第21届小学中年级华杯赛决赛A试题和答案

合集下载

华杯赛试题及答案

华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. 1B. -1C. -5D. 5答案:C2. 若a和b是两个不同的实数,且a^2 + b^2 = 0,下列哪个选项是正确的?A. a = 0,b ≠ 0B. a ≠ 0,b = 0C. a = 0,b = 0D. a ≠ 0,b ≠ 0答案:C3. 计算下列几何图形的面积:一个半径为3的圆。

A. 9πB. 18πC. 27πD. 36π答案:C4. 一个数列的前三项分别是1, 2, 4,每一项都是前一项的两倍,这个数列的第五项是多少?A. 16B. 32C. 64D. 128答案:B二、填空题(每题5分,共20分)5. 一个等差数列的首项是5,公差是3,那么这个数列的第10项是________。

答案:286. 已知一个直角三角形的两条直角边长分别为6和8,那么这个三角形的斜边长是________。

答案:107. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是________。

答案:24立方厘米8. 一个分数的分子是15,分母是20,化简后这个分数是________。

答案:3/4三、解答题(每题15分,共30分)9. 已知一个二次函数y = ax^2 + bx + c,其中a = 2,b = -3,c = 1,求这个函数的顶点坐标。

答案:顶点坐标为(3/2, -5/2)。

10. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,那么选中男生的概率是多少?答案:选中男生的概率是3/5。

第21届华杯赛初赛试卷及答案解析(小高组)

第21届华杯赛初赛试卷及答案解析(小高组)

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字0. A.2017B.2016C.2015D.2014【答案】C【解析】 201622016201620152015(101)(102)101999...998000 (001)-=-⨯+=个个2.已知A B ,两地相距300米.甲、乙两人同时分别从,A B 两地出发,相向而行,在距A 地140米处相遇;如果乙每秒多行1米,则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. A.325 B.425 C.3 D.135【答案】D【解析】设甲速1v 乙速2v121214073001408300180211803v v v v ⎧==⎪-⎪⎨-⎪==⎪+⎩解得12145165v v ⎧=⎪⎪⎨⎪=⎪⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】100111137=⨯⨯,ACD 前三位都不是11或13的倍数 9881376=⨯,8841368=⨯,8471177=⨯,4731143=⨯,7371167=⨯4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有( )种不同的排行.A.1152B.864C.576D.288 【答案】A【解析】123...728++++=,8的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356)四种分法共有244!3!1152⨯⨯⨯=种排法5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6,CD =14, AEC ∠是直角,CE CB =,则AE 2等于( )A.84B.80C.75D.64【答案】A【解析】AG BF h ==,10CG =,4CF =2222100AC AG CG h =+=+2222216CE BC BF CF h ==+=+22284AE AC CE =-=6.从自然数1,2,3,…,2015,2016中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5个数,它们的数字和相等.那么n 的最小值等于( )A.109B.110C.111D.112【答案】B【解析】1到2016中,数字和最大28。

小学组华杯赛试题及答案

小学组华杯赛试题及答案

小学组华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上4等于20,这个数是多少?A. 4B. 5C. 6D. 7答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 30B. 50C. 60D. 70答案:B4. 一个数的5倍减去3等于12,这个数是多少?A. 3B. 2C. 1D. 0答案:A二、填空题(每题5分,共20分)5. 一个数加上10等于20,这个数是______。

答案:106. 一个数的4倍是24,这个数是______。

答案:67. 一个数的2倍加上3等于15,这个数是______。

答案:68. 一个数的3倍减去5等于10,这个数是______。

答案:5三、计算题(每题10分,共20分)9. 计算下列算式:(23 + 45) × (12 - 8)答案:68 × 4 = 27210. 计算下列算式:(36 ÷ 4) + (54 ÷ 6)答案:9 + 9 = 18四、解答题(每题15分,共30分)11. 一个班级有48名学生,如果每排坐8名学生,可以坐满几排?答案:48 ÷ 8 = 6(排)12. 一个长方形的长是15厘米,宽是9厘米,求它的周长。

答案:(15 + 9) × 2 = 24 × 2 = 48(厘米)五、应用题(每题20分,共20分)13. 小明有36个苹果,他打算每4个苹果装一袋,可以装几袋?答案:36 ÷ 4 = 9(袋)。

第二十一届华杯赛初赛试题及答案

第二十一届华杯赛初赛试题及答案
2016 个 2016 个
)个数字 0. D. 2014
A. 2017 B. 2016 C. 2015 【知识点】计算模块——多位数计算 【解析】 999 9 999 9 10
2016 个 2016 个

2016
1 10 2016 1
230 270 500 350 500 500 350 350 .
【答案】A 2. 如右图所示,韩梅家的左右两侧各摆了两盆花. 每 次,韩梅按照以下规则往家中搬一盆花: 先选择左 侧还是右侧,然后搬该侧离家最近的. 要把所有花 搬到家里,共有( )种不同的搬花顺序. A. 4 B. 6 C. 8 D. 10 【知识点】 计数模块——加法原理 【解析】 将图中花从左往右依次编号 1,2,3,4. 根据题目要求,有下列搬花方式: 2-1-3-4,2-3-4-1,2-3-1-4,3-4-2-4,3-2-1-4,3-2-4-1 共 6 种不同的搬花顺序. 【答案】B 3. 在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无 重叠,且拼接的边完全重合,则得到的新图形的边数为( ). A. 8 B. 7 C. 6 D. 5 【知识点】 几何——平铺 【解析】如图所示,共有 5 个边.


10 2016 10 2016 2 10 2016 1
10 2016 ( 10 2016 2) 1
1000 0 999 98 1
2016 个 2015个
999 98000 01
A 选项中 998 显然不能被 11 整除,由 99+8 4=131,13+1 4=17,显然 17 不能 被 13 整除,从而 998 也不能被 13 整除. B 选项中 988 显然不能被 11 整除,由 98+8 4=130,显然 130 能被 13 整除,从而 988 能被 13 整除; 884 显然不能被 11 整除,由 88+4 4=104,10+4 4=26,显然 26 能被 13 整除,从而 884 能被 13 整除; 847 中,8+7-4=11,显然能被 11 整除; 473 中,4+3-7=0,显然能被 11 整除; 737 中,7+7-3=11,显然能被 11 整除. C 选项中 997 显然不能被 11 整除,由 99+7 4=127,12+7 4=30,显然 30 不能被 13 整除,从而 997 也不能被 13 整除. D 选项中 987 显然不能被 11 整除,由 98+7 4=126, 12+6 4=36,显然 36 不能被 13 整除,从而 987 也不能被 13 整除. 【答案】B 4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么 共有( A. 1152 )种不同的排法. B. 864 C. 576 D.288

第21届“华杯赛”决赛小高组B组试题

第21届“华杯赛”决赛小高组B组试题

第二十一届华罗庚金杯少年数学邀请赛 决赛试题B (小学高年级组) (时间: 2016年3月12日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 计算: =-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-4.213453611753971 . 2. 如右图, 30个棱长为1的正方体粘成一个四层的立体, 这个立体的表面积等于 . 3. 有一片草场, 10头牛8天可以吃完草场上的草; 15头牛, 如果从第二天开始每天少一头, 可以5天吃完. 那么草场上每天长出来的草够 头牛吃一天. 4. 如右图所示, 将一个三角形纸片ABC 折叠, 使得点C 落在三角形ABC 所在平面上, 折痕为DE . 已知︒=∠74ABE , ︒=∠70DAB , ︒=∠20CEB , 那么CDA ∠等于 . 5.甲、乙二人骑自行车从环形公路上同一地点同时出发, 背向而行. 已知甲骑行一圈的时间是70分钟, 出发后第45分钟甲、乙二人相遇, 那么乙骑行一圈的时间是 分钟. 6.如右图, 正方形ABCD 的边长为5, E , F 为正方形外两点,满足4==CF AE , 3==DF BE , 那么=2EF .7. 如果832⨯能表示成k 个连续正整数的和, 则k 的最大值为 .8. 现有算式: 甲数□乙数○1, 其中□, ○是符号+, -, ⨯,÷中的某两个. 李雷对四组甲数、乙数进行了计算, 结果见右表, 那么, A ○=B .学校____________姓名_________ 参赛证号密封线 内请勿答题第二十一届华罗庚金杯少年数学邀请赛决赛试题B(小学高年级组)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 计算:⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++201624232201613121 201620152016201420152014201635343+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++ . 10.商店春节促销, 顾客每次购物支付现金时, 每100元可得一张价值50元的代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李阿姨只有不超过1550元的现金, 她能买到价值2300元的商品吗? 如果能, 给她设计一个购物方案; 如果不能, 说明理由.11. 如右图, 等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20, 2=BD , 4=EC , 求三角形ABC 的面积.12. 试找出这样的最大的五位正整数, 它不是11的倍数, 通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 如右图, 正方形ABCD 的面积为1, M 是CD 边的中点, E , F 是BC 边上的两点, 且FC EF BE ==. 连接AE , DF 分别交BM分别于H , G . 求四边形EFGH 的面积.14. 现有下图左边所示的“四连方”纸片五种, 每种的数量足够多. 要在如下图右边所示的55⨯方格网上, 放“四连方”, “四连方”可以翻转, “四连方”的每个小方格都要与方格网的某个小方格重合, 任意两个“四连方”不能有重叠部分. 那么最少放几个“四连方”就不能再放了?。

第21届华杯赛小学高年级组初赛试题解析(成都)

第21届华杯赛小学高年级组初赛试题解析(成都)

报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第6题 在一个七位数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是() (A)9981733 答案:B 解析: 要使此 7 位数最大,则第一个数为 9,如果第二个数为 9,要使其 能被 13 整除,用试除法知 988 能被 13 整除,990 能被 11 整除, 而如果为 990,则 0 不能和它后面两位数构成三位数,则不能为 990, 所以第二个数不能为 9, 所以第二个数为 8,998 能被 13 整除, 则看第 4 位,用同样的方法可得此七位数为 9884737. ___________________________________________________________ (B)9884737 (C)9978137 (D)9871773
2 n 1 4 无法求出 n 值,不符合。
___________________________________________________________
报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第3题 有一种饮料包装瓶的容积是 1.5 升。现瓶里装了一些饮料,正放时饮 料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如右图。那么 瓶内现有饮料()升
则 ab 为 15 的倍数
ab 15 , 15 3 5 a b 4 ab 30 , 30 1 30 2 15 3 10 5 6 a b 8 ab 45 , 45 1 45 3 15 5 9 a b 12 ab 60 , 60 1 60 2 30 3 20 4 15 5 12 6 10(符合) a b 16

第21届华杯赛决赛试卷_小高C(1)(1)


海边直播教研组整理
更多学习资料请加海边五年级学习①群 526327386
1.

2. 3.
某月里, 星期五、 星期六和星期日各有 5 天, 那么该月的第 1 日是星期______. 大于
1 1 且小于 的真分数有_____________ 姓名_________ 参赛证号

4.
哥哥和弟弟各买了若干个苹果, 哥哥对弟弟说:“若我给你一个苹果, 咱俩的 苹果个数一样多”,弟弟想了想,对哥哥说:“若我给你一个苹果, 你的苹果数 将是我的 2 倍”, 则哥哥与弟弟共买了______个苹果.
总分
第二十一届华罗庚金杯少年数学邀请赛
决赛试题 C(小学高年级组)
(时间: 2016 年 3 月 12 日 10:00~11:30)
一、填空题(每小题 10 分, 共 80 分)
1 2 0.25 2 0.5 4 . 计算: 3 1 1 2 =______ 2 2 4 2 5 5

三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的 6 个, 并在这串数的最后再写上擦去的 6 个数的和,得到新的一串数,再做同样 的操作,直到黑板上剩下的数不足 6 个. 问:(1) 最后黑板上剩下的这些数 的和是多少?(2) 最后所写的那个数是多少? 14. 数学竞赛,填空题 8 道,答对 1 题,得 4 分,未答对,得 0 分;问答题 6 道,答对 1 道,得 7 分,未答对,得 0 分. 参赛人数 400 人,至少有多少 人的总分相同?
图3
12. 三台车床 A,B,C 各以一定的工作效率加工同一种标准件,A 车床比 C 车 床早开机 10 分钟, C 车床比 B 车床早开机 5 分钟, B 车床开机 10 分钟后, B,C 车床加工的标准件的数量相同. C 车床开机 30 分钟后, A,C 两车床 加工的标准件个数相同. B 车床开机多少分钟后就能与 A 车床加工的标准件 的个数相同?

华杯赛决赛天天练汇总(解析版)

题目1第十八届华杯赛决赛 A 卷(2014×2014+2012)-2013×2013= 【答案】6039【解析】(2014×2014+2012)-2013×2013=((2013+1)×2014+2012)-2013×2013=(2013×2014+2014+2012)-2013×2013=2013×2014-2013×2013+2014+2012=2013×(2014-2013)+2014+2012=2013+2014+2012=6039题目2第二十届华杯赛决赛 B 卷3752÷(39×2)+5030÷(39×10)= 【答案】61【解析】3752÷(39×2)+5030÷(39×10)=3752÷(39×2)+5030÷(39×5×2)=3752÷(39×2)+5030÷5÷(39×2)=3752÷(39×2)+1006÷(39×2)=3752÷78+1006÷78=(3752+1006)÷78=4758÷78=61题目1第十九届华杯赛决赛用□和○表示两个自然数, 若□⨯○= 42, 则(□⨯4)⨯(○÷3)=【答案】56【解析】(□⨯4)⨯(○÷3)=□⨯4⨯○÷3=□⨯○⨯4÷3=42⨯4÷3=56题目2第二十一届华杯赛决 A 卷计算:(98×76 – 679×8)÷(24×6 + 25×25×3-3)= 【答案】1【解析】(98×76 – 679×8)÷(24×6 + 25×25×3-3)=(7448 – 5432)÷(144 + 1875-3)=2016÷2016=1题目12018 年1 月19 日(小中组计数专题)第十九届华杯赛决赛第一次操作将图a。

2021华杯赛试题及答案

2021华杯赛试题及答案2.问:(a)1995年全年有几个星期日?全年有几个月有五个星期日?(b)1996年全年有几个星期日?全年有几个月有五个星期日?3.甲、乙、丙三个班人数相同,在班之间举行象棋比赛,将各班同学都按1,2,3,,编号.当两个班比赛时,具有相同编号的同学在同一台对垒,在甲、乙两班比赛时,有15台是男、女生对垒;在乙、丙两班比赛时,有9台是男、女生对垒.试说明在甲、丙两班比赛时,男、女生对垒的台数不会超过24.什么情况下,正好是24?4.用0,1,2,3,4五个数字,组成四位数,每个四位数中的数字不同(如1023,2341),求全体这样的四位数之和.5.某幼儿园的小班人数最少,中班有27人,大班比小班多6人,春节分橘子25箱,每箱橘子不超过60个,不少于50个,橘子总数的个位数是7,若每人分19 个,则橘子数不够,现在大班每人比中班每人多分一个,中班每人比小班每人多分一个,刚好分完,问这时大班每人分多少橘子?小班有多少人?6.一个圆周上有12个点,,,,.以它们为顶点连三角形,使每个点恰是一个三角形的顶点,且各个三角形的边都不相交.问有多少种连法?参考答案1.A,B两市相距600千米 2.(a)1995年共有53个星期日,全年有五个月有五个星期日,(b)1996年共有52个星期日,全年只有四个月有五个星期日. 3.略 4.259980 5.大班每人分得18个橘子;小班有25人. 6.共有55种不同的连法1.【解】如图所示.设小镇为D点,傍晚到达E点,F为AB中点.AD是AC的三分之一,即DC=2×AD,EB是CE的二分之一,即CE=2×EB,所以DE=DC+CE=2×(AD十EB)已知DE=400,所以AD+EB=400÷2=200,从而AB=400+200=600(千米)答:A、B两市相距600千米【注】本题中,“计划上午比下午多走100千米”这一条件是多余的2.【解】(a)1995年1月1日是星期日,1995年全年有365天,每7天有且仅有一个星期日7×52=364,因此,从1995年1 11 2日到1995年12月31日.这364天中有52个星期日,加上1995年1月1日这个星期日,共是53个星期日.最小的月有28天,最大的月有31天,因此无论哪个月都最少有4个星期日,最多有5个星期日.53=12×4+5,因此,1995年中有五个月有五个星期日.(b)1995年1月1日是星期日,经过364天后,1995年12月31日也是星期日.所以1996年1月1日是星期一.1996年是闰年,2月有29天,经过364天后,1996年12月30日是星期一,所以1996年全年共有52个星期日,全年只有四个月有五个星期日.3.【解】我们可以把乙班同学分成三部分,第一部分为与甲班相同编号的同学异性者(由题设可知这部分乙班同学为15人),第二部分为与丙班相同编号的同学异性者(由题设可知这部分乙班同学为9人),其余为第三部分.设A同学属于第三部分,他与甲班相同编号的同学通性,与丙班相同编号的同学也为同性,所以,与A相同编号的甲班和丙班同学必为同性.由此可知,甲、丙两班比赛时,男、女生对垒的台数不会超过24.只有当与乙班第一部分相同编号的丙班同学均与乙班同学同性,并且与乙班第二部分相同编号的甲班同学也均与乙班同学同性时,甲、丙两班比赛中,男、女生对垒的台数正好是24.4.【解】千位数字是1的有4×3×2=24个(因为百位数字可从0、2、3、4中选择,有4种,百位确定后,十位有3种选择,百位,十位确定后,个位有2种选择).千位数字是2、3、4的也有24种。

第二十一届华杯赛答案

第二十一届华杯赛答案【篇一:第二十一届华杯赛周周练(一—三)】=txt>周周练(一)一、填空题1、从2012年12月21日冬至起,每九天分为一段,依次称之为一九、二九、三九??九九,冬至那一天是一九的第一天,2013年2月10日是()九的第()天。

2、有一箱苹果,甲班分每人3个余10个,乙班分每人4个余11个,丙班分每人5个余12个,这箱苹果至少有()个。

3、用学和习代表不同的数字,四位数学学学学与习习习习的积是一个七位数,且个位与百万位数字与学代表的数字相同,那么学习所代表的两位数共有()个。

4、若干人完成了植树2013棵的任务,每人植树的棵数相同,如果有5人不参加植树,其余的人每人多植2棵完不成任务,而每人多植3棵超额完成任务,参加植树共有()人。

5、一个四位数,各位数字互不相同,所有数字之和等于6,并且这个数时11的倍数,则满足这种要求的四位数有()个。

二、解答题1、一只青蛙8点从深为12米的井底向上爬,它每向上爬3米,因井壁打滑,就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一,8点17分时,青蛙第二次爬至离井口3米之处,那么青蛙爬到井口时所花的时间为多少分钟?2、钟面上3点多少分时,时针和分针在这2的两边,并且到2的距离相等。

3、某人参加了10场比赛,第6、7、8、9场比赛得分分别为23,20,11,14,已知前9场的平均分比前5场的平均分高,他第10场比赛至少得多少分,10场的平均分才能超过18分?4、一个棱长是10厘米的正方体,从侧面打通两个底面边长是4厘米的洞,从上面打通一个直径是4厘米的圆柱形洞,剩下图形的表面积和体积各是多少?5、由455个棱长1厘米的小正方体无缝隙组成一个长方体,从每条棱上去掉一行后,剩下图形的体积是371,原图形的长、宽、高各是多少?参考答案一、填空题(1)六九第七天(2)67 (3)3 (4)61 (5)6二、解答题8(1)22分钟(2)4 (3)29 (4)表面积785.12平方厘米,体积668.64立13方厘米(5)长13 宽7 高5周周练(二)一、填空题1、a、b两校的男女生人数比分别是8︰7和30︰31,两校合并后男女生人数比是27︰26,两校合并前人数比是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



参赛证号 勿
_________

姓名 线

学校


总分
第二十一届华罗庚金杯少年数学邀请赛
决赛试题 A (小学中年级组)
(时间: 2016 年 3 月 12 日 10:00~11:30)
一、填空题(每小题 10 分, 共 80 分)
1. 计算: (98 ⨯ 76 - 679 ⨯8) ÷ (24 ⨯ 6 + 25 ⨯ 25 ⨯ 3 - 3) = ________.
2. 从 1, 2, 3, 4, 5 这 5 个数中选出 4 个不同的数填入下面 4 个方格中
□ + □ > □ + □,
有________种不同的填法使式子成立.(提示: 1+ 5 > 2 + 3 和 5 +1 > 2 + 3 是不
同的填法.)
3.将下图左边的大三角形纸板剪 3 刀, 得到 4 个大小相同的小三角形纸板 (第一次操作), 见下图中间. 再将每个小三角形纸板剪 3 刀, 得到 16 个大小相同的更小的三角形纸板 (第二次操作), 见下图右边. 这样继续操作下去, 完成前六
次操作共剪了________刀.
4. 一个两位数与 109 的乘积为四位数, 它能被 23 整除且商是一位数, 这个两
位数最大等于________.
5. 右图中的网格是由 6 个相同的小正方形构成. 将其中 4 个小正方形
涂上灰色, 要求每行每列都有涂色的小正方形. 经旋转后两种涂
色的网格相同, 则视为相同的涂法, 那么有________种不同的涂
色方法.
6.有若干个连续的自然数,任取其中4个不同的数相加,可得到385个不同的和,
则这些自然数有________个.
7.在4 4方格网的每个小方格中都填有一个非零自然数,
每行、每列及每条对角线上的4个数之积都相等.右图给
出了几个所填的数,那么五角星所在的小方格中所填的数是
________.
8.甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速
度是3米/秒.若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇________次(端点除外).
二、简答题(每小题15分,共60分,要求写出简要过程)
9.右图中有一个边长为6厘米的正方形ABCD与一个斜边
长为8 厘米的等腰直角三角形AEF, E在AB的延长线上,
则图中阴影部分的面积为多少平方厘米?
10.有10个两两不同的自然数,其中任意5个的乘积是偶数,全部10个数的
和是奇数.则这10个自然数的和最小是多少?
11.在1到200这200个自然数中任意选数,至少要选出多少个才能确保其
中必有2个数的乘积等于238?
12.最初,盒子中有三张卡片,分别写着数1, 2, 3.每次,从盒子里取出两张卡片,
将上面的数之和写到另一张空白卡片上,再把三张卡片放回盒子.如此5次后,除了最后一张写数的卡片外,其它的卡片都至少取出过一次,不超过两次.
问:此时盒子里面卡片上的数最大为多少?
第二十一届华罗庚金杯少年数学邀请赛决赛试题答案(小学中年级组)
第二十一届华罗庚金杯少年数学邀请赛
决赛试题A参考答案
(小学中年级组)
一、填空(每题10分,共80分)
题号 1 2 3 4 5 6 7 8 答案 1 48 4095 69 7 100 1 23
二、解答下列各题(每题15分,共60分,要求写出简要过程)
3.【答案】22平方厘米
4.【答案】51
5.【答案】198
6.【答案】28。

相关文档
最新文档