基于Matlab遗传算法的非线性方程组优化程序

合集下载

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法

使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。

遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。

本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。

一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。

这包括确定问题的目标函数和约束条件。

例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。

在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。

具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。

二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。

选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。

交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。

变异操作通过改变个体某些基因的值,引入新的基因信息。

替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。

三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。

常见的编码方式有二进制编码和实数编码等。

当问题的变量是二进制形式时,采用二进制编码。

当问题的变量是实数形式时,采用实数编码。

在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。

四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。

在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。

适应度值越大表示个体越优。

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。

实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。

MATLAB实验遗传算法与优化设计(可编辑)

MATLAB实验遗传算法与优化设计(可编辑)

MATLAB实验遗传算法与优化设计遗传算法与优化设计一实验目的1 了解遗传算法的基本原理和基本操作选择交叉变异2 学习使用Matlab中的遗传算法工具箱 gatool 来解决优化设计问题二实验原理及遗传算法工具箱介绍1 一个优化设计例子图1所示是用于传输微波信号的微带线电极的横截面结构示意图上下两根黑条分别代表上电极和下电极一般下电极接地上电极接输入信号电极之间是介质如空气陶瓷等微带电极的结构参数如图所示Wt分别是上电极的宽度和厚度D是上下电极间距当微波信号在微带线中传输时由于趋肤效应微带线中的电流集中在电极的表面会产生较大的欧姆损耗根据微带传输线理论高频工作状态下假定信号频率1GHz电极的欧姆损耗可以写成简单起见不考虑电极厚度造成电极宽度的增加图1 微带线横截面结构以及场分布示意图1其中为金属的表面电阻率为电阻率可见电极的结构参数影响着电极损耗通过合理设计这些参数可以使电极的欧姆损耗做到最小这就是所谓的最优化问题或者称为规划设计问题此处设计变量有3个WDt它们组成决策向量[W D t] T待优化函数称为目标函数上述优化设计问题可以抽象为数学描述2其中是决策向量x1xn为n个设计变量这是一个单目标的数学规划问题在一组针对决策变量的约束条件下使目标函数最小化有时也可能是最大化此时在目标函数前添个负号即可满足约束条件的解X 称为可行解所有满足条件的X组成问题的可行解空间2 遗传算法基本原理和基本操作遗传算法 Genetic Algorithm GA 是一种非常实用高效鲁棒性强的优化技术广泛应用于工程技术的各个领域如函数优化机器学习图像处理生产调度等遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法按照达尔文的进化论生物在进化过程中物竞天择对自然环境适应度高的物种被保留下来适应度差的物种而被淘汰物种通过遗传将这些好的性状复制给下一代同时也通过种间的交配交叉和变异不断产生新的物种以适应环境的变化从总体水平上看生物在进化过程中子代总要比其父代优良因此生物的进化过程其实就是一个不断产生优良物种的过程这和优化设计问题具有惊人的相似性从而使得生物的遗传和进化能够被用于实际的优化设计问题按照生物学知识遗传信息基因Gene 的载体是染色体Chromosome 染色体中一定数量的基因按照一定的规律排列即编码遗传基因在染色体中的排列位置称为基因座Locus在同一个基因座上所有可能的基因就称为等位基因Allele生物所持有的基因以及基因的构成形式称为生物的基因型Genotype而该生物在环境中所呈现的相应性状称为该生物的表现型Phenotype在遗传过程中染色体上的基因能够直接复制给子代从而使得子代具有亲代的特征此外两条染色体之间也通过交叉 Crossover 而重组即两个染色体在某个相同的位置处被截断其前后两串基因交叉组合而形成两个新的染色体在基因复制时也会产生微小的变异Mutation从而也产生了新的染色体因此交叉和变异是产生新物种的主要途径由于自然选择在子代群体新产生的物种或染色体当中只有那些对环境适应度高的才能生存下来即适应度越高的被选择的概率也越大然后又是通过遗传和变异再自然选择一代一代不断进化因此生物遗传和进化的基本过程就是选择即复制交叉和变异遗传算法就是通过模拟生物进化的这几个基本过程而实现的①编码编码是设计遗传算法首要解决的问题在生物进化中选择交叉变异这些基本过程都是基于遗传信息的编码方式进行的即基于染色体的基因型而非表现型因此要模拟生物进化过程遗传算法必须首先对问题的可行解X决策向量进行某种编码以便借鉴生物学中染色体和基因等概念在遗传算法中将每一个决策向量X用一个染色体V来表示3其中每一个vi代表一个基因染色体的长度m不一定等于设计变量的数目n取决于染色体上基因的编码方式一般有两种编码方式二进制编码和浮点数编码如果是二进制编码每一个设计变量xi的真实值用一串二进制符号0和1按照一定的编码规则来表示每个二进制符号就代表一个基因因此染色体长度要远大于设计变量的数目这种由二进制编码构成的排列形式V就是染色体也称个体的基因型而基因型经过解码后所对应的决策向量X即可行解就是个体的表现型如果是浮点数编码每个设计变量用其取值范围内的一个浮点数表示构成染色体的一个基因vi因此个体的编码长度m也就等于决策变量的个数n由于这种编码方式使用的是决策变量的真实值所以也称真值编码方法无论哪种编码方式所有可能的染色体个体V构成问题的搜索空间种群遗传算法对最优解的搜索就是在搜索空间中搜索适应度最高的染色体后面叙述适应度的计算因此通过编码将一个问题的可行解从其解空间转换到了遗传算法能够处理的搜索空间经过个体的编码后就可以进行遗传算法的基本操作选择交叉和变异②选择复制操作选择也就是复制是在群体中选择适应度高的个体产生新群体的过程生物的进化是以集团为主体的与此相应遗传算法的运算对象是有M个个体或染色体组成的集合称为种群M也称为种群规模遗传算法在模拟自然选择时以个体的适应度Fitness高低为选择依据即适应度高的个体被遗传到下一代种群的概率较高而适应度低的个体遗传到下一代的概率则相对较低个体适应度由适应度函数计算适应度函数总是和个体表现型 ie X 的目标函数值f X 关联一般是由目标函数经过一定的变换得到一种最简单的方法就是直接使用目标函数f X 作为适应度函数4选定了适应度函数之后个体适应度也随之确定则在选择操作时个体被选中的概率5其中Fi为个体的适应度这种选择方式称为比例选择也称轮盘赌选择除此之外还有多种选择方法如随机竞争选择均匀选择无回放随机选择等不一一介绍③交叉操作所谓交叉就是以一定的概率交叉概率从群体中选择两个个体染色体按照某种方式交换其部分基因从而形成两个新的个体在遗传算法中它是产生新个体同时也是获得新的优良个体的主要方法它决定了遗传算法的全局搜索能力对于不同的编码方式交叉操作的具体方法也不相同对于浮点数编码一般使用算术交叉对于二进制编码有单点交叉和多点交叉等方式不论何种方式在交叉操作时首先应定义交叉概率Pc这个概率表明种群中参与交叉的个体数目的期望值是M 是种群规模通常交叉概率应取较大的值以便产生较多的新个体增加全局搜索力度但是Pc过大时优良个体被破坏的可能性也越大如果Pc 太小则搜索进程变慢影响算法的运行效率一般建议的取值范围是04–099④变异操作遗传算法中的变异操作就是将染色体上某些基因座上的基因以一定的变异概率Pm用其他的等位基因替代从而形成新的个体对于浮点数编码变异操作就是将变异点处的基因用该基因取值范围内的一个随机数替换对于二进制编码则是将变异点处的基因由1变成00变成1变异操作也有多种方法如均匀变异非均匀变异高斯变异等变异操作的概率Pm要比交叉操作的概率Pc小得多变异只是产生新个体的辅助手段但它是遗传算法必不可少的一个环节因为变异操作决定了算法的局部搜索能力它弥补了交叉操作无法对搜索空间的细节进行局部搜索的不足因此交叉和变异操作相互配合共同完成对搜索空间的全局和局部搜索以上简要介绍了遗传算法的基本原理和操作归纳起来基本遗传算法一般可以表示为一个8元组6式中C 个体的编码方法E 个体适应度评价函数P0 初始种群M 种群规模选择操作交叉操作变异操作是进化终止代数进化终止条件其中有4个运行参数需要预先设定M T PcPm 种群规模M一般取为20100 终止代数T一般取100500交叉概率Pc一般取04099 变异概率Pm一般取0000101最后给出遗传算法的基本步骤①选择二进制编码或浮点数编码把问题的解表示成染色体②随机产生一群染色体个体也就是初始种群③计算每一个个体的适应度值按适者生存的原则从中选择出适应度较大的染色体进行复制再通过交叉变异过程产生更适应环境的新一代染色体群即子代④重复第3步经过这样的一代一代地进化最后就会收敛到最适应环境适应度最大的一个染色体即个体上它就是问题的最优解图2给出了基本遗传算法设计流程图其中t代表当前代数T是进化终止代数图2 基本遗传算法设计流程图3 Matlab遗传算法工具箱 gatoolMatlab的遗传算法工具箱有一个精心设计的图形用户界面可以帮助用户直观方便快速地利用遗传算法求解最优化问题在Matlab命令窗口输入命令gatool可以打开遗传算法工具箱的图形用户界面如图3所示GA工具箱的参数设置步骤如下图3 遗传算法工具1 首先使用遗传算法工具箱必须输入下列信息Fitness function 适应度函数这里指的是待优化的函数也即目标函数该工具箱总是试图寻找目标函数的最小值输入适应度函数的格式为fitnessfun其中符号产生函数fitnessfun的句柄fitnessfun代表用户编写的计算适应度函数目标函数的M文件名该M文件的编写方法如下假定我们要计算Rastrigin函数的最小值7M函数文件确定这个函数必须接受一个长度为2的行向量X也即决策向量向量的长度等于变量数目行向量X的每个元素分别和变量x1和x2对应另外M文件要返回一个标量Z其值等于该函数的值下面是计算Rastrigin函数的M文件代码function Z Ras_fun XZ 20X 1 2X 2 2-10 cos 2piX 1 cos 2piX 2M文件编写保存后再在gatool工具箱界面Fitness function栏输入 Ras_funNumber of variable 变量个数目标函数中的变量数目也即适应度函数输入向量的长度在上例中它的值是22 其次设置遗传算法参数即Options设置以下只介绍部分运行参数的设置其他未提及的参数采用默认设置即可①种群参数 PopulationPopulation size 种群规模每一代中的个体数目一般是20-100之间种群规模大算法搜索更彻底可以增加算法搜索全局最优而非局部最优的概率但是耗时也更长Initial range 初始范围其值是两行的矩阵代表初始种群中个体的搜索范围实际上是决策向量X中每个变量xi的初始搜索范围矩阵的列数等于变量个数Number of variable第一行是每个变量的下限第二行是每个变量的上限如果只输入2 1的矩阵则每个变量的初始搜索范围都一样注意初始范围仅限定初始种群中个体或决策向量的范围后续各代中的个体可以不在初始范围之内初始范围不能设置太小否则造成个体之间的差异过小即种群的多样性降低不利于算法搜索到最优解②复制参数 ReproductionCrossover fraction 交叉概率一般取04099默认08③算法终止准则 Stopping Criteria提供了5种算法终止条件Generations最大的进化代数一般取100500默认是100当遗传算法运行到该参数指定的世代计算终止Time limit指明算法终止执行前的最大时间单位是秒缺省是Inf 无穷大Fitness limit 适应度限当最优适应度值小于或等于此参数值时计算终止缺省是-InfStall generation 停滞代数如果每一代的最佳适应度值在该参数指定的代数没有改善则终止计算缺省是50代Stall time 停滞时间如果每一代的最佳适应度值在该参数指定的时间间隔内没有改善则终止计算缺省是20秒3 设置绘图参数即Plots设置绘图参数Plots工作时可以从遗传算法得到图形数据当选择各种绘图参数并执行遗传算法时一个图形窗口在分离轴上显示这些图形下面介绍其中2个参数Best fitness 选择该绘图参数时将绘制每一代的最佳适应度值和进化世代数之间的关系图如图4的上图所示图中蓝色点代表每一代适应度函数的平均值黑色点代表每一代的最佳值Distance 选择此参数时绘制每一代中个体间的平均距离它反映个体之间的差异程度所以可用来衡量种群的多样性图4的下图显示的即是每一代个体间的平均距离图44 执行算法参数设置好了之后点击工具箱界面上的按钮Star 执行求解器在算法运行的同时Current generation当前代数文本框中显示当前的进化代数通过单击Pause按钮可以使计算暂停之后再点击Resume可以恢复计算当计算完成时Status and results窗格中出现如图5所示的情形图5其中包含下列信息算法终止时适应度函数的最终值即目标函数的最优值Fitness function value 0003909079476983379算法终止原因Optimization terminated imum number of generations exceeded 超出最大进化世代数最终点即目标函数的最优解[x1 x2] [-0004 -000193]两个变量的例子三实验内容1 Rastrigin函数的最小值问题函数表达式如 7 式函数图像如下图6所示它有多个局部极小值但是只有一个全局最小值Rastrigin函数的全局最小值的精确解是0出现在[x1 x2] [0 0]处图6 Rastrigin函数图像使用遗传算法工具箱近似求解Rastrigin函数的最小值首先编写计算适应度函数的M文件然后设置运行参数绘图参数Plots勾选Best fitness和Distance两项其它参数可以使用默认值执行求解器Run solver计算Rastrigin函数的最优值观察种群多样性对优化结果的影响决定遗传算法的一个重要性能是种群的多样性个体之间的距离越大则多样性越高反之则多样性越低多样性过高或过低遗传算法都可能运行不好通过实验调整Population 种群的Initial range 初始范围参数可得到种群适当的多样性取Initial range参数值[1 11]观察Rastrigin函数最小值的计算结果取Initial range参数值[1 100]观察Rastrigin函数最小值的计算结果取Initial range参数值[1 2]观察Rastrigin函数最小值的计算结果2 微带电极欧姆损耗的优化微带电极的欧姆损耗公式可由 1 式表示令设计变量[WDt] [x1 x2 x3] X变量的约束条件如下8根据 1 式和 8 式使用遗产算法工具箱优化设计电极的结构参数W 宽度 D 间距 t 厚度使得电极的欧姆损耗最小 1 式中用到的常数提示对约束条件 8 式的处理可以在编写计算适应度函数的M文件中实现方法是在M文件中引入对每个输入变量值范围的判断语句如果任一变量范围超出 8 式的限制则给该个体的适应度施加一个惩罚使得该个体被遗传到下一代的概率减小甚至为0一般可用下式对个体适应度进行调整9其中F x 是原适应度F x 是调整后的适应度P x 是罚函数为简单计本问题中我们可以给个体的适应度 com件的返回值Z 加上一个很大的数即可如正无穷Inf四思考题1 在遗传算法当中个体的变异对结果有何影响如果没有变异结果又将如何试以Rastrigin函数最小值的计算为例说明取变异概率为0即交叉概率Crossover fraction 102 遗传算法工具箱针对的是最小化函数值问题如果要利用该工具箱计算函数的最大值该如何实现。

MATLAB中的非线性优化算法详解

MATLAB中的非线性优化算法详解

MATLAB中的非线性优化算法详解在计算机科学和工程领域,非线性优化是一个非常重要的问题。

它涉及到在给定一些约束条件下,寻找使得目标函数取得最优值的变量取值。

MATLAB作为一种强大的数值计算工具,提供了多种非线性优化算法来解决这个问题。

本文将详细介绍一些常用的非线性优化算法,并探讨它们的特点和适用场景。

1. 数学背景在介绍非线性优化算法之前,我们先来了解一下非线性优化的基本数学背景。

一个非线性优化问题可以表示为以下形式:minimize f(x)subject to g(x) ≤ 0h(x) = 0其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件。

x是优化变量。

目标是找到x使得f(x)取得最小值,并且满足约束条件。

2. 黄金分割法黄金分割法是一种经典的非线性优化算法。

它基于一个简单的原则:将搜索区间按照黄金分割比例分为两段,并选择一个更优的区间进行下一次迭代。

该算法的思想简单明了,但是它的收敛速度比较慢,特别是对于高维问题。

因此,该算法在实际应用中较少使用。

3. 拟牛顿法拟牛顿法是一类比较常用的非线性优化算法。

它通过近似目标函数的梯度信息来进行迭代优化。

拟牛顿法的核心思想是构造一个Hessian矩阵的近似矩阵,来更新搜索方向和步长。

其中,DFP算法和BFGS算法是拟牛顿法的两种典型实现。

DFP算法是由Davidon、Fletcher和Powell于1959年提出的,它通过不断迭代来逼近最优解。

该算法的优点是收敛性比较好,但是它需要存储中间结果,占用了较多的内存。

BFGS算法是由Broyden、Fletcher、Goldfarb和Shanno于1970年提出的。

它是一种变种的拟牛顿法,通过逼近Hessian矩阵的逆矩阵来求解最优解。

BFGS算法在存储方面比DFP算法更加高效,但是它的计算复杂度相对较高。

4. 信赖域法信赖域法是一种迭代优化算法,用于解决非线性优化问题。

它将非线性优化问题转化为一个二次规划问题,并通过求解这个二次规划问题来逼近最优解。

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。

解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。

作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。

本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。

非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。

在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。

Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。

其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。

x表示最优解,而fval表示最优解对应的目标函数值。

另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。

Matlab中提供的fsolve函数可以用于求解非线性方程。

其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。

除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。

除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。

例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。

此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。

非线性规划的MATLAB解法

非线性规划的MATLAB解法
特点
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。

用MATLAB求解非线性优化问题

用MATLAB求解非线性优化问题

实验四 用MATLAB 求解非线性优化问题一、实验目的:了解Matlab 的优化工具箱,利用Matlab 求解非线性优化问题。

二、相关知识非线性优化包括相当丰富的内容,我们这里就Matlab 提供的一些函数来介绍相关函数的用法及其所能解决的问题。

(一)非线性一元函数的最小值Matlab 命令为fminbnd(),其使用格式为: X=fminbnd(fun,x1,x2)[X,fval,exitflag,output]= fminbnd(fun,x1,x2)其中:fun 为目标函数,x1,x2为变量得边界约束,即x1≤x ≤x2,X 为返回得满足fun 取得最小值的x 的值,而fval 则为此时的目标函数值。

exitflag>0表示计算收敛,exitflag=0表示超过了最大的迭代次数,exitflag<0表示计算不收敛,返回值output 有3个分量,其中iterations 是优化过程中迭代次数,funcCount 是代入函数值的次数,algorithm 是优化所采用的算法。

例1:求函数25321()sin()x x x x f x e x ++-=+-在区间[2,2]-的最小值和相应的x 值。

解决此问题的Matlab 程序为: clearfun='(x^5+x^3+x^2-1)/(exp(x^2)+sin(-x))' ezplot(fun,[-2,2])[X,fval,exitflag,output]= fminbnd(fun,-2,2) 结果为:X = 0.2176 fval =-1.1312 exitflag = 1output = iterations: 13 funcCount: 13algorithm: 'golden section search, parabolic interpolation' (二)无约束非线性多元变量的优化这里我们介绍两个命令:fminsearch()和fminunc(),前者适合处理阶次低但是间断点多的函数,后者则对于高阶连续的函数比较有效。

基于MATLAB遗传算法工具箱的非线性电路求解

基于MATLAB遗传算法工具箱的非线性电路求解

2 3 / 3 6
8 3 — 8 6
CN 2 2 - l 3 2 3 / N
基 于 MAT L AB遗传算法工 具箱的非线性 电路求解
姚 齐 国, 刘玉 良, 李 林 , 刘娟 意 , 叶继 英 , 胡 佳 文
( 浙 江海 洋学 院船 舶与海 洋工 程学 院 , 浙江 舟 山 3 1 6 0 0 0 )
浙 江 海 洋 学 院教 改项 目 ( 2 0 1 1 5 7 )
点交叉 并生 成 2个 个体 ; 群 体 内允 许 有 相 同的个
体 存在 。其流 程 图如图 1所示 。
2 标 准 遗 传 算 法 在 求解 非 线 性 电路 中 的
重 视[ 。 ] 。
1 遗 传 算 法 简 介
遗 传算 法 ( Ge n e t i c A l g o r i t h m, 简称 G A) 的 原 理 启迪 于 自然 界 生物 进 化 的过 程 , 是 以达 尔 文 的生
遗 传算法 的两 大主 要特点 是群 体搜 索策 略和 群 体 中个 体之 间的信 息相互 交换 。它 实际 上是模 拟 由 个 体组 成 的群 体 的整 体 学 习过 程 , 其 中每 个 个 体 表 示 一个解 点 。遗传 算 法 的 实现 包 含 5个 基 本要 素 : 参 数编码 ; 初 始群 体 的设 定 ; 适 应 度 函数 的设 计 ; 遗 传 操作 ( 选择 、 交叉 、 变异 ) 设计 ; 控 制参数 设定 。GA 从 任一 初始化 的群 体 出发 , 通 过随 机选择 ( 使 群体 中

策 方 面也 有很 好 的应 用 实例 , 是2 l 世 纪有关 智 能计
收 稿 H期 : 2 0 1 3 —0 5 —1 3 基 金项 目 : 国家 星 火 计 划 项 目( 2 0 1 I GA7 0 0 I 9 0 ) 浙 江 省 自然 科 学 罐 金 项 目 ( L Y1 2 E 0 9 0 0 4 ) 浙江海洋学院科研项 目( 浙 海 院研 [ 2 0 1 2 1 2 0号 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab遗传算法的非线性方程组优化程序clear,clc;%清理内存,清屏circleN=200;%迭代次数format long%构造可能解的空间,确定染色体的个数、长度solutionSum=4;leftBoundary=-10;rightBoundary=10;distance=1;chromosomeSum=500;solutionSumError=0.1;oneDimensionSet=leftBoundary:distance:rightBoundary;oneDimensionSetN=size(oneDimensionSet,2);%返回oneDimensionSet中的元素个数solutionN=oneDimensionSetN^solutionSum;%解空间(解集合)中可能解的总数binSolutionN=dec2bin(solutionN);%把可能解的总数转换成二进制数chromosomeLength=size(binSolutionN,2);%由解空间中可能解的总数(二进制数)计算染色体的长度%程序初始化%随机生成初始可能解的顺序号,+1是为了防止出现0顺序号solutionSequence=fix(rand(chromosomeSum,1)*solutionN)+1;for i=1:chromosomeSum%防止解的顺序号超出解的个数if solutionSequence(i)>solutionN;solutionSequence(i)=solutionN;endend%把解的十进制序号转成二进制序号fatherChromosomeGroup=dec2bin(solutionSequence,chromosomeLength); holdLeastFunctionError=Inf;%可能解的最小误差的初值holdBestChromosome=0;%对应最小误差的染色体的初值%计算circle=0;while circle<circleN%开始迭代求解circle=circle+1;%记录迭代次数%1:由可能解的序号寻找解本身(关键步骤)x=chromosome_x(fatherChromosomeGroup,oneDimensionSet,solutionSum);%2:把解代入非线性方程计算误差functionError=nonLinearSumError1(x);%把解代入方程计算误差[solution,minError,isTrue]=isSolution(x,functionError,solutionSumError);if isTrue==1'方程得解'solutionminErrorcirclereturn%结束程序end%3:选择最好解对应的最优染色体[bestChromosome,leastFunctionError]=best_worstChromosome(fatherChromosomeGroup,functionErr or);%4:保留每次迭代产生的最好的染色体[holdBestChromosome,holdLeastFunctionError]...=compareBestChromosome(holdBestChromosome,holdLeastFunctionError,... bestChromosome,leastFunctionError);%circle%minError%solution%holdLeastFunctionError%5:把保留的最好的染色体holdBestChromosome加入到染色体群中order=round(rand(1)*chromosomeSum);if order==0order=1;endfatherChromosomeGroup(order,:)=holdBestChromosome;functionError(order)=holdLeastFunctionError;%6:为每一条染色体(即可能解的序号)定义一个概率(关键步骤)[p,trueP]=chromosomeProbability(functionError);if trueP =='Fail''可能解严重不适应方程,请重新开始'return%结束程序end%7:按照概率筛选染色体(关键步骤)%fa=bin2dec(fatherChromosomeGroup)%显示父染色体fatherChromosomeGroup=varianceCh(sonChromosomeGroup,0.1,solutionN); fatherChromosomeGroup=checkSequence(fatherChromosomeGroup,solutionN);%检查变异后的染色体是否越界end%这个函数找出染色体(可能解的序号)对应的可能解xfunction x=chromosome_x(chromosomeGroup,oneDimensionSet,solutionSum)[row oneDimensionSetN]=size(oneDimensionSet);chromosomeSum=size(chromosomeGroup);%chromosomeSum:染色体的个数xSequence=bin2dec(chromosomeGroup);%把可能解的二进制序号(染色体)转换成十进制序号for i=1:chromosomeSum%i:染色体的编号remainder=xSequence(i);for j=1:solutionSumdProduct=oneDimensionSetN^(solutionSum-j);%sNproduct:quotient=remainder/dProduct;remainder=mod(remainder,dProduct);%mod:取余函数if remainder==0oneDimensionSetOrder=quotient;elseoneDimensionSetOrder=fix(quotient)+1;%fix:取整函数endif oneDimensionSetOrder==0oneDimensionSetOrder=oneDimensionSetN;endx(i,j)=oneDimensionSet(oneDimensionSetOrder);endendfunction funtionError=nonLinearSumError1(X)%方程的解是-7,5,1,-3funtionError=...[abs(X(:,1).^2-sin(X(:,2).^3)+X(:,3).^2-exp(X(:,4))-50.566253390821)+...abs(X(:,1).^3+X(:,2).^2-X(:,4).^2+327)+...abs(cos(X(:,1).^4)+X(:,2).^4-X(:,3).^3-624.679868769613)+...abs(X(:,1).^4-X(:,2).^3+2.^X(:,3)-X(:,4).^4-2197)];%判断方程是否解开function [solution,minError,isTrue]=isSolution(x,functionError,precision)[minError,xi]=min(functionError);%找到最小误差,最小误差所对应的行号solution=x(xi,:);if minError<precisionisTrue=1;elseisTrue=0;endfunction[bestChromosome,leastFunctionError]=best_worstChromosome(chromosomeGroup,functionError) [leastFunctionError minErrorOrder]=min(functionError);%[maxFunctionError maxErrorOrder]=max(functionError);bestChromosome=chromosomeGroup(minErrorOrder,:);%worstChromosome=chromosomeGroup(maxErrorOrder,:);function [newBestChromosome,newLeastFunctionError]...=compareBestChromosome(oldBestChromosome,oldLeastFunctionError,... bestChromosome,leastFunctionError)if oldLeastFunctionError>leastFunctionErrornewLeastFunctionError=leastFunctionError;newBestChromosome=bestChromosome;elsenewLeastFunctionError=oldLeastFunctionError;newBestChromosome=oldBestChromosome;endfunction [p,isP]=chromosomeProbability(x_Error)InfN=sum(isinf(x_Error));%估计非线性方程计算的结果NaNN=sum(isnan(x_Error));if InfN>0 || NaNN>0isP='Fail';p=0;returnelseisP='True';errorReciprocal=1./x_Error;sumReciprocal=sum(errorReciprocal);p=errorReciprocal/sumReciprocal;%p:可能解所对应的染色体的概率endfunction chromosome=selecteChromosome(chromosomeGroup,p)cumuP=cumsum(p);%累积概率,也就是把每个染色体的概率映射到0~1的区间[chromosomeSum,chromosomeLength]=size(chromosomeGroup);for i=1:chromosomeSum%这个循环产生概率值rN=rand(1);if rN==1chromosome(i,:)=chromosomeGroup(chromosomeSum,:);elseif (0<=rN) && (rN<cumuP(1))chromosome(i,:)=chromosomeGroup(1,:);%第1条染色体被选中elsefor j=2:chromosomeSum%这个循环确定第1条以后的哪一条染色体被选中if (cumuP(j-1)<=rN) && (rN<cumuP(j))chromosome(i,:)=chromosomeGroup(j,:);breakendendendendfunction sonChromosome=crossChromosome(fatherChromosome,parameter) [chromosomeSum,chromosomeLength]=size(fatherChromosome);switch parametercase 1%随机选择父染色体进行交叉重组for i=1:chromosomeSum/2crossDot=fix(rand(1)*chromosomeLength);%随机选择染色体的交叉点位randChromosomeSequence1=round(rand(1)*chromosomeSum); randChromosomeSequence2=round(rand(1)*chromosomeSum);if randChromosomeSequence1==0%防止产生0序号randChromosomeSequence1=1;endif randChromosomeSequence2==0%防止产生0序号randChromosomeSequence2=1;endif crossDot==0 || crossDot==1sonChromosome(i*2-1,:)=fatherChromosome(randChromosomeSequence1,:); sonChromosome(i*2,:)=fatherChromosome(randChromosomeSequence2,:);else%执行两条染色体的交叉sonChromosome(i*2-1,:)=fatherChromosome(randChromosomeSequence1,:);%把父染色体整条传给子染色体sonChromosome(i*2-1,crossDot:chromosomeLength)=...fatherChromosome(randChromosomeSequence2,crossDot:chromosomeLength)%下一条父染色体上交叉点crossDot后的基因传给子染色体,完成前一条染色体的交叉sonChromosome(i*2,:)=fatherChromosome(randChromosomeSequence2,:); sonChromosome(i*2,crossDot:chromosomeLength)...=fatherChromosome(randChromosomeSequence1,crossDot:chromosomeLength)endendcase 2 %父染色体的第i号与第chromosomeSum+1-i号交叉for i=1:chromosomeSum/2crossDot=fix(rand(1)*chromosomeLength);%随机选择染色体的交叉点位if crossDot==0 || crossDot==1sonChromosome(i*2-1,:)=fatherChromosome(i,:);sonChromosome(i*2,:)=fatherChromosome(chromosomeSum+1-i,:);else%执行两条染色体的交叉sonChromosome(i*2-1,:)=fatherChromosome(i,:);%把父染色体整条传给子染色体sonChromosome(i*2-1,crossDot:chromosomeLength)...=fatherChromosome(chromosomeSum+1-i,crossDot:chromosomeLength);%下一条父染色体上交叉点crossDot后的基因传给子染色体,完成前一条染色体的交叉sonChromosome(i*2,:)=fatherChromosome(chromosomeSum+1-i,:);sonChromosome(i*2,crossDot:chromosomeLength)...=fatherChromosome(i,crossDot:chromosomeLength);endendcase 3 %父染色体的第i号与第i+chromosomeSum/2号交叉for i=1:chromosomeSum/2crossDot=fix(rand(1)*chromosomeLength);%随机选择染色体的交叉点位if crossDot==0 || crossDot==1sonChromosome(i*2-1,:)=fatherChromosome(i,:);sonChromosome(i*2,:)=fatherChromosome(i+chromosomeSum/2,:);else%执行两条染色体的交叉sonChromosome(i*2-1,:)=fatherChromosome(i,:);%把父染色体整条传给子染色体sonChromosome(i*2-1,crossDot:chromosomeLength)...=fatherChromosome(i+chromosomeSum/2,crossDot:chromosomeLength);%下一条父染色体上交叉点crossDot后的基因传给子染色体,完成前一条染色体的交叉sonChromosome(i*2,:)=fatherChromosome(i+chromosomeSum/2,:);sonChromosome(i*2,crossDot:chromosomeLength)...=fatherChromosome(i,crossDot:chromosomeLength);endendend%检测染色体(序号)是否超出解空间的函数function chromosome=checkSequence(chromosomeGroup,solutionSum)[chromosomeSum,chromosomeLength]=size(chromosomeGroup); decimalChromosomeSequence=bin2dec(chromosomeGroup);for i=1:chromosomeSum %检测变异后的染色体是否超出解空间if decimalChromosomeSequence(i)>solutionSumchRs=round(rand(1)*solutionSum);if chRs==0chRs=1;enddecimalChromosomeSequence(i)=chRs;endendchromosome=dec2bin(decimalChromosomeSequence,chromosomeLength);%基因变异.染色体群中的1/10变异。

相关文档
最新文档