑。
吊车梁设计

2
M kyl
2
10 EI y1
l 2200
Mkx—竖向荷载标准值作用下梁的最大弯矩, Mky—跨内一台起重量最大吊车横向水平荷载 标准值作用下所产生的最大弯矩,
Iy1——制动结构截面对形心轴Y1的毛截面惯性
矩。
对制动桁架应考虑腹杆变形的影响,Iyl乘以0.7 的折减系数。
Mkx
1 Pk l P 轮压标准值 k 4
距离的移动集中荷载,而荷载的位置决定吊车梁
的内力,荷载移动到什么位置时,使吊车梁中的 内力达到最大,这就需要确定最不利轮位,使得 吊车在该位置时内力最大。
1.最大弯矩Mmax,最大剪力Vmax
二个轮子作用于梁上时(图所示):
a1 a2 最大弯矩点(C点)的位置为: 4
最大弯矩为:
c M max
Vmax
5.3 吊车梁的截面选择
1.高度h
2.腹板厚度 3.翼缘尺寸
1.高度h
1)最大高度hmax---满足建筑净空要求。
2)最小高度hmin---满足刚度要求。
3)经济高度hs---满足受力条件下最经济。
式中:
——截面抵抗矩
------ 为竖向荷载作用下的绝对最大弯矩
2.腹板厚度tw
a.经验公式
1. 腹板加劲肋设置
2. 加劲肋的构造要求 (1)配置横向加劲肋 腹板两侧成对配置横向加劲肋时:
h0 外伸宽度: bs 30 40mm
bs / 3( 40)
bs / 2 60
横向加劲肋的厚度: t bs s
15
bs
单侧配置横向加劲时:
外伸宽度:增加20% 厚度:≥外伸宽度1/15
2
2
A6 A8 d 1.10
吊车梁最大弯矩点计算

吊车梁最大弯矩点内力计算1.计算吊车梁的内力时,由于吊车荷载为动力荷载,首先应确定求各内力所需吊车荷载的最不利位置,再按此求梁的最大弯矩及其相应的剪力、支座最大剪力,以及横向水平荷载作用下在水平方向所产生的最大弯矩M T(当为制动梁时)或在吊车梁上翼缘的产生的局部弯矩M H(当为制动桁架时)。
2.常用简支吊车梁,当吊车荷载作用时,其最不利的荷载位置、最大剪矩和剪力,可按下列情况确定:(2)两个轮子作用于梁上时(图8-4)最大弯矩点(C)的位置为:a2= a1/4最大弯矩为:(8-6)最大弯矩处的相应剪力为:(8-7)(2)三个轮子作用于梁上时(图8-5)最大弯矩点(C)的位置为:最大弯矩为:(8-8)最大弯矩处的相应剪力为:(8-9)(3)四个轮子作用于梁上时(图8-6)最大弯矩点(C)的位置为:最大弯矩为:(8-10)最大弯矩处的相应剪力为:(8-11)当时最大弯矩及其相应剪力均与公式(8-10)及公式(8-11)相同,但公式中的应用代入(4)六个轮子作用于梁上时(图8-7):最大弯矩点(C)的位置为:最大弯矩为:(8-12)最大弯矩处的相应剪力为:(8-13)当及时,最大弯矩点(C点)的位置为:其最大弯矩及相应剪力均与公式(8-12)及公式(8-13)相同,但公式中的应用代入(5)最大剪力应在梁端支座处。
因此,吊车竖向荷载应尽可能靠近该支座布置(图8-4b)至图8-7b),并按下式计算支座最大剪力:(8-14)式中n—作用于梁上的吊车竖向荷载数。
选择吊车梁截面时所用的最大弯矩和支座最大剪力,可用吊车竖向荷载作用下所产生的最大弯矩和支座最大剪力乘以表8-2的(为考虑吊车梁等自重的影响系数)值,即(8-15)(8-16)3.吊车横向水平荷载作用下,在水平方向所产生的最大弯矩,可根据图8-4(a)至图8-7(a)所示荷载位置采用下列公式计算:当为轻、中工作制(A1-A5)吊车梁的制动梁时,(8-17)当为重级或特重级工作制(A6-A8)吊车梁的制动梁时,(8-18)(2)吊车横向水平荷载作用下制动桁架在吊车梁翼缘所产生的局部弯矩可近似地按下列公式计算(图8-8):当为起重量Q≥75t的轻、中级工作制吊车的制动桁架时(8-19)当为起重量Q≥75t的重级工作制(特重级不受起重量限制)吊车的制动桁架时(8-20)当为起重量Q≤50t的轻、中级工作制吊车的制动桁架时(8-21)当为起重量Q≤50t的重级工作制(特重级不受起重量限制)吊车的制动桁架时(8-22)。
吊车梁设计

吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载、横向水平荷载和沿吊车梁纵向的水平荷载。
纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。
吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。
吊车沿轨道运行、起吊、卸载以及工件翻转时将引起吊车梁振动。
特别是当吊车越过轨道接头处的空隙时还将发生撞击。
因此在计算吊车梁及其连接强度时吊车竖向荷载应乘以动力系数。
对悬挂吊车(包括电动葫芦)及工作级别A1~A5的软钩吊车,动力系数可取1.05;对工作级别A6~A8的软钩吊车、硬钩吊车和其他特种吊车,动力系数可取为1.1。
吊车的横向水平荷载由小车横行引起,其标准值应取横行小车重量与额定起重量之和的下列百分数,并乘以重力加速度:1)软钩吊车:当额定起重量不大10吨时,应取12%;当额定起重量为16~50吨时,应取10%;当额定起重量不小于75吨时,应取8%。
2)硬钩吊车:应取20%。
横向水平荷载应等分于桥架的两端,分别由轨道上的车轮平均传至轨道,其方向与轨道垂直,并考虑正反两个方向的刹车情况。
对于悬挂吊车的水平荷载应由支撑系统承受,可不计算。
手动吊车及电动葫芦可不考虑水平荷载。
计算重级工作制吊车梁及其制动结构的强度、稳定性以及连接(吊车梁、制动结构、柱相互间的连接)的强度时,由于轨道不可能绝对平行、轨道磨损及大车运行时本身可能倾斜等原因,在轨道上产生卡轨力,因此钢结构设计规范规定应考虑吊车摆动引起的横向水平力,此水平力不与小车横行引起的水平荷载同时考虑。
二、吊车梁的形式吊车梁应该能够承受吊车在使用中产生的荷载。
竖向荷载在吊车梁垂直方向产生弯矩和剪力,水平荷载在吊车梁上翼缘平面产生水平方向的弯矩和剪力。
吊车的起重量和吊车梁的跨度决定了吊车梁的形式。
吊车梁一般设计成简支梁,设计成连续梁固然可节省材料,但连续梁对支座沉降比较敏感,因此对基础要求较高。
吊车梁的常用截面形式,可采用工字钢、H 型钢、焊接工字钢、箱型梁及桁架做为吊车梁。
钢结构工程案例分析(一)-邱鹤年

4 百家论坛Building StructureWe learn we go钢结构工程案例分析(一)邱鹤年/中冶京诚工程技术有限公司1 重级工作制吊车梁的抗疲劳要求吊车梁,尤其是行驶重级工作制吊车的吊车梁,除设计计算、选材方面有验算疲劳的专门要求外,在构造、对施工要求和注意方面,也有很多事项必须向施工、生产单位说明。
首先,属于设计方面必须交代的,如吊车梁的选材,应根据当地日平均最低温度和吊车工作循环次数来确定钢材牌号及质量等级,并选定相应的焊接材料具体型号,以及所依据的标准、名称、代号、年号。
对焊缝具体要求也应明确,不宜选用部分熔合的对接焊缝用于垂直于受力方向的连接,角焊缝表面应做成直线形或凹形。
焊脚尺寸的比例:对正面角焊缝宜为1:1.5(长边顺内力方向);对侧面角焊缝可为1:1。
对翼缘板或腹板的焊接拼接应采用加引弧板和引出板的焊透对接焊缝,引弧板割去处应打磨平整。
支座加劲肋上、下端及中间横向加劲肋上端均应刨平,顶紧翼缘。
中间横向加劲肋下端不得与受拉翼缘相焊,在距受拉翼缘50~100mm 处断开,且其与腹板的连接焊缝不宜在下端起落弧。
受拉翼缘与支撑不宜焊接。
重级工作制吊车梁的受拉翼缘板边缘宜为轧制边或自动气割边,当用手工气割或剪切机切割时应沿全长刨边。
吊车梁的受拉部位不得焊接悬挂设备的零件,并不宜在该处打火或焊接夹具。
当采用焊接长轨时,压板与钢轨间应留约1mm 空隙,以利纵向伸缩。
过去曾发生过在吊车梁腹板上焊摩电滑线支架、焊小型吊具,随意引弧打火,引起疲劳裂缝损坏等事故。
也有个别工艺管线专业对小管道、小零件没有详细节点交代,由现场处理,出现不当焊接,造成不良后果。
必要的小焊件,可焊在加劲肋上。
2 重型平台柱头的剪切破损冶金工厂操作平台为防止冲击,在结构层上铺砂垫层,再砌耐火砖,有的还铺铸钢板防护。
平台上通行火车、修炉机、载重车及堆料等负荷,有时还有冲击、碰撞、高温等异常作用,平台结构常有破损情况出现,现在就柱顶承压及抗剪问题给出算例分析。
吊车梁

第二章重型厂房结构设计
思考题:
2.1 简述屋盖支撑的作用,以及屋盖支撑的布置原则。
2.2 钢屋架上所受的荷载有哪些?
2.3 简述吊车梁的工作性能。
2.4吊车梁的截面验算有哪些?
习题
2.1 肩梁计算
一单壁式肩梁构造如下图所示 , 钢材为 Q235, 焊条 E43 型。
上柱为焊接工字形、下柱为格构式截面 , 其截面如图所示。
上柱荷载为:.
,
M KN m
650
N=500KN。
吊车最大轮压标准值为 Dmax=1600KN。
试验算此肩梁截面强度并设计连接焊缝。
习题2.1图
2.2 吊车梁计算
一简支吊车梁跨度为 12m, 钢材为 Q345, 焊条 E50 型。
采用制动梁结构 , 制动板选用 -860 × 8 的厚花纹钢板,制动梁外翼缘选用 2×L100×10 的角钢。
初选吊车梁截面如下图所示。
厂房内设有两台750/200 KN 重级工作制 (A7 级)桥式吊车,吊车跨度 31.5m,吊车宽度及轮距如图所示,小车重量G=235KN, 吊车最大轮压标准值为Fmax=324KN。
轨道型号QU100(轨高150mm) 。
试验算此吊车梁截面强度及疲劳强度是否满足要求?
习题2.2图。
吊车梁设计

吊车梁的截面选择一.截面尺寸的确定:(1).梁的高度:①.经济要求:梁的平面内最大弯矩设计值:M xmax=464700000N·MM,支座处的最大剪力V max=梁选用钢材材质Q235,f=215N/mm2fv=Q345,f=315N/mm2fv=f=315N/mm2fv=梁需要的截面抵抗矩:W= 1.2*M xmax/f=1770286梁的经济截面高度:H=7*(W)^(1/3)-300=547②.刚度要求:对中级且Q<500KN,[l/w]=600,梁的跨度l=6000mm超过此限[l/w]=750取[l/w]=600,[w/l]=0.001667梁刚度要求的最小高度:Hmin=0.56*f*l/([w/l]*106)=③.建筑净空要求:H≤建筑净空要求根据以上三条要求确定吊车梁的高度,H=700mm二.腹板厚度Tw的确定:①.经验公式:T w=7+3h=10mm②.根据抗剪要求:T w≥ 1.2V max/h w fv= 2.9630843mm③.局部挤压应力的要求:数据准备:考虑动力系数的一个车轮的最大轮压a P max=136集中荷载增大系数,对轻、中级工作制吊车梁Y=1.0,对重级工作制吊车梁Y=1.35Y=1g Q= 1.4钢轨高度:140mm,吊车梁翼缘厚度t(暂估):轨顶至腹板计算高度上边缘的距离:h y=钢轨高度+吊车梁翼缘厚度t=车轮对腹板边缘挤压应力的分布长度,取L z=2h y+50=358T w≥aYg Q P max/(l w*f)=2mm根据以上三条要求暂估T w=8mm三.翼缘尺寸:翼缘所需的面积:A1=W x/H w-1/6HwTw=1696.6947根据翼缘的局部稳定判断翼缘不考虑局部稳定的最大宽度:b=336根据上面的翼缘最大宽度取b=330mm下翼缘厚度取10mm,下翼缘宽度Bb=300mm本吊车梁尺寸取如下值:吊车梁高度H=700mm上翼缘宽度Bt=330mm上翼缘厚度Tt=14mm下翼缘宽度Bb=300mm下翼缘厚度Tb=10mm腹板厚度Tw=8mm腹板高度Hw=676mm 根据上值转入《吊车梁截面计算》工作簿.支座处的最大剪力V max=310.63KN125N/mm2185N/mm2185N/mm2(板厚≤16mm) mm3mm636mm腹板高度暂定H w=680mmKN工作制吊车梁Y=1.3514mm车梁翼缘厚度t=154mmmmmm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某重级工作制吊车梁设计与计算【摘要】本文通过某重级工作制硬钩吊车吊车梁设计实例,介绍钢吊车梁设计与计算的一般方法和内容,就如何通过影响线确定吊车梁最大弯矩进行了探讨和分析,并总结了重级工作制吊车梁设计的注意事项。
【关键词】重级工作制;吊车梁;硬钩;强度;疲劳一、概况某钢铁冶金厂房为多跨单层排架结构,柱距24m,由于工艺需要布置多台大吨位重级工作制硬钩桥式吊车。
下面就以其中一跨为例,介绍该跨吊车梁的一般设计方法,吊车资料如下表:二、吊车梁形式钢结构吊车梁系统通常由吊车(支承)梁、制动结构、辅助桁架以及支撑等构件组成。
吊车(支承)梁一般以吊车桁架、焊接工字型吊车梁或箱型吊车梁形式为多见,又以焊接工字型吊车梁最为常见。
由于其制作简单,结构受力性好,因此本工程采用焊接工字型吊车梁形式。
三、吊车梁设计与计算1、吊车荷载计算吊车竖向荷载: Pk=480kN; P=μrQPk=1.1*1.4*480=739.2kN吊车横向水平荷载:按荷载规范计算荷载:Hk=(94+120)*9.85*0.2/12=35.1kN; H=rQHk=1.4*35.1=49.2kN按卡轨力计算荷载:Hk=αPk=0.2*480=96kN; H=rQHk=1.4*96=134.4kN其中μ为动力系数;rQ 为荷载分项系数;α为卡轨力系数。
2、跨中最大竖向弯矩点的确定和最大竖向弯矩计算根据经验知道,简支型吊车梁在吊车轮压作用下,跨中最大弯矩位置(C点)位于吊车车轮荷载作用点,同时该位置左右侧剪力变号。
如下图所示,RA=∑P(L-X-a)/L, 跨中最大弯矩位置Mc= RAX-Mkc=∑P(L-X-a)X/L- Mkc;Mkc 为C点左侧梁上荷载P相对与C点的力矩和,为一与X无关常数。
当Mc为极大值时,根据极值条件=∑P(L-X-a)/L=0,解得X= (L-a)/2。
这表明,跨中最大弯矩位置C点与合力∑P对称于梁中心线。
根据以上结论,可以按以下方式找到一组集中荷载作用下的跨中最大弯矩C点位置:先求得该组集中荷载合力点位置,并将合力点和其紧邻的集中荷载对称布置在梁中心线两侧(如图1.1),求出支座反力;复核紧邻的集中荷载位置左右侧剪力是否变号,若变号,即可确认该集中荷载位置为跨中最大弯矩C点位置;否则需要将合力中心和下一个邻近的集中荷载对称布置在梁中心线两侧(如图1.2),继续复核直至找到最终找出符合条件的集中荷载位置,最后根据弯矩影响线求出最大弯矩。
该方式计算时要保证该组集中荷载在找出的跨中最大弯矩C点对应的荷载布置全部在梁跨范围内。
一台吊车竖向荷载作用下最大弯矩C点、影响线、最大弯矩求解如图2.1,梁竖向最大弯矩标准值Mck=12780.1kN.m。
当计算吊车梁及其连接承载力时,一般只考虑不多于两台吊车共同作用。
由于两台吊车左右紧邻布置时,车轮数量多,起重机宽度大,按上述方法该找出的跨中最大弯矩对应的车轮布置荷载未全部在梁跨范围内时。
移动吊车,使最外侧车轮位于梁跨支座B位置,此时合力中心与假定的合力中心距离最近,该荷载布置求出的最大弯矩为该荷载组合最大弯矩。
同时需要计算在减少最右侧一个集中荷载的情况下按前面的方法继续复核,直到满足。
最后比较每一组不同集中荷载组合对应的最大弯矩,找出其中的最大弯矩值即为梁跨中最大弯矩,梁跨中最大弯矩对应位置即为最大弯矩弯矩C点。
两台吊车竖向荷载作用下不同轮数对应的最大弯矩C点、影响线、最大弯矩求解如下图(图3.1-3.4),吊车梁竖向最大弯矩Mc=23270.3kN.m(见图3.4)。
考虑吊车梁自重、轨道、制动系统、吊挂荷载等影响,弯矩乘以系数β=1.09。
最终吊车梁竖向最大弯矩设计值:Mmax=βMc=1.09*23270.3=25364.6kN.m3、跨中最大水平弯矩点的确定和最大水平弯矩计算吊车梁跨中最大水平弯矩点的确定和最大水平弯矩计算原则和方法同跨中最大竖向弯矩点的确定和最大竖向弯矩计算。
一台吊车水平荷载(按荷载规范计算荷载)作用下最大弯矩弯矩标准值MHk=4.484*13.225*10.775*35.1/24=934.5kN.m。
两台吊车水平荷载(按卡轨力计算荷载)作用下最大弯矩弯矩设计值MH=5.249*11.75*12.25*134.4/24=4230.9kN.m4、最大剪力计算吊车梁剪力在梁支座位置,由于两台吊车车轮之间最小距离大于吊车左右侧车轮最小距离(即6400mm>4900mm),吊车最大剪力为吊车车轮紧靠支座位置的布置形式。
两台吊车车轮布置见图3.1,考虑吊车梁等自重影响下支座最大剪力:V=6.35βP=6.35*739.2*1.09=5116.3kN。
一台吊车支座最大剪力标准值:Vk=4.9875P=4.9875*480=2394kN。
5、强度计算根据估算,吊车梁和辅助桁架截面见图4.1,截面参数如表1。
表1Inx(m4)Wnx上(m3)Wnx下(m3)Iny(m4)Wny左(m3)Wny右(m3)S翼缘边(m3)0.2357 0.1535 0.1336 0.0706 0.0661 0.0348 0.0431Ix(m4)Wx上(m3)Wx下(m3)Iy(m4)Wy左(m3)Wy右(m3)Smax(m3)0.2376 0.1556 0.1340 0.0706 0.0661 0.0348 0.0855上翼缘最大应力:б上=Mmax/ Wnx上+MH/ Wny左= (25364.6/0.1535+ 4230.9/0.0661) *10-3 =229.2.0MPa≤265MPa;下翼缘最大应力б下=Mmax/ Wnx下= (25364.6/0.1336) *10-3 =189.9MPa≤265MPa。
由于吊车梁上翼缘有制动板,因此不需要计算吊车梁的稳定性。
6、剪应力计算该吊车梁采用平板支座,腹板最大剪应力为:τ= VmaxS/Ixtw= 5116.3*0.0855/0.2376/28 =65.7 MPa≤170MPa;7、腹板局部压应力集中荷载在腹板计算高度上边缘的假定分布宽度lZ=a+5hy+2hr=50+5*38+2*170=580mm;腹板局部压应力бC= P/tw/lZ= 1.35*739.2*103/28/580=61.45 MPa≤265MPa。
为集中力增大系数;hy为腹板高度;hr为轨道高度。
8、腹板局部稳定性计算腹板高厚比:h0/tw=(3300-38*2)/28=115.4<170 =140.3,吊车梁需要配置横向加劲肋。
加劲肋间距3000mm,加劲板板厚10mm,外伸宽度150mm,按钢结构规范公式( 4.3.3-1)验算:(б/бcr)2+(τ/τcr)2+(бc/бc,cr) 2=(223.1/265)2+(28.3/105.3)2+(48.9/223.9) 2 = 0.91<1满足,详细计算略。
9、支座加劲及其稳定性计算支座加劲肋计算简图见图4.2,其中:Ace=162.5 cm2;A=280.1cm2,iZ=14.3 cm;λz=h0/iZ= 322.4/14.3 =22.55,查表=0.945支座加劲端板承压应力:бce=R/ Ace=5116.3/162.5*10= 314.8MPa≤400MPa支座加劲肋稳定应力:б= R/ A=5116.3/280.1/0.945=193.3 MPa≤265MPa10、挠度计算考虑吊车梁等自重影响,一台吊车产生的竖向弯矩标准值:Mk=βMck=1.09*12780.1 = 13930kN.m,竖向挠度:ν=Mckl2/10EIx=13930*242/10/206000/0.2376=16.4mm, ν/l= 16.4/24000=1/1464<1/1200一台吊车水平荷载(按荷载规范计算)作用下制动结构水平挠度:ν=MHkl2/10EIy=934.5*242/10/206000/0.0706=3.69mm,ν/l=3.69/24000=1/6520<1/2200。
11、疲劳验算( 按一台吊车荷载标准值计算)重级工作制硬钩吊车,欠固结系数αf=1; 疲劳验算如下:a、上翼缘与腹板连接处主体金属属2类,αf△б=Mck/Wxn上= 12780.1*10-3/0.1535 =83.3 MPa<144 MPa;b、下翼缘与腹板连接处主体金属属3类,αf△б=Mck/Wxn下= 12780.1*10-3/0. 1336 =95.6 MPa<118 MPa;c、横向加劲肋端板附近(下翼缘往上50mm)主体金属属4类,αf△б=Mcky/Inx = 12780.1*10-3*1.677/0.2357=90.9MPa<103 MPa;d、下翼缘与腹板连接处角焊缝(hf=10mm),属8类αf△б=VmaxS翼缘边/Ixtw= 2394*0.0431/0.2376/(0.7*20)=31.0 MPa≤59MPa;12、其它计算吊车梁其它部分计算(如上翼缘外伸宽度与厚度比、吊车梁纵向连接、与柱连接、车挡、辅助桁架等)计算略。
通过以上设计与计算,吊车梁各项要求满足规范要求。
四、结语支承夹钳或刚性料耙等硬钩吊车不宜采用吊车桁架。
桁架节点由于有焊接应力、次应力等形成复杂的应力场和应力集中,疲劳强度低,在动力荷载作用下易导致节点过早破坏。
当计算出的吊车梁的截面比较高时,由于吊车梁跨中竖向变形会在支座对应上翼缘位置产生较大的水平变形,建议在尺寸许可的情况下吊车梁上翼缘和柱之间采用销钉连接,最大限度减少这种变形对吊车梁上翼缘与柱之间的连接板、连接螺栓的影响。
当求两台吊车竖向荷载(或水平荷载)作用下跨中弯矩时,要复核假定最不利位置位于吊车梁跨中(不含支座)车轮数量是否与假定一致,若车轮数量与假定不一致,需要进一步复核逐一减少吊车轮数量时的情况,直至满足。
然后找出不同(数量吊车轮)情况下对应的弯矩最大值,最后比较确定梁最大计算弯矩。
对于两台吊车车轮之间最小距离小于吊车左右侧车轮最小距离的吊车布置,吊车梁最大剪力计算时需要将不同车轮移至支座位置,求出不同情况下的支座反力,其中最大的一个支座反力即为梁最大剪力。
对于重级工作制硬钩吊车吊车梁,下翼缘与腹板连接一般采用焊透的T形对接与角接组合焊缝。
也可采用中间角焊缝,两端焊透的T形对接与角接组合焊缝形式。
参考文献:[1] 《钢结构设计手册(第三版)》中国建筑工业出版社出版.[2] 《实用钢结构设计与计算》中国铁路出版社出版.。