超高强度钢应用.

合集下载

超高强度钢材钢结构的工程应用

超高强度钢材钢结构的工程应用

超高强度钢材钢结构的工程应用【摘要】超高强度钢材在我国钢结构工程中有着比较广泛的应用,为了分析可行性,笔者对超高强度钢材的品种、化学成分以及力学性能进行了分析。

研究结果表明,和普通钢材相比,超高强度钢材具有明显的优势。

本文对超高强度钢材钢结构的工程应用进行分析和研究。

【关键词】超高强度钢材;钢结构;工程应用钢结构自使用以来,其的发展和特性以及生产工艺有着密切的联系。

钢材料在不断的被改进,因此其承载力、经济性能以及使用性能得到了大范围的提高。

近些年来,新的钢材生产让钢材的强度以及加工性能得到大幅度的提高。

此外,焊接技术以及延性的焊缝金属材料技术都已经比较成熟。

因此,超高强度钢材的使用越来越成为可能。

1 超高强度钢材材料性能我国到目前为止还没有生产建筑结构使用的超高强度钢材。

我们可以参考欧洲的规范,即Nl0025—6。

淬火和回火处理是超高强度结构钢材的必经阶段,其强度特性可以在表1中看到。

我们可以对表1中的超高强度结构钢材进行分类,依据是钢材材料的冲击韧性,最终将其划分为三个级别,分别是:Q、QL以及QL1(见表2)。

另外,我们可以在表3中看到超高强度结构钢材的化学成分(%)。

,其中不难发现这些化学成分可以让钢材有良好的焊接性能,因此可以有效的进行加工制作,钢结构构件就形成了。

表1 超高强度钢材的力学特征等级最低屈服强度抗拉强度最小伸长率根据厚度分类根据厚度分类3-50 50-100 100-150 3-50 50-100 100-150S460 460 440 440 550-720 550-720 500-670 17S500 500 480 440 590-770 590-770 540-770 17S550 550 530 490 640-820 640-820 590-770 16S620 620 590 560 700-890 700-890 650-830 15S690 690 650 630 770-940 760-930 710-940 14S890 890 830 - 940-1100 880-1100 - 11 S960 960 - - 980-1150 - - 10表2 高强度结构钢材的最小冲击功要求(单位:J)级别试验温度/°C0 -20 -40 -60Q 30 27 - -QL 35 30 27 -QL1 40 35 30 27表3 超高强度结构钢材的化学成分(%)。

低合金超高强度钢性能及应用

低合金超高强度钢性能及应用

牌号:35CrMnSiA
标准:GB/T 3077-1988
一性能及:
35CrMnSiA是低合金超高强度钢,热处理后具有良好的综合力学性能,高强度,足够的韧性,淬透性、焊接性(焊前预热)、加工成形性均较好,但耐蚀性和抗氧化性能低,一般是低温回火或等温淬火后使用。

二:应用:
1主要用作重负荷、中等速度、高强度、高韧性的零件及高强度构件,如高压鼓风机叶轮,飞机上的起落架等,
2在一般机械制造中,可部分替代相应的铬钼或者镍铬钢,制造中、小截面的重要零件。

三化学成份:
碳 C :0.32~0.39
硅 Si:1.10~1.40
锰 Mn:0.80~1.10
铬 Cr:1.10~1.40
四力学性能:
抗拉强度σb (MPa):≥1620(165)
屈服强度σs (MPa):≥1275(130)
伸长率δ5 (%):≥9
断面收缩率ψ (%):≥40
冲击功 Akv (J):≥31
冲击韧性值αkv (J/cm2):≥39(4)
硬度:≤241HB
五热处理规范:
(1)淬火:第一次950℃,第二次890℃,油冷;回火230℃,空冷、油冷;
(2)880℃于280~310℃等温
六交货状态:
以热处理(正火、退火或高温回火)或不热处理状态交货,交货状态应在合同中注明。

高强度钢材在建筑工程中的应用

高强度钢材在建筑工程中的应用

欧美国家以及日本,对高强度钢材的发展及应用均十分重视,像欧洲的建筑用高强度钢材规范EN10025-6,给出了高强度钢材的力学性能,化学成份以及冲击韧性等,从而保证钢材具有良好的焊接性能也为其他工程中开阔了畅通的道路。

例如:1,索尼中心(Sony Center)德国柏林索尼中心大楼(Sony Center)(图)为了保护已有的一个砌体结构建物,将大楼的一部分楼层悬挂在屋顶桁架上。

屋顶桁架跨度60m,高12m,其杆件用600mm×100mm矩形实心截面,采用了S460和S690钢材(强度标准值460MPa和690MPa),以尽可能减小构件截面。

2,Latitude大厦Latitude大厦(图)位于澳大利亚悉尼中心区的世界广场(World Square),2005年建成,55层。

由于场地上已有一个部分完成的建筑物,如果在既有建筑物顶部增建新结构,则需要对原有的柱子进行加固。

出于经济效益的考虑,为了尽快完工,结构工程师在第16层采用7m高的钢结构转换层将荷载从新增结构的柱子传到既有建筑物上。

在转换层的钢结构中,采用了16mm厚的Bisplate80(690MPa)钢板,以减小结构重量。

日本是一个多地震国家,在钢材的使用上一方面开发高强度钢材,也希望在地震时钢材通过塑性变形,吸引一部分地震能量。

因此,从60年代,高强度钢迅速发展,除了强度外,还要有良好的抗震性能——塑性变形能力,抗裂性,焊接性等等,例如使用500Mpa,600Mpa级高强度钢:为了满足上述低屈强比和可焊性,日本一些钢铁公司在钢材生产中调整了化学成分,利用计算机严格控制轧制过程中的温度和冷却时的速度,生产了被称为TMCP的高强度低屈强度建筑用钢(见表1),该钢与先前的JIS规格材相比,有明显的差别,它对屈强比(YR),碳当量(Ceq),焊接裂缝致敏性(Pcm)作了新的限制性规定,表2列出了日本各大钢铁公司生产TMCP钢板的共同保证值。

钢铁行业高强度钢

钢铁行业高强度钢

钢铁行业高强度钢钢铁行业一直是中国制造业的重要支柱之一,而高强度钢的应用则成为该行业的重要发展方向。

本文将探讨钢铁行业中高强度钢的定义、应用领域、优势以及未来的发展趋势。

一、高强度钢的定义高强度钢是指抗拉强度超过400MPa的钢材,相较于传统的普通钢,高强度钢具有更优异的力学性能和耐腐蚀性。

其主要特点包括高强度、高韧性、高耐磨性以及轻质化等。

二、高强度钢的应用领域1. 汽车制造业高强度钢材在汽车制造业中应用广泛。

由于高强度钢具有优异的冲击吸能性能和轻质化特点,可大幅降低汽车车身重量,提高燃油效率,同时还能提供更高的安全性能。

2. 建筑行业高强度钢在建筑行业中的应用也越来越普遍。

其能够提供更高的抗震性能和承载能力,使得建筑物更加坚固稳定。

此外,高强度钢还可以减少建筑材料的使用量,实现节能减排的目标。

3. 船舶制造业作为一种轻质高强度的材料,高强度钢非常适合用于船舶制造。

它能够提高船体的承载能力,降低燃油消耗,同时还可以减少船舶自重,提高运载效益。

4. 能源领域高强度钢在能源领域中也有着广泛的应用。

例如,在风力发电机组中,高强度钢可以减轻整个设备的重量,并提高风能的转化效率。

三、高强度钢的优势1. 重量轻相比于传统钢材,高强度钢具有更高的强度和硬度,但相对密度较低,所以整体重量更轻。

这一特点使得高强度钢在提高载重能力的同时,能够减少材料的使用量和燃料消耗。

2. 抗腐蚀高强度钢具有较好的耐腐蚀性能,可以在恶劣的环境条件下使用。

这使得高强度钢在海洋工程和化工设备等领域具有广泛应用前景。

3. 冲击吸能能力强高强度钢的冲击吸能能力较强,可以有效地吸收冲击能量,在发生事故时保护人员和设备的安全。

四、高强度钢的未来发展趋势1. 新材料研发随着科学技术的不断进步,高强度钢的研发仍在不断推进。

未来,可能会有更多种类的高强度钢投入到实际应用中,以满足不同领域的需求。

2. 轻量化设计随着环保意识的日益增强,轻量化设计已成为制造业的重要方向。

高强度钢筋在施工中的应用与注意事项

高强度钢筋在施工中的应用与注意事项

高强度钢筋在施工中的应用与注意事项引言:高强度钢筋作为一种新型建筑材料,在现代工程施工中扮演着重要的角色。

其具备优异的力学性能和高耐久性,因此被广泛应用于桥梁、隧道、高层建筑等工程中。

然而,在使用高强度钢筋的过程中,也存在一些需要特别关注的问题。

本文将简要介绍高强度钢筋的应用情况,并重点讨论其施工中需要注意的事项。

一、高强度钢筋的应用情况:高强度钢筋由于其强度和抗拉性能突出,广泛应用于各类工程中。

以桥梁工程为例,高强度钢筋能够帮助增加桥梁的承载能力,减小结构自重,提高抗震性能。

此外,高强度钢筋还被用于高层建筑的纵向和横向钢筋接头,以提高建筑的整体受力性能。

在隧道工程中,高强度钢筋的应用能够提高隧道的挤压和剪切承载能力,以确保隧道的安全性和稳定性。

因此,高强度钢筋在工程中的应用前景广阔。

二、高强度钢筋施工的注意事项:1. 钢筋杆件运输和存放在高强度钢筋施工的初期阶段,钢筋杆件需要进行运输和存放。

在运输过程中,要注意避免碰撞和摩擦,以防止钢筋表面受损。

在存放阶段,应选择平整的地面,防止钢筋弯曲或受潮。

同时,为了避免钢筋杆件交叉叠放导致的形变,应进行适当的间隔和支撑。

2. 钢筋连接和焊接高强度钢筋的连接和焊接是施工中的关键环节。

要确保连接的牢固性和焊接质量,必须按照相关规范和要求进行操作。

在连接钢筋时,应清除钢筋表面的锈蚀和污染物,使用专用钢筋连接器,确保连接的可靠性。

在焊接过程中,要控制好焊接电流和时间,避免过热引起的质量问题。

3. 钢筋的预埋和固定在一些工程中,需要实施钢筋预埋和固定。

在预埋过程中,要准确测量和布置好位置,控制好预埋深度和间距。

在固定过程中,可采用焊接、锚固等方式,确保钢筋与混凝土的紧密连接,提高结构的整体强度和稳定性。

4. 钢筋的防腐处理高强度钢筋的抗腐蚀性能较弱,因此需要进行防腐处理。

常见的防腐方法有涂刷防腐漆、涂覆防腐膜、封闭式保护等。

在选择防腐方法时,要考虑工程的使用环境和要求,确保钢筋的耐久性和安全性。

各级钢筋的特性及应用

各级钢筋的特性及应用

各级钢筋的特性及应用钢筋是混凝土结构中常用的一种钢材。

根据其不同的强度和形状,可以分为多个级别。

不同级别的钢筋具有不同的特性和应用。

下面将详细介绍各级钢筋的特性及应用。

一、普通钢筋(HRB335、HRB400)普通钢筋是最常见的一种钢筋,也是按照国家标准生产的。

其主要特性如下:1. 高强度:普通钢筋的屈服强度范围为335MPa到400MPa。

较高的强度可以使得结构承受更大的负荷和外力。

2. 良好的可焊性:普通钢筋具有良好的可焊性,可以通过焊接技术将钢筋连接在一起。

3. 良好的可加工性:普通钢筋容易加工和弯曲,可以满足不同结构形式的需求。

4. 适宜的耐候性:普通钢筋在正常环境下具有较好的耐候性,不易受到腐蚀和氧化。

普通钢筋的应用范围广泛,适用于大多数建筑工程和基础设施项目。

比如桥梁、厂房、水利工程、地下工程等。

二、低合金高强度钢筋(HRB500)低合金高强度钢筋是一种具有更高屈服强度和更好耐久性的钢筋,其主要特性如下:1. 超高强度:低合金高强度钢筋的屈服强度在500MPa及以上,比普通钢筋更高。

2. 良好的延展性:低合金高强度钢筋具有较好的延展性,能够在受力时发生一定的塑性变形,为结构提供更好的韧性。

3. 良好的耐久性:低合金高强度钢筋具有更好的抗腐蚀性和耐久性,可以在恶劣环境下使用。

低合金高强度钢筋适用于需要额外强度支持的工程,比如高层建筑、大跨度桥梁、特殊用途设施等。

三、螺纹钢筋(HRB400E、HRB500E)螺纹钢筋是在普通钢筋的基础上通过轧制和冷却等工艺制造出的一种钢筋,其表面具有螺纹状凸起,主要特性如下:1. 良好的粘结性:螺纹钢筋的螺纹可以与混凝土更好地粘结在一起,提高结构的整体力学性能。

2. 较高的抗剪性能:螺纹钢筋在受到剪力作用时,由于其螺纹与混凝土牢固连接,可以提供更高的抗剪能力。

3. 易于施工:螺纹钢筋可以通过螺纹连接装配,更容易施工,提高工作效率。

螺纹钢筋广泛应用于混凝土结构中,特别是需要更好粘结性和抗剪性能的工程项目。

高强度钢材应用技术优点

高强度钢材应用技术优点

高强度钢材应用技术优点
高强度钢材具有许多应用技术优点,这些优点使得它们在各个领域得到广泛应用。

以下是几个主要的技术优点:
1. 高强度:高强度钢材的抗拉强度和屈服强度较高,相比于传统钢材,可以使用更轻量化的结构设计,减少材料用量和重量。

这在汽车、航空航天、桥梁和建筑等领域具有重要意义,可以实现更高的载荷和更大的跨度。

2. 良好的成型性:高强度钢材具有良好的可塑性和延展性,可进行复杂的成型工艺,如冲压、弯曲、拉伸和深冲等。

这使得高强度钢材适用于复杂形状的零部件制造,提供更多的设计自由度。

3. 耐蚀性:高强度钢材通常具有良好的耐蚀性,可以通过添加合金元素或特殊表面处理来提高其耐腐蚀性能。

这使得高强度钢材在海洋、化工、石油和天然气等恶劣环境下的应用更为可靠。

4. 减少结构厚度:由于高强度钢材具有较高的抗拉强度和屈服强度,相同承载能力的结构可以使用更薄的材料来实现。

这不仅降低了成本,还减少了结构的重量和体积,提高了结构的整体效率。

5. 可焊接性:高强度钢材通常具有良好的焊接性能,可以通过传统的焊接和连接技术进行加工和组装。

这使得高强度钢材更容易与其他材料结合,适用于多材料组合结构的应用。

综上所述,高强度钢材的应用技术优点包括高强度、良好的成型性、耐蚀性、减少结构厚度和可焊接性。

这些优点使得高强度钢材成为各个行业中的理想选择,推动了结构设计和制造领域的发展。

超高强度钢材钢结构的工程应用分析

超高强度钢材钢结构的工程应用分析

2018年24期应用科技科技创新与应用Technology Innovation and Application超高强度钢材钢结构的工程应用分析韩振华,黄双喜(华商国际工程有限公司,北京100069)自钢结构出现以来,其发展与生产工艺、材料性能有直接关系,在应用中也不断改善,使钢结构的使用性能、承载力及经济性能得到提升,促使钢结构快速发展。

近年来,随着工艺技术的发展,钢材的加工性能及强度都极大提升,所匹配的超高强度钢材在韧性、延性及强度等方面的焊接技术、焊缝金属材料也日渐成熟,满足加工制作需求,使得钢结构施工中对超高强度钢材的应用效果得到不断提升。

1超高强度钢材材料性能上世纪40年代中期,超高强度钢材出现,由淬火与低温回火技术生产而来的高强度钢材,抗拉强度达到1900MPa ,且随着技术的发展,其性能不断得到提升[1]。

上世纪50年代,我国超高强度钢材出现。

根据冲击韧性的不同,将超高强度钢材可分为三个级别:Q 、QL 、QL1,详见表1:表1超高强度钢材最小冲击功要求(J )从超高强度钢材的化学成分来看,不同级别钢材,在硅、碳、锰、硼、氮、镍等成分含量上无较大差异,而在硫和磷的含量上,差异性较大。

随着冲击韧性的增强,磷的含量逐渐降低,而硫的含量逐渐升高。

在低温环境下,超高强度钢材仍然可抵御一定的冲击,从相关试验结果来看,在0℃环境下,Q 级超高强度钢材最小冲击功为30J ,QL 级为35J ,QL1级为40J 。

而不同级别钢材在保持性能一样时的最低温度极限也不同,Q 级为-20℃、QL 基为-40℃、QL1级为-60℃。

2超高强度钢材钢结构的优势研究显示,轴心受压条件相同时,超高强度钢材钢柱的整体极限承载达到稳定状态时,其稳定性系数(极限应力与屈服强度比值)比普通强度钢材钢柱同等截面与长度下要高出很多,主要是由于构件的初始缺陷对超高强度钢材钢柱的影响非常小[2]。

关于初始缺陷的影响,相关研究显示,在几何初始缺陷相同的条件下,计算与对比235MPa 和690MPa 两种H 型截面轴心受压钢柱的整体稳定承载力,显示690MPa 超高强度钢材的整体稳定系数更大,即强度更高[3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高强度钢不仅具有高的抗拉强度, 还具有一定塑性和韧性、小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等优点,在航空工业的应用越来越广泛。

我国在高性能材料的研究上与国外相比还比较落后, 目前各型国产飞机的承力构件大部分以 30CrMnSiA 等低合金高强度钢为主体材料,超高强度钢较少,在超高强度钢结构件的制造技术方面更显薄弱, 针对这些新型材料的高效加工技术有必要进行研究。

国内的新研机型中超高强度钢结构件的数量逐年增多, 尤其是某型机的襟翼主滑轨 , 结构相当复杂,尺寸公差要求相当严格。

国外先进飞机的主承力构件大量使用了超钢强度钢, 如美国的军机和主要民航飞机的起落架材料都广泛的应用, F-15、 F-16、 DC-10、 MD-11 等军用战斗机都采用了超高强度钢, 此外波音 747 等民用飞机的起落架及波音 767 飞机机翼的襟翼滑轨、缝翼管道等也采用超钢强度钢制造。

超高强度钢具有刀具易磨损、切削力大、断屑困难等加工特点。

为适应新材料的迅速广泛应用, 国外发达国家在零件加工参数、加工冷却、变形控制、刀具寿命、加工设备等方面进行大量的研究和试验, 积累了超高强度钢结构件的加工技术和经验, 建立了超高强度钢的加工工艺知识数据库和切削参数数据库, 规范了各种技术资料, 拥有配套的加工刀具和设备, 实现了超高强度钢结构件的高效加工, 保证产品的质量, 切削参数基本实现最优化状态,充分发挥了设备、刀具的最大潜力。

随着我国超高强度钢应用比例的不断加大, 国内科研院所对其高效加工进行了不同程度的研究。

然而在超高强度钢结构件切削参数选择、工艺方法制定、高效加工等方面没有行成系统的工艺知识库和典型规范来指导企业生产, 直接导致超高强度钢结构件加工周期长、效率低、加工质量不稳定的现状。

相关文档
最新文档