Matlab求解线性方程组、非线性方程组
非线性方程组求解-Matlab-fsolve-Read

非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。
实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。
第6章 MATLAB解方程与最优化问题求解

R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对 称正定,则输出一个出错信息。 [R,p]=chol(X):这个命令格式将不输出出错信息。当X为 对称正定的,则p=0,R与上述格式得到的结果相同;否 则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为 q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。 实现Cholesky分解后,线性方程组Ax=b变成R’Rx=b,所 以x=R\(R’\b)。
运行结果: x= 0.9958 0.9579 0.7916
[x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)
n=
•求同一个方程, Gauss-Serdel迭代比Jacobi 迭代要收敛得快些,但这不是绝对的。 7
例6-7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性 方程组,看是否收敛。 1 2 2 x1 9 命令如下: 1 1 1 x 7 2 a=[1,2,-2;1,1,1;2,2,1]; 2 2 1 x3 6 b=[9;7;6]; [x,n]=jacobi(a,b,[0;0;0])
function fx=funx(x)
fx=x-10.^x+2; (2) 调用fzero函数求根。
z=fzero('funx',0.5)
z= 0.3758
6.2.2 非线性方程组的求解
对于非线性方程组F(X)=0,用fsolve函数求其数值解。 fsolve函数的调用格式为: X=fsolve('fun',X0,option)
验证 R'*R
例6-4 用Cholesky分解求解例6-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];
Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。
解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。
作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。
本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。
非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。
在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。
Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。
其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。
x表示最优解,而fval表示最优解对应的目标函数值。
另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。
Matlab中提供的fsolve函数可以用于求解非线性方程。
其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。
除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。
除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。
例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。
此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。
MATLAB求解非线性方程

x^2 + x*y + y = 3
x^2 - 4*x + 3 = 0
解法:
>> [x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0')
运行结果为
x =
1 3
y =
1 -3/2
即x等于1和3;y等于1和-1.5
或
>>[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3= 0','x','y')
x(1)-k*sqrt(x(2))];
%求解过程
H=0.32;
Pc0=0.23;W=0.18;
x0 = [2*W; Pc0+2*H]; %取初值
options = optimset('Display','off');
k=0:0.01:1; %变量取值范围[0 1]
for i=1:1:length(k)
3、非线性方程数值求解
matlab里solve如何使用,是否有别的函数可以代替它.
matlab里我解y=9/17*exp(-1/2*t)*17^(1/2)*sin(1/2*17^(1/2)*t)=0这样的方程为什么只得到0这一个解,如何可以的到1/2*17^(1/2)*t=n*(pi)这样一族解??
-.283
-2.987
y =
1.834-3.301*i
1.834+3.301*i
-.3600
Matlab解方程(方程组)

Matlab 解方程这里系统的介绍一下关于使用Matlab求解方程的一系列问题,网络上关于Matlab求解方程的文章数不胜数,但是我大体浏览了一下,感觉很多文章都只是零散的介绍了一点,都只给出了一部分Matlab函数例子,以至于刚接触的人面对不同文章中的不同函数一脸茫然,都搞不清楚这些函数各自的用途,也不知道在什么样的情况下该选择哪个函数来求解方程,在使用Matlab解方程时会很纠结。
不知道读者是否有这样的感觉,反正我刚开始接触时就是这样的感觉,面对网络搜索到一系列函数都好想知道他们之间是个什么关系。
所谓的方程就是含有未知数的等式,解方程就是找出使得等式成立时的未知数的数值。
求方程的解可以转换成不同形式,比如求函数的零点、多项式的根。
方程分类很多,按照未知数个数分为一元、二元、多元方程;按照未知数组合形式分为线性方程和非线性方程;按照非零项次数是否一致分为齐次方程和非齐次方程。
线性方程就是方程中未知数次数是一次的,未知数之间不存在指、对、2及以上幂次的关系,线性方程又分为一元线性方程,也就是一元一次方程;多元线性方程,也就是多元一次方程,多以线性方程组的形式出现(包括齐次线性方程组和非齐次线性方程组)。
在Matlab中求解方程的函数主要有roots、solve、fzero、和fsolve函数等,接下来详细的介绍一下各个Matlab函数的使用方法和使用场合。
一、直接求解法(线性方程组)直接求解法不需要借助任何的Matlab函数,主要用于求解线性方程组,也就是未知数次数是一次的方程组,包括齐次线性方程组合非齐次线性方程组。
当然既然可以求解方程组自然也就可以求解单个方程。
主要针对A x=b形式的方程,其中A是未知数系数矩阵,x是未知数列向量,b是常数列向量,当b=0时就是齐次线性方程组,b ≠0时是非齐次线性方程组。
用左除法,x=A\b例:求解线性方程组的解12341242341234251357926640x x x x x x x x x x x x x x +-+=⎧⎪-+=-⎪⎨+-=⎪⎪+--=⎩解:即直接利用b 左除以A 。
matlab 方程组 解

matlab 方程组解一、概述Matlab是一种强大的数学计算软件,它可以用来解决各种数学问题,包括解方程组。
在Matlab中,求解方程组是一个非常重要的功能,因为很多实际问题都可以转化为方程组的形式。
本文将详细介绍如何使用Matlab求解线性方程组和非线性方程组。
二、线性方程组1. 线性方程组的定义线性方程组是指各个未知量的次数都不超过1次的代数方程组。
例如:2x + 3y = 54x - 5y = 6就是一个包含两个未知量x和y的线性方程组。
2. Matlab中求解线性方程组方法在Matlab中,可以使用“\”或者“inv()”函数来求解线性方程组。
其中,“\”表示矩阵左除,即Ax=b时,求解x=A\b;“inv()”函数表示矩阵求逆,即Ax=b时,求解x=inv(A)*b。
例如,在Matlab中求解以下线性方程组:2x + 3y = 54x - 5y = 6可以使用以下代码:A=[2,3;4,-5];b=[5;6];x=A\b输出结果为:x =1.00001.0000其中,“A”为系数矩阵,“b”为常数矩阵,“x”为未知量的解。
三、非线性方程组1. 非线性方程组的定义非线性方程组是指各个未知量的次数超过1次或者存在乘积项、幂项等非线性因素的代数方程组。
例如:x^2 + y^2 = 25x*y - 3 = 0就是一个包含两个未知量x和y的非线性方程组。
2. Matlab中求解非线性方程组方法在Matlab中,可以使用“fsolve()”函数来求解非线性方程组。
该函数需要输入一个函数句柄和初始值向量,输出未知量的解向量。
例如,在Matlab中求解以下非线性方程组:x^2 + y^2 = 25x*y - 3 = 0可以使用以下代码:fun=@(x)[x(1)^2+x(2)^2-25;x(1)*x(2)-3];x0=[1;1];[x,fval]=fsolve(fun,x0)输出结果为:Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>ans =1.60561.8708其中,“fun”为函数句柄,表示要求解的非线性方程组,“x0”为初始值向量,“[x,fval]”为输出结果,其中“x”表示未知量的解向量,“fval”为函数值。
第八章matlab解方程
X
[x,f,h]=fsolve(f,x0)返回一元或者多元函 数f在x0附近的一个零点,其中x0为迭代 初值,f返回f在x0的函数值,应该接近0; h返回值如果大于0,说明计算结果可靠, 否则计算结果不可靠。
例 求函数 y x sin(x2 x 1)在(-2,-0.1)内的零点
>>fun=inline(‘x*sin(x^2-x-1)’,’x’) >>fplot(fun,[-2,-0.1]);grid on >>x1=fzero(fun,[-1,-1.2]),x2=fzero(fun,[-1.2,-0.1]) 或x1=fzero(fun,-1.6),x2=fzero(fun,-0.6) 或[x1,f1,h1]=fsolve(fun,-1.6), [x2,f2,h2]=fsolve(fun,-0.6)
例:>> fzero('sin(x)',10)
>> fzero(@sin,10) >> fzero('x^3-3*x+1',1) >> fzero('x^3-3*x+1',[1,2]) >> fzero('x^3-3*x+1',[-2,0]) >> f=inline('x^3-3*x+1'); >> fzero(f,[-2,0]) >> fzero('x^3-3*x+1=0',1)
非线性方程的根
fzero 的另外一种调用方式
fzero(f,[a,b])
求方程 f=0 在 [a,b] 区间内的根。 方程在 [a,b] 内可能有多个根,但 fzero 只给出一个
matlab求解非线性方程组
非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。
Matlab中常用的数学函数解析
Matlab中常用的数学函数解析Matlab是一个强大的数值计算和可视化软件,它提供了丰富的数学函数,方便用户进行各种数学运算和分析。
在本文中,我们将解析一些常用的Matlab数学函数,介绍其用法和应用场景。
一、求解方程和优化问题在科学和工程领域,求解方程和优化问题是常见的任务。
Matlab提供了许多函数用于这些目的,其中最常用的是solve和fmincon函数。
1. solve函数solve函数用于求解代数方程或方程组。
例如,我们想求解一个一元二次方程2x^2 + 3x - 5 = 0的根,可以使用solve函数:```syms xeqn = 2*x^2 + 3*x - 5 == 0;sol = solve(eqn, x);```solve函数返回一个包含根的结构体sol,我们可以通过sol.x获得根的值。
当然,solve函数也可以求解多元方程组。
2. fmincon函数fmincon函数是Matlab中的一个优化函数,用于求解有约束的最小化问题。
例如,我们希望找到一个函数f(x)的最小值,同时满足一些约束条件,可以使用fmincon函数:```x0 = [0.5, 0.5]; % 初始解A = [1, 2]; % 不等式约束系数矩阵b = 1; % 不等式约束右侧常数lb = [0, 0]; % 变量下界ub = [1, 1]; % 变量上界nonlcon = @mycon; % 非线性约束函数options = optimoptions('fmincon', 'Algorithm', 'sqp'); % 优化选项[x, fval] = fmincon(@myfun, x0, A, b, [], [], lb, ub, nonlcon, options);```其中,myfun为目标函数,mycon为非线性约束函数。
fmincon函数返回最优解x和最小值fval。
MATLAB解方程与函数极值(IV)
使用Matlab的`syms`和`solve`函数求解符 号方程,例如:x^2-2=0。
函数极值实例
一元函数极值
使用Matlab的`fminbnd`函数求解一元函数的极小值,例如 :f(x)=x^2。
多元函数极值
使用Matlab的`fminsearch`函数求解多元函数的极小值,例 如:f(x,y)=(x-1)^2+(y-2)^2。
变量与数据类型
在MATLAB中,变量名必须以字母开头,可以 包含字母、数字和下划线。
01
数值型变量可以是标量、向量或矩阵,可 以进行各种数值运算。
03
02
MATLAB支持多种数据类型,包括数值型、 字符型、逻辑型和结构体等。
04
字符型变量用于存储文本数据,可以进行 字符串操作。
逻辑型变量用于存储布尔值,可以进行逻 辑运算。
MATLAB具有高效的数值计算能力,支持多种编程语言和操作系统。
Matlab编程基础
01
MATLAB是一种解释型语言,语法相对简单, 易于学习。
03
MATLAB提供了丰富的函数库,可以方便地实现各 种算法和数据处理。
02
MATLAB支持向量和矩阵运算,可以进行高效 的数值计算。
04
MATLAB的编程风格简洁明了,易于阅读和维护。
积分方程求解
数值积分
使用Matlab的数值积分函数,如 `quad`、`quadl`等,对函数进行积 分。这些函数返回积分的近似值。
符号积分
使用Matlab的符号计算工具箱进行符号 积分。例如,`syms x`和`int(f, x)`,其 中`f`是函数句柄,表示对函数进行积分。
03 函数极值
单变量函数极值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解线性方程组
solve,linsolve
例:
A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格
B=[3;1;1;0]
X=zeros(4,1);%建立一个4 元列向量X=linsolve(A,B) diff(fun,var,n):对表达式fun 中的变量var 求n 阶导数。
例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式diff(F); %matlab 区分大小写pretty(ans) %pretty():用习惯书写方式显示变量;ans 是答案表达式
非线性方程求解fsolve(fun,x0,options) 其中fun 为待解方程或方程组的文件名;x0 位求解方程的初始向量或矩阵;option 为设置命令参数建立文件fun.m:function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) -
0.5*cos(x(1))+0.3*sin(x(2))];
>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注:
...为续行符
m 文件必须以function 为文件头,调用符为@ ;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。
Matlab 求解线性方程组
AX=B 或XA=B
在MATLAB 中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。
如:
X=A\B 表示求矩阵方程AX=B 的解;
X=B/A 表示矩阵方程XA=B 的解。
对方程组X=A\B,要求 A 和B用相同的行数,X和 B 有相同的列数,它的行数等于矩阵 A 的列数,方程X=B/A 同理。
如果矩阵A 不是方阵,其维数是m×n,则有:
m=n 恰定方程,求解精确解;
m>n 超定方程,寻求最小二乘解;
m<n 不定方程,寻求基本解,其中至多有m 个非零元素。
针对不同的情况,MATLAB 将采用不同的算法来求解。
一.恰定方程组
恰定方程组由n 个未知数的n 个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:
Ax=b 其中A 是方阵,b 是一个列向量;在线性代数教科书中,最常用的方程组解法有:
(1)利用cramer 公式来求解法;
(2)利用矩阵求逆解法,即x=A-1b;
(3)利用gaussian 消去法;
(4)利用lu 法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。
前三种解法的真正意义是在其理论上,而不是实际的数值计算。
MATLAB 中,出于对算法稳定性的考虑,行列式及逆的计算大都在lu分解的基础上进行。
在MATLAB 中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB 的指令解释器在确认变量 A 非奇异后,就对它进行lu 分解,并最终给出解x;若矩阵 A 的条件数很大,MATLAB 会提醒用户注意所得解的可靠性。
如果矩阵 A 是奇异的,则Ax=b 的解不存在,或者存在但不唯一;如果矩阵 A 接近奇异时,MATLAB 将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵 A 是病态矩阵,也会给出警告信息。
注意:在求解方程时,尽量不要用inv(A)*b 命令,而应采用A\b 的解法。
因为后者的计算速度比前者快、精度高,尤其当矩阵 A 的维数比较大时。
另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。
二.超定方程组
对于方程组Ax=b,A 为n×m 矩阵,如果 A 列满秩,且n>m。
则方程组没有精
确解,此时称方程组为超定方程组。
线性超定方程组经常遇到的问题是数据的曲线拟合。
对于超定方程,在MATLAB 中,利用左除命令(x=A\b)来寻求它的最
小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x 只是最小二乘意义上的解。
左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder 变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;
【例7】
求解超定方程组
A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]
A=
2 -1 3
3 1 -5
4 -1 1
1 3 -13
b=[3 0 3 -6]';
rank(A)
ans=
3
x1=A\b
x1=
1.0000
2.0000
1.0000 x2=pinv(A)*b
x2=
1.0000
2.0000
1.0000
A*x1-b
ans=
1.0e-014
-0.0888
-0.0888
-0.1332
可见x1 并不是方程Ax=b 的精确解,用x2=pinv(A)*b 所得的解与x1 相同。
三.欠定方程组欠定方程组未知量个数多于方程个数,但理论上有无穷个解。
MATLAB 将寻求一个基本解,其中最多只能有m 个非零元素。
特解由列主元qr分解求得。
【例8】解欠定方程组A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5] A=
1 -
2 1 1
1 -
2 1 -1
1 -
2 1 -1
1 -
2 1 5
b=[1 -1 5]'
x1=A\b
Warning:Rank deficient,rank=2 tol=4.6151e-015
x1=
-0.0000
1.0000
x2=pinv(A)*b
x2=
-0.0000
0.0000
1.0000
四.方程组的非负最小二乘解在某些条件下,所求的线性方程组的解出现负数是没有意义的。
虽然方程组可以得到精确解,但却不能取负值解。
在这种情况下,其非负最小二乘解比方程的精确解更有意义。
在MATLAB 中,求非负最小
二乘解常用函数nnls,其调用格式为:
(1)X=nnls(A,b)返回方程Ax=b 的最小二乘解,方程的求解过程被限制在x 的条件下;
(2)X=nnls(A,b,TOL)指定误差TOL 来求解,TOL的默认值为
TOL=max(size(A))*norm(A,1)*eps,矩阵的-1 范数越大,求解的误差越大;
(3)[X,W]=nnls(A,b) 当x(i)=0 时,w(i)<0;当下x(i)>0 时,w(i)0,同时返回一个双向量w。
【例9】求方程组的非负最小二乘解
A=[3.4336 -0.5238 0.6710
-0.5238 3.2833 -0.7302
0.6710 -0.7302 4.0261];
b=[-1.000 1.5000 2.5000];
[X,W]=nnls(A,b)
X=
0.6563
0.6998
W=
-3.6820
-0.0000
-0.0000
x1=A\b
x1=
-0.3569
0.5744
0.7846
A*X-b ans= 1.1258 0.1437 -0.1616 A*x1-b ans= 1.0e-0.15
-0.2220
0.4441。