教案图论31精品PPT课件
合集下载
离散数学——图论PPT课件

第19页/共93页
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
图论课件-PPT课件

学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c
图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。
图论基础知识PPT课件

.
6
图论算法与实现
一、图论基础知识
2、图的基本概念:
连通图:如果一个无向图中,任意两个顶点之间
都是连通的,则称该无向图为连通图。否则称为非连通图;左图为一个连通图。
强连通图:在一个有向图中,对于任意两个顶点U和V,都存在着一条从U到V的
有向路径,同时也存在着一条从V到U的有向路径,则称该有向图为强连通图;右 图不是一个强连通图。
深度优先遍历与宽度优先遍历的比较:
深度优先遍历实际上是尽可能地走“顶点表”; 而广度优先遍历是尽可能沿顶点的“边表”进行访问, 然后再沿边表对应顶点的边表进行访问,因此,有关边表 的顶点需要保存(用队列,先进先出),以便进一步进行广度 优先遍历。
下面是广度优先遍历的过程:
.
14
图论算法与实现
一、图论基础知识
简单路径:如果一条路径上的顶点除了起点和终点可以相同外,其它 顶点均不相同,则称此路径为一条简单路径;起点和终点 相同的简单路径称为回路(或环)。
.
4
图论算法与实现
一、图论基础知识
2、图的基本概念:
路径和简单路径的举例:
左图1—2—3是一条简单路径,长度为2, 而1—3—4—1—3就不是简单路径;
一、图论基础知识
2、图的基本概念: 路径:对于图G=(V,E),对于顶点a、b,如果存在一些顶点序列
x1=a,x2,……,xk=b(k>1),且(xi,xi+1)∈E,i=1,2…k-1,则称 顶点序列x1,x2,……,xk为顶点a到顶点b的一条路径,而路径上边 的数目(即k-1)称为该路径的长度。 并称顶点集合{x1,x2,……,xk}为一个连通集。
边集数组
邻接表
优点
图论的介绍ppt课件

chedules
工程项目的任务安排,如何满足限制条件,并在最短时 间内完成?
Program structure
大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
Graph Applications
Graph Problems and Algorithms
图论的介绍ppt课件
欧拉路径 解決哥尼斯保七桥问題
原來是一笔画问题啊!
数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡 七桥问题无解,并且由此开创了图论的典型思维方式及论证方式
实际生活中的图论 Graph Model
电路模拟
例:Pspice、Cadence、ADS…..
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
哈密頓路径至今尚无有效方法來解決!
最短路径问題
(Shortest Path Problem)
最快的routing
最快航線
B 2
1
E
3
A
C 1
3 2F
1
3
D
3 3
G
最短路径算法Dijkstra算 法
二分图(偶图) Bipartite graphs
A graph that can be decomposed into two partite sets but not fewer is bipartite
It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa
工程项目的任务安排,如何满足限制条件,并在最短时 间内完成?
Program structure
大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
Graph Applications
Graph Problems and Algorithms
图论的介绍ppt课件
欧拉路径 解決哥尼斯保七桥问題
原來是一笔画问题啊!
数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡 七桥问题无解,并且由此开创了图论的典型思维方式及论证方式
实际生活中的图论 Graph Model
电路模拟
例:Pspice、Cadence、ADS…..
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
哈密頓路径至今尚无有效方法來解決!
最短路径问題
(Shortest Path Problem)
最快的routing
最快航線
B 2
1
E
3
A
C 1
3 2F
1
3
D
3 3
G
最短路径算法Dijkstra算 法
二分图(偶图) Bipartite graphs
A graph that can be decomposed into two partite sets but not fewer is bipartite
It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa
图论PPT

W (P) =
e∈ ( P) W (P
∑W(e)
则称W 为路径P(u, v) 的权或长度(距离). 长度(距离) 则称 (P)为路径 为路径 定义2:若P0 (u, v) 是G 中连接u, v的路径 且对任 定义 : 中连接 的路径, 的路径 意在G 中连接u, 的路径 的路径P 意在 中连接 v的路径 (u, v)都有 都有 W(P0)≤W(P), ≤ 则称P 中连接u, 的最短路. 则称 0 (u, v) 是G 中连接 v的最短路
解:
表示设备在第i 年年初的购买费, 设bi 表示设备在第 年年初的购买费 ci 表示设备使用 年后的维修费 表示设备使用i 年后的维修费, V={v1, v2, … , v6},点vi表示第 年年 表示第i 点 表示第 初购进一台新设备,虚设一个点 虚设一个点v6表 初购进一台新设备 虚设一个点 表 示第5年年底 年年底. 示第 年年底 E ={vivj | 1≤i<j≤6}. <
如果E的每一条边都是无向边 则称G为 如果 的每一条边都是无向边, 则称 为无向 的每一条边都是无向边 如图1) 如果E的每一条边都是有向边 1); 的每一条边都是有向边, 图(如图1) 如果 的每一条边都是有向边 则称 G为有向图(如图2) 否则 称G为混合图 2); 为有向图(如图2) 否则, 为混合图.
图论在数学建模中的应用
• • • • 第一部分 第二部分 第三部分 第四部分概念
图论中的“ 图论中的“图”并不是通常意义下的几何图 形或物体的形状图, 形或物体的形状图, 而是以一种抽象的形式来表 达一些确定的事物之间的联系的一个数学系统. 达一些确定的事物之间的联系的一个数学系统. 称为一个图, 定义1 :一个有序二元组 一个有序二元组( 定义1 :一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中 的顶点集, 其元素称为顶点, ① V 称为G的顶点集, V≠φ, 其元素称为顶点, 简称点; 简称点; 的边集, 其元素称为边, ② E 称为G的边集, 其元素称为边, 它联结V 中的两个点, 如果这两个点是无序的, 中的两个点, 如果这两个点是无序的, 则称该边 为无向边, 否则, 称为有向边. 为无向边, 否则, 称为有向边.
《图论的介绍》课件

添加副标题
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深
入
技术发展:图 论与机器学习、 深度学习等技 术的结合越来
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深
入
技术发展:图 论与机器学习、 深度学习等技 术的结合越来
运筹学--图论 ppt课件
4
5
4 9 8
v1
v3
2
v6
[8,v2]
v8
5 33
1
[2,v1]
v4
v7
[10,v4]
33
Dijkstra算法示例1
3)迭代计算(c)—更新与永久标号节点v2相连的节 (d2+w25=3+7=)10< ∞ (=d5) 点的临时标号。
[3,v1]
v2
[0,-]
7
v5
[10,v2]
2 [+∞,v1] 6
v4
v7
[+∞,v1]
22
Dijkstra算法示例1
2)迭代计算(a)—从临时标号中找到距离上界dk最 小的节点v4,d4=min{dk},将其变换为永久编号。
[3,v1] [+∞,v1]
v2
[0,-]
7
v5
2 [+∞,v1] 6 1 2 [+∞,v1]
3
5 2 [5,v1]
4
5
4 9 8
v1
v3
最小树问题不一定有唯一解。
10
10
最小支撑树问题的解法
破圈法 算法
初始化 将图G的边按权值从大到小的次序排列,从 原图开始迭代; 迭代
第1步(删边) 从排列中顺序选择一条与图中剩余边构成圈 的边,则将此边从图中删除,进入第2步(结束判断); 第2步(结束判断) 若图中剩下n-1条边,则已经得到最小支 撑树;否则,进入下一轮迭代,返回第1步(加边);
柯尼斯堡七桥问题
柯尼斯堡市区横跨普雷格尔河两岸,在河中心有两 个小岛。小岛的两岸共有七座桥将岛与岛、岛与河 岸连接起来。一个人怎样才能一次走遍七座桥,每 座桥只走过一次,并最后回到出发点?
图论课件有向图32页PPT
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
•
Байду номын сангаас
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
图论课件有向图
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
•
Байду номын сангаас
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
图论课件有向图
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
(图论)图的基本概念(课堂PPT)
15
图的度数的相关概念
在无向图G中, 最大度 △(G)=max{d(v)|v∈V(G)} 最小度 δ(G)=min{d(v)|v∈V(G)}
称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边。 度为偶数(奇数)的顶点称为偶度(奇度)顶点。
在有向图D中, 最大出度 △+(D)=max{d+(v)|v∈V(D)} 最小出度 δ+(D)=min{d+(v)|v∈V(D)} 最大入度 △-(D)=max{d-(v)|v∈V(D)} 最小入度 δ-(D)=min{d-(v)|v∈V(D)}
元素可以重复出现的集合称为多重集合或者多重集,某元 素重复出现的次数称为该元素的重复度。 例如 在多重集合{a,a,b,b,b,c,d}中, a,b,c,d的重复度分别为2,3,1,1。
4
笛卡尔积
设A,B为任意的两个集合,称{<a,b>|a∈A∧b∈B}为A与B 的笛卡尔积,记作AXB。 笛卡尔积中的是有序对<a,b>。只有a,b相等的时候才有 (a,b)=(b,a). 也只有A=B时才有AXB=BXA。
16
图的度数举例
d(v1)=4(注意,环提供2度), △=4,δ=1, v4是悬挂顶点,e7是悬挂边。
d+(a)=4,d-(a)=1 (环e1提供出度1,提供入度1),
d(a)=4+1=5。△=5,δ=3,
△+=4 (在a点达到)
δ+=0(在b点达到)
△-=3(在b点达到)
δ-=1(在a和c点达到)
例如:在图1.1中, (a)中e5与e6是平行边, (b)中e2与e3是平行边,但e6与e7不是平行边。 (a)和(b)两个图都不是简单图。
图的度数的相关概念
在无向图G中, 最大度 △(G)=max{d(v)|v∈V(G)} 最小度 δ(G)=min{d(v)|v∈V(G)}
称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边。 度为偶数(奇数)的顶点称为偶度(奇度)顶点。
在有向图D中, 最大出度 △+(D)=max{d+(v)|v∈V(D)} 最小出度 δ+(D)=min{d+(v)|v∈V(D)} 最大入度 △-(D)=max{d-(v)|v∈V(D)} 最小入度 δ-(D)=min{d-(v)|v∈V(D)}
元素可以重复出现的集合称为多重集合或者多重集,某元 素重复出现的次数称为该元素的重复度。 例如 在多重集合{a,a,b,b,b,c,d}中, a,b,c,d的重复度分别为2,3,1,1。
4
笛卡尔积
设A,B为任意的两个集合,称{<a,b>|a∈A∧b∈B}为A与B 的笛卡尔积,记作AXB。 笛卡尔积中的是有序对<a,b>。只有a,b相等的时候才有 (a,b)=(b,a). 也只有A=B时才有AXB=BXA。
16
图的度数举例
d(v1)=4(注意,环提供2度), △=4,δ=1, v4是悬挂顶点,e7是悬挂边。
d+(a)=4,d-(a)=1 (环e1提供出度1,提供入度1),
d(a)=4+1=5。△=5,δ=3,
△+=4 (在a点达到)
δ+=0(在b点达到)
△-=3(在b点达到)
δ-=1(在a和c点达到)
例如:在图1.1中, (a)中e5与e6是平行边, (b)中e2与e3是平行边,但e6与e7不是平行边。 (a)和(b)两个图都不是简单图。
图论课件-图的因子分解
对于同一个图,可能存在多种不同的因子分解,如何找到最优的因 子分解是一个挑战。
因子分解的应用场景
虽然图的因子分解在理论计算机科学中有广泛的应用,但在实际应 用中,如何将理论应用于实际问题仍需进一步探索。
未来可能的研究方向和挑战
寻找高效算法
01
未来研究的一个重要方向是寻找更高效的算法来解决图的因子
分解问题。
04
图的因子分解的应用
在计算机科学中的应用
计算机网络
图的因子分解可以用于优化路由算法,通过将网络分解为 若干个连通子图,可以更有效地进行路由选择和流量控制 。
并行计算
在并行计算中,图的因子分解可以用于任务分配,将一个 大任务分解为若干个小任务,并分配给不同的处理器执行 ,从而提高计算效率。
数据挖掘和机器学习
一个图,其中任意两个不 同的顶点之间都恰有一条 边相连。
空图
一个图,其中任意两个不 同的顶点之间都无边相连 。
图的因子分解的重要性
理论意义
图的因子分解是图论中的重要概 念,它有助于深入理解图的性质 和结构。
应用价值
图的因子分解在计算机科学、运 筹学、电子工程等领域有广泛的 应用,如网络设计、电路优化等 。
资源配置和调度。
金融风险管理
在金融风险管理中,图的因子分 解可以用于识别和评估风险因素 之间的关联关系,从而更好地进
行风险管理和控制。
在网络设计中的应用
01
社交网络分析
在构和群体关系,
从而更好地理解社交行为的模式和规律。
02 03
推荐系统
在推荐系统中,图的因子分解可以用于用户兴趣分析和物品关联推荐, 通过将用户和物品之间的关系进行分解和分析,可以更有效地进行个性 化推荐。
因子分解的应用场景
虽然图的因子分解在理论计算机科学中有广泛的应用,但在实际应 用中,如何将理论应用于实际问题仍需进一步探索。
未来可能的研究方向和挑战
寻找高效算法
01
未来研究的一个重要方向是寻找更高效的算法来解决图的因子
分解问题。
04
图的因子分解的应用
在计算机科学中的应用
计算机网络
图的因子分解可以用于优化路由算法,通过将网络分解为 若干个连通子图,可以更有效地进行路由选择和流量控制 。
并行计算
在并行计算中,图的因子分解可以用于任务分配,将一个 大任务分解为若干个小任务,并分配给不同的处理器执行 ,从而提高计算效率。
数据挖掘和机器学习
一个图,其中任意两个不 同的顶点之间都恰有一条 边相连。
空图
一个图,其中任意两个不 同的顶点之间都无边相连 。
图的因子分解的重要性
理论意义
图的因子分解是图论中的重要概 念,它有助于深入理解图的性质 和结构。
应用价值
图的因子分解在计算机科学、运 筹学、电子工程等领域有广泛的 应用,如网络设计、电路优化等 。
资源配置和调度。
金融风险管理
在金融风险管理中,图的因子分 解可以用于识别和评估风险因素 之间的关联关系,从而更好地进
行风险管理和控制。
在网络设计中的应用
01
社交网络分析
在构和群体关系,
从而更好地理解社交行为的模式和规律。
02 03
推荐系统
在推荐系统中,图的因子分解可以用于用户兴趣分析和物品关联推荐, 通过将用户和物品之间的关系进行分解和分析,可以更有效地进行个性 化推荐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v6 2 v7 1,∞
4,11
1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
1, ∞
v9
6
3
3 4
10 4
v6 2 v7 1,∞
4,11
1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3
1,3
v3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
称P0是从vs到vt的最短路。路P0的权称为从vs到vt 的路长。记为ust。
二、Dijkstra算法 当所有 wij ≥0 时,本算法是用来求给定点vs到
任一个点vj 最短路的公认的最好方法。
事实:如果P是D中从vs到vj的最短路,vi是P中的一 个点,那么,从vs沿P到vi的路是从vs到 vi的最短路。
第三节 最短路问题
一、最短路问题
例 下图为单行线交通网,每弧旁的数字表示通过这条
线所需的费用。现在某人要从v1出发,通过这个交
v8去,求使总费用最小的旅行路线。
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
P1=P(vs,v1), P2=P(vs,v2),…, Pk=P(vs,vk)
记 X k v s ,v 1 ,v 2 ,.v k .,.X ,k V \X k
则 uk1m vi X k iuin wvi(,v')
v' X k
使上式达到最小值的点v’ 可取为vk+1。 计算过程中可采用标号方法。 Xk中的点,ui 值是vs 到vi 的最短路长度,相应的 点记“永久”标号;
Xk\﹛vi﹜
如果Xk+1 =,结束,到所有的点的最短路已经求 得 ;否则,转第4步。
第4步:(修改临时标号) 对所有 vj Xk1如, 果 ui wijuj 令 i=i,uj=ui+wij否则, i,,uj 不变,把k换成k+1,
返回第2步。
例 用Dijkstra算法求前面例子中从v1到各点的最短路。
最短路的子路也是最短路。
思想:将D=(V,A,W)中vs到所有其它顶点的最短
路按其路长从小到大排列为:
u0≤ u1 ≤ u2 ≤…≤ un u0表示vs到自身的长度,相应最短路记为: P0,P1,P2,…,Pn,P1一定只有一条弧。
记X0vs, X0V\X0, 则 u1minwsi
viX0
取最小值的点为v1, ∴P1=P(vs,v1) 假定 u0,u1,…,uk的值已求出,对应的最短 路分别为
令wsj=+ , X0={vs} ,X0=V\X0 ,k=0, i=0 (0 ≤j≤n)
第2步:(选永久标号)在XK中选一点vi,满足
ui min uj 如果ui=+ ,停止, vj XK
从vs到XK中各点没有路;否则,转第3步。
第3步:(给点vi永久性标号) 令Xk+1= Xk∪﹛vi﹜,Xk+1=
1
2
从v1到v8: v4
10
4
v6 2 v7
v8
P1=(v1,v2,v5,v8)
费用 6+1+6=13
P2=(v1,v3,v4, v6, v7, v8) 费用 3+2+10+2+4=21
P3=从…v1到…v8的旅行路线
从v1到v8的路。
最短路问题中,不考虑有向环、并行弧。
旅行路线总费用
路上所有弧权之和。
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 1,56 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 13,5 1
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞4,111, ∞ Nhomakorabeav9
3 1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
1, ∞
v9
6
3
3 4
10 4
最短路问题
给定有向网络D=(V,A,W),任意弧aij∈A, 有权w( aij )=wij,给定D中的两个顶点vs,vt。设P
是D中从vs到vt的一条路,定义路P的权(长度)是P中 所有弧的权之和,记为w(P)。最短路问题就是要在 所有从vs到vt的路中,求一条路P0 ,使
w(P 0)m P iw n(P)
XK中的点,ui值是vs到vi的最短路长度的上界, 相应的点记“临时”标号,供进一步计算使用。
前点标号i : 表示点vs到vj的最短路上vj的前一点。 如i=m,表示vs到vj的最短路上vj前一点是vm。
图上标号法:
v2 1,6 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
1, ∞
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 1,6 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
1, ∞
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 1,6 1
6 2
v1
3 v3 1,3
0,0
1, ∞
v9
6
3
3 4
10 4
v6 2 v7 5,9
5,10
5,12
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
1, ∞
v9
6
3
3 4
10 4
v6 2 v7 5,9
5,10
5,12
v8
Dijkstra算法步骤:
第1步:令us= 0,uj=wsj (1≤j≤n)若asjA,则
v2 1
6 2
v5
2
v9
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
解:u1=0,u2=6,u3=3,u4=1,u5=u6=u7=u8=u9=+ ,
j=1 (j=2,3,…,9)
X0={v1} ,X0={v2,v3,…,v9}
4,11
1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
1, ∞
v9
6
3
3 4
10 4
v6 2 v7 1,∞
4,11
1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3
1,3
v3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
称P0是从vs到vt的最短路。路P0的权称为从vs到vt 的路长。记为ust。
二、Dijkstra算法 当所有 wij ≥0 时,本算法是用来求给定点vs到
任一个点vj 最短路的公认的最好方法。
事实:如果P是D中从vs到vj的最短路,vi是P中的一 个点,那么,从vs沿P到vi的路是从vs到 vi的最短路。
第三节 最短路问题
一、最短路问题
例 下图为单行线交通网,每弧旁的数字表示通过这条
线所需的费用。现在某人要从v1出发,通过这个交
v8去,求使总费用最小的旅行路线。
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
P1=P(vs,v1), P2=P(vs,v2),…, Pk=P(vs,vk)
记 X k v s ,v 1 ,v 2 ,.v k .,.X ,k V \X k
则 uk1m vi X k iuin wvi(,v')
v' X k
使上式达到最小值的点v’ 可取为vk+1。 计算过程中可采用标号方法。 Xk中的点,ui 值是vs 到vi 的最短路长度,相应的 点记“永久”标号;
Xk\﹛vi﹜
如果Xk+1 =,结束,到所有的点的最短路已经求 得 ;否则,转第4步。
第4步:(修改临时标号) 对所有 vj Xk1如, 果 ui wijuj 令 i=i,uj=ui+wij否则, i,,uj 不变,把k换成k+1,
返回第2步。
例 用Dijkstra算法求前面例子中从v1到各点的最短路。
最短路的子路也是最短路。
思想:将D=(V,A,W)中vs到所有其它顶点的最短
路按其路长从小到大排列为:
u0≤ u1 ≤ u2 ≤…≤ un u0表示vs到自身的长度,相应最短路记为: P0,P1,P2,…,Pn,P1一定只有一条弧。
记X0vs, X0V\X0, 则 u1minwsi
viX0
取最小值的点为v1, ∴P1=P(vs,v1) 假定 u0,u1,…,uk的值已求出,对应的最短 路分别为
令wsj=+ , X0={vs} ,X0=V\X0 ,k=0, i=0 (0 ≤j≤n)
第2步:(选永久标号)在XK中选一点vi,满足
ui min uj 如果ui=+ ,停止, vj XK
从vs到XK中各点没有路;否则,转第3步。
第3步:(给点vi永久性标号) 令Xk+1= Xk∪﹛vi﹜,Xk+1=
1
2
从v1到v8: v4
10
4
v6 2 v7
v8
P1=(v1,v2,v5,v8)
费用 6+1+6=13
P2=(v1,v3,v4, v6, v7, v8) 费用 3+2+10+2+4=21
P3=从…v1到…v8的旅行路线
从v1到v8的路。
最短路问题中,不考虑有向环、并行弧。
旅行路线总费用
路上所有弧权之和。
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 1,56 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
4,11
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 13,5 1
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞4,111, ∞ Nhomakorabeav9
3 1, ∞
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
1, ∞
v9
6
3
3 4
10 4
最短路问题
给定有向网络D=(V,A,W),任意弧aij∈A, 有权w( aij )=wij,给定D中的两个顶点vs,vt。设P
是D中从vs到vt的一条路,定义路P的权(长度)是P中 所有弧的权之和,记为w(P)。最短路问题就是要在 所有从vs到vt的路中,求一条路P0 ,使
w(P 0)m P iw n(P)
XK中的点,ui值是vs到vi的最短路长度的上界, 相应的点记“临时”标号,供进一步计算使用。
前点标号i : 表示点vs到vj的最短路上vj的前一点。 如i=m,表示vs到vj的最短路上vj前一点是vm。
图上标号法:
v2 1,6 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
1, ∞
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 1,6 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
1, ∞
1, ∞
v9 1, ∞
3 1, ∞
v8
图上标号法:
v2 1,6 1
6 2
v1
3 v3 1,3
0,0
1, ∞
v9
6
3
3 4
10 4
v6 2 v7 5,9
5,10
5,12
v8
图上标号法:
v2 3,5 1
6 2
v1
3 v3 1,3
0,0
6
1
2
10
v4
1,1
v5 2,6 2
1, ∞
v9
6
3
3 4
10 4
v6 2 v7 5,9
5,10
5,12
v8
Dijkstra算法步骤:
第1步:令us= 0,uj=wsj (1≤j≤n)若asjA,则
v2 1
6 2
v5
2
v9
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
解:u1=0,u2=6,u3=3,u4=1,u5=u6=u7=u8=u9=+ ,
j=1 (j=2,3,…,9)
X0={v1} ,X0={v2,v3,…,v9}