数学建模论文设计《学科评价与衡量模型》
数学建模评价类模型

数学建模评价类模型
数学建模评价类模型是指针对数学建模的模型进行评估的方法,是模型评价的一种重要方式。
传统的数学建模评价类模型一般由模型准确度、模型耗费以及模型质量三方面评价。
首先,模型准确度是评价模型质量的基础,是模型评价比较重要的指标之一。
它反映了模型拟合现实情况的精确程度,是选择和调整模型的关键点。
一般需要衡量模型的真实性和拟合度。
真实性测量模型的准确性,评价模型的输出能否真实反映现实情况;拟合度测量模型的契合度,评价模型对输入变量的拟合程度有多好。
一般模型评价准确度可以用均方差、拟合指标、距离指标等指标来衡量。
其次,模型耗费是另一个重要的指标。
它考察了模型处理工作量大小,表示模型的计算消耗,可衡量模型计算效率的高低,具有重要的实际意义。
一般模型耗费可以用计算量指标衡量,也可以用算法的执行时间进行评价。
最后,模型质量是衡量模型优劣的一个重要指标,指的是模型与实际运用的效果。
模型质量可以用实际结果与模型给出结果之间的偏差来衡量,也可以用效率指标,如模型预测准确度、预测时效性、分类准确率等来评价。
数学建模评价模型方法

数学建模评价模型方法数学建模是运用数学方法对实际问题进行分析和求解的过程。
在数学建模中,评价模型方法是指对构建的数学模型进行评价,判断其优劣和可行性。
本文将介绍几种常用的数学建模评价模型方法。
一、模型的合理性评价模型的合理性评价是指对构建的数学模型是否合理、可行的评价。
主要包括以下几个方面:1.物理现象的还原性:模型能否从数学上还原出实际问题的主要特征和规律。
例如,对于物理问题,模型应能够描述物体的运动规律等。
2.参数的确定性:模型的参数是否能够通过实际观测或实验得到。
如果参数无法得到准确的数值,那么模型的可行性将受到质疑。
3.数学形式的合理性:模型的数学形式是否符合问题的特点和要求。
例如,对于动力系统问题,模型的微分方程形式是否合理。
4.结果的可解性:模型是否能够得到解,解的形式是否合理。
可解性是模型可行性的基础。
5.模型的稳定性:模型在参数或初始条件变化下的稳定性。
模型的稳定性是评价模型可行性的重要指标。
二、模型的精确性评价模型的精确性评价是指对构建的数学模型的精确程度进行评价,主要包括以下几个方面:1.近似程度:模型对实际问题的近似程度。
模型应能够在保持简洁性的前提下最大程度地还原实际问题的特点。
3.可靠性评价:模型结果的可靠性和可信度。
评价模型的可靠性可以通过对模型在不同数据集上的验证和对模型假设的检验来进行。
4.提升方法:对模型的改进方法和提高精确性的途径的研究。
模型可以通过引入更多的因素、扩大数据范围、改进算法等方法来提高精确性。
三、模型的应用评价模型的应用评价是指对构建的数学模型在实际应用中的可行性和效果进行评价,主要包括以下几个方面:1.模型的适应性:模型是否能够适应不同的实际问题和应用场景。
模型应具有一定的通用性和扩展性。
2.解决问题的有效性:模型是否能够解决实际问题,并提供可行的解决方案。
模型的应用性是评价其有效性的关键指标。
3.实际可操作性:模型的实际操作难度和成本。
模型的实际应用应该能够满足操作的简便性和成本的可控性。
数学建模评价模型

数学建模评价模型1.准确性评价:这是评估模型与实际数据的契合程度。
准确性评价可以通过计算模型预测结果与实际数据之间的差异来实现。
常见的准确性评价指标有均方根误差(RMSE)、平均绝对误差(MAE)等。
均方根误差是模型预测值与真实值之间的差值的均方根,平均绝对误差是模型预测值与真实值之间的差值的平均值。
准确性评价越小,则模型准确性越高。
2.可靠性评价:可靠性评价是评估模型在不同数据集上的稳定性。
通过将模型应用于不同的数据集,观察模型预测结果的变化情况,可以评估模型的可靠性。
常见的可靠性评价方法包括交叉验证和蒙特卡洛模拟。
交叉验证将数据集分为训练集和测试集,通过多次重复实验,观察模型预测结果的稳定性。
蒙特卡洛模拟则是通过随机生成不同数据集,观察模型预测结果的分布情况。
3.灵敏度分析:灵敏度分析是评估模型对输入参数变化的敏感性。
建模时,经常需要设定各种参数值,而不同参数值可能导致不同的结果。
灵敏度分析可以帮助确定哪些参数对模型输出的影响最大。
常见的灵敏度分析方法包括单因素灵敏度分析和多因素灵敏度分析。
单因素灵敏度分析是将一个参数保持不变,观察模型结果的变化情况。
多因素灵敏度分析则是将多个参数同时变化,并观察模型结果的变化情况。
4.适用性评价:适用性评价是评估模型在特定问题上的适用性。
不同的问题可能需要不同的数学模型,评价模型的适用性可以帮助确定模型是否适用于特定问题。
适用性评价可以通过将模型应用于类似的问题,并进行验证来实现。
在实施数学建模评价模型时,需要根据具体问题的特点和需求来选择合适的评价指标和方法。
同时,在建立数学模型之前,需要确定评价指标的合理范围,以便在评估结果时进行比较和判断。
总之,数学建模评价模型是一种用于评估数学建模结果的方法。
通过准确性评价、可靠性评价、灵敏度分析和适用性评价,可以评估模型的优劣、准确性和可靠性,为实际问题的解决提供参考。
数学建模综合评价与衡量方法(定)

所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值•例如,旅游景区质量等级有5A、4A、3A、2A 和1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1)极大型指标(又称为效益型指标)是指标值越大越好的指标;(2)极小型指标(又称为成本型指标)是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化围一般是(-10%,+5%)x标的价,超过此围的都将被淘汰,因此投标报价为区间型指标•投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷 等极小型指标则是希望取值越小越好;对于室温度、空气湿度等居中型指标是既不期望 取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必 须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同 的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标,将其转化为极大型指标时,只需对指标x 取倒数:jx'二丄,jxjx =M -x ,jjj其中M =max{x},即n 个评价对象第j 项指标值x..最大者.j 1<i<n 可IJ(2) 居中型指标化为极大型指标jj就可以将x 转化为极大型指标.j(3) 区间型指标化为极大型指标对区间型指标x ,x 是取值介于区间[a,b ]时为最好,指标值离该区间越远就越jjjj差.令M =max{x},m =min{x},c =max{a -m,M -b},取j1<i<n ijj1<i<n ijjjjjj对极小型指标xj或做平移变换:对居中型指标xj,令M =max{x}j1<i<n ij 2(x -m)jj —, M -m =V jj2(M -x)j—,M -m,m =min{x},取j1<i<n ijM +mm <x <—J j ;j J2M +m —J j <x <M.2jj就可以将区间型指标x 转化为极大型指标.j类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规化,是通过数学变换来消除原始指标的单位及其数 值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n个评价对象S,S,,S ,每个评价对象有m 个指标,其观测值分别为12nx(i=1,2,,n;j —1,2,,m).ij⑴标准样本变换法令••••••x —xx *—j (1<i <n ,1<j <m ).ijsj其中样本均值x -丄2x ,样本均方差s -£(x —x )2,x *称为标准观测值.jn ij j Vn ijjiji —11i —1特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(s —0)的情况不适用;对于要求指标评价值x *>0的评价方法(如jij 熵值法、几何加权平均法等)不适用.(2)线性比例变换法对于极大型指标,令xx *—j (max x 丰0,1<i<n ,1<j<m ). ijmax x 1<i<nij1对极小型指标,令minxx *—j(1<i <n,1<j <m). ij x或xx *=1-j —(maxx 丰0,1<i <n,1<j <m ).a -x 1——jjc j1,x —b 1——j jx <a;jja <x <b; jjjx >b.jj©maxx 1<i <n ij1<i <nij该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的x *=1和x *=0不一定同时出现.ijij特点:当x >0时,x *e[0,1];计算简便,并保留了相对排序关系.ijij(3)向量归一化法对于极大型指标,令优点:当x >0时,x *e[0,1],即£(x *)2=1•该方法使0<x *<1,且变换前ijij ij ij i =1后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令x -minxx *=ij ——1<i <n ij ——(1<i <n,1<j <m). ijmaxx -minx1<i <n ij 1<i <n ij对于极小型指标,令maxx -xx *=——_ij ij ——(1<i <m,1<j <n). ijmaxx -minx1<i <n ij 1<i <n ij其优点为经过极差变换后,均有0<x *<1,且最优指标值x *=1,最劣指标值ijijx *=0•该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(s =0)的情况ijj不适用.(5) 功效系数法令x -minxx *=c +—ij_i <i <n ij —x d (1<i <n ,1<j <m ). ijmax x -min x1<i <nij1<i <n ij其中c ,d 均为确定的常数.C 表示"平移量”,表示指标实际基础值,d 表示"旋转量”,即表示"放大”或“缩小”倍数,则x *e[c,c+d].ij通常取c =60,d =40,即xx对于极小型指标,令x *ijx-minxx*=60+—j_i<i<n j—x40(1<i<n,1<j<m).ij maxx-minx1<i<n ij1<i<n ij则x*实际基础值为60,最大值为100,即x*e[60,100].ijij特点:该方法可以看成更普遍意义下的一种极值处理法,取值围确定,最小值为c,最大值为c+d•3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等•对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化•一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0•对极大型和极小型定性指标常按以下方式赋值.(1)极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.030,5.0,7.0和9.0,对应关系如图8-2所示•介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很低低一般高很高01.03.05.07.09.010.0图8-2极大型定性指标量化方法(2)极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很高高一般低很低IIIIII I101.03.05.07.09.010.0模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法..隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.①以年龄为论域X,在论域X中取一固定样本点x=27.②设A*为论域X上随机变动的普通集合,A是青年人在X上以A*为弹性边界的模糊集,对A*的变动具有制约作用.其中xeA,或x电A,使得x对A的隶属关系000具有不确定性•然后进行模糊统计试验,若n次试验中覆盖x的次数为m,则称m为0n nx对于A的隶属频率.由于当试验次数n不断增大时,隶属频率趋于某一确定的常数,o该常数就是x属于A的隶属度,即m卩(x)=lim--.A0n*n比如在论域X中取x=27,选择若干合适人选,请他们写出各自认为青年人最适0宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n次试验中覆盖27岁的年龄区间的次数为m,则称m为27岁对于青年人的隶属频率,表8-4是抽样调查n统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到x=27o属于模糊集A的隶属度卩(27)=0.78.A③在论域X中适当的取若干个样本点x,x,,x,分别确定出其隶属度12n卩(x)(i=1,2,,n),建立适当坐标系,描点连线即可得到模糊集A的隶属函数曲线.Ai将论域X分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到•••青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.16.5~17.5670.51928.5~29.5800.62017.5~18.51240.96129.5~30.5770.59718.5~19.5125 1.0030.5~31.5270.20919.5~20.5129 1.0031.5~32.5270.20920.5~21.5129 1.0032.5~33.5260.20221.5~22.5129 1.0033.5~34.5260.20222.5~23.5129 1.0034.5~35.5260.20223.5~24.5129 1.0035.5~36.510.00824.5~25.51280.992⑵三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法•例如建立矮个子A1,中等个子A2,高个子A3三个模糊概念的隶属函数•设P3={矮个子,中等个子,高个子},论域X为身高的集合,取X=(0,3)(单位:m).每次模糊试验确定X的一次划分,每次划分确定一对数(g,n),其中匕为矮个子与中等个子的分界点,耳为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(g,n)看作二维随机变量,进行抽样调查,求得g、n的概率分布p(x)、P(x)后,再分别导出A1、A?和A3的隶属函数卩(X)、R(X)和g_H_A1A2卩(x),相应的示意图如图8-6所示.A3图8-5年轻人的隶属函数曲线图8-6由概率分布确定模糊集隶属函数通常E 和耳分别服从正态分布N (a ,G 2)和N(a11分别为_gv⑶模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形•若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向.偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为「1,x <a; 卩(x)斗A [f (x),x >a.偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为f0,x <a ;卩(x )=\A [f (x ),x >a .中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.① 矩形(或半矩形)分布2,G2),则A 1、A 2和A3的隶属函数其中Q (x)二i卩(x)=1—① A1卩(x )=①A21气—e 2dt .(、 x 一a 1丿/ 1GiC\x 一a 2(G 丿2—① 卩(x)=1一① A3x 一a 、Gi丿、x 一ac 2G丿(c)中间型0,x <a ;1,a <x <b ; 0,x >b .卩A x )=<此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图② 梯形(或半梯形)分布梯形(或半梯形)分布的示意图如图8-8所示.③ 抛物形分布(a)偏小型 (b)偏大型 (c)中间型(a)偏小型 (b)偏大型 (c)中间型1,x<a; b —x<<, b —a 0,x>b.卩A(x )=10,x <a;x —a,a <x <b;b —a 1,x >b.0,x <a ,x >d ; ,a <x <b ;b -a 1,b <x <c ;d —x,c <x <d ;d —c(a)偏小型(b)偏大型(c)中间型 图8-8梯形(或半梯形)分布示意图抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型图8-9抛物形分布示意图④正态分布(a)偏小型(b)偏大型1,x<a;0,x<a;卩(x)=<(x—a]2卩(x)=<(T—a J2、e〔b,x>a. 1—e—l b丿,x>a.(c)中间型⑤柯西分布(a)偏小型(b)偏大型(c)中间型⑥r 型分布(a)偏小型 (b)偏大型 (c)中间型f l,x <a ; [e _k (x _a ),x >a .f 0,x <a ;卩(x)=kA[1一e _k (x _a ),x >a .卩(x)=<Ae _k (x _a ),x <a; 1,a <x <b; e _k (b _x ),x >b.1,1 x <a; 1+a (x -a)P (a >0,B >0)x >a.0, 1x <a ; Q ,x >a .1+a (x 一a )_P叮x)=1+a (x -a )B'(a >0,B 为正偶数).(a >0,B>0)。
中学生数学学科评价模型

中学生数学学科评价模型背景数学作为一门重要的学科,对中学生的学习和发展起着关键作用。
因此,建立一个科学有效的评价模型来评估中学生在数学学科上的表现和能力是至关重要的。
目标本文档旨在提出一种中学生数学学科评价模型,以帮助学校和教育机构更好地评估中学生在数学学科上的学习情况和能力水平。
模型概述本评价模型基于以下几个关键指标来评估中学生的数学学科表现:1. 知识掌握:评估学生对数学基础知识的掌握程度,包括数学概念、公式、定理等的理解和应用能力。
2. 解决问题能力:评估学生在解决实际数学问题时的能力,包括问题分析、建模和解决方案的提出。
3. 推理和证明能力:评估学生在数学推理和证明方面的能力,包括逻辑思维、证明方法和数学推理过程的正确性。
4. 创造性思维:评估学生在数学学科上的创造性思维和创新能力,包括发现问题、提出新的解决方法和探索数学领域的兴趣和能力。
评价方法为了评估学生在上述指标上的表现,可以采用以下几种评价方法:1. 平时成绩:通过平时的课堂表现、作业完成情况和小测验成绩来评估学生的知识掌握和解决问题能力。
2. 考试成绩:通过期中考试和期末考试成绩来评估学生在数学学科上的整体水平和推理证明能力。
3. 项目作业:通过给学生设计并完成一些数学项目作业来评估他们的创造性思维和解决问题的能力。
4. 口头表达和讨论:通过学生在课堂上的口头表达和参与讨论来评估他们的思维能力和数学理解程度。
模型优势本评价模型的优势在于:1. 简单明晰:模型采用简单的评价指标和方法,易于理解和实施。
2. 全面客观:模型综合考虑了学生在数学学科不同方面的表现,使评价更加全面客观。
3. 重视创造性思维:模型注重评价学生的创造性思维和解决问题能力,培养学生的创新意识和能力。
4. 科学可靠:模型基于科学的评价原则和方法,提高了评价结果的科学可靠性。
结论中学生数学学科评价模型的建立对于提高学生的数学学科能力和培养创造性思维具有重要的意义。
评价模型数学建模

评价模型数学建模
评价模型数学建模是一项关键任务,它要求建立一个完善且可靠的评价体系,以对数学建模的过程和结果进行评估。
这个评价体系应该包括以下几个方面:
第一,对数学建模的过程进行评价。
这个过程包括问题分析、模型设计、数据采集、模型求解、结果分析等多个环节。
评价这个过程的关键是确定评价指标和评价方法。
比如,可以针对问题分析阶段的思考深度、模型设计的创新性、数据采集的有效性和准确性、模型求解的速度和精度、结果分析的逻辑性和实用性等方面进行评价,而评价的方法可以是专家评分、对比分析、统计分析等。
第二,对数学建模的结果进行评价。
这个结果包括模型的可行性、实用性、稳定性和精度等方面。
评价这个结果的关键是确定评价标准和评价方法。
比如,可以针对模型的预测精度、预测置信度、控制效果、决策支持能力等方面进行评价,而评价的方法可以是模型检验、模拟测试、实际应用等。
第三,对数学建模的实践能力进行评价。
这个能力包括问题识别、模型构建、数据处理、模型求解、结果解释等方面。
评价这个能力的关键是确定评价内容和评价方法。
比如,可以针对学生在数学建模竞赛中的表现、在实际应用中的表现等方面进行评价,而评价的方法可以是模型检验、模拟测试、实际应用等。
通过建立一个完善且可靠的评价体系,可以有效提高数学建模的质量和水平,促进数学建模的应用和发展。
数学建模论文-学科评估模型

学科评估模型摘要本文采用模糊数学.综合评价.模糊矩阵,做出合理的学科评估模型,根据某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,做出具有实用性.合理性的学科评估。
关键词: 模糊数学;综合评价;模糊矩阵;学科评估。
1.问题的重述 (3)2.模型的假设和分析 (3)2.1 模型的假设 (3)2.2模型的分析 (3)3.模型的建立及求解 (3)3.1 确定评价因素集 (5)3.2 确定权重 (5)ⅰ构造比较矩阵 (5)ⅱ利用MA TLAB软件包将题目所给的评价指标数据标准化 (5)ⅲ利用层次分析法和利用MA TLAB软件包把第二层因子的权重确定 (5)3.3 确定评判函数 (6)ⅰ二层模糊评价矩阵 (6)ⅱ综合评价计算 (7)4 模型的讨论与评价 (7)4.1模型的检验 (7)4.2模型的评价 (7)参考文献 (7)1.问题的重述学科的水平、地位是高等学校的一个重要指标,而学科间水平的评估对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。
因此,给出合理的学科评估模型是学科发展研究的重要问题。
根据有关数据(见表1——是某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,包括各种建设成效数据和前期投入的数据。
)建立适用性、合理性的学科评估模型。
2.模型的假设和分析2.1 模型的假设(1)假设问题中所选择的基本因素条件充分的反映了每个学科的真实教学水平;(2)假设社学科间的水平在这一段时期内的调查数据可以真实的体现,不受外界因素和环境的影响;2.2模型的分析在上述假设下,我们要解决的问题如下:学科的评价以队伍建设,人才培养,科研成果,学科建设,所获科研成果,所获教学奖,所获科研经费,前期投入八大类,每类中又有若干评价因素。
我们运用模糊数学中的模型,提出了科学的评价学科水平的一种方法,这种方法更能客观的反映学科的实际水平和地位。
数学建模素养评价模型与案例分析

数学核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现.《普通高中数学课程标准(2017年版)》(以下简称《标准》)明确指出,数学课程的重要目标之一是在学习数学和应用数学的过程中,发展学生的数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析数学学科核心素养.在《标准》的学业质量评价中,重点是核心素养评价,将每个核心素养划分为三个水平,每个水平有相关描述以及实例说明.仔细分析这些水平描述,感觉比较笼统、可操作性不够强,对实际教学缺乏有效的指导,尤其是作为六大数学核心素养之一的数学建模素养的评价,更是感觉不便操作.而考试评价对高中教师的导向功能是不得不重视的.也正是基于这样的现实,要想落实数学建模素养培养,首先要做的工作应该是让教师弄清楚管理部门或高考是如何评价和考查这种核心素养的,以此来引导教师重视数学建模素养的培养.为此,本文试以数学建模素养评价为例,探讨学业质量评价中如何对数学建模素养水平进行评价.一、数学建模素养的内涵一般认为,数学模型是研究者依据研究目的,将所研究的客观事物的过程和现象的主要特征和主要关系,采用形式化的数学语言,概括或近似地表达出来的一种结构.数学建模是把现实世界中的实际问题进行提炼,抽象为数学模型,求出数学模型的解,验证数学模型的合理性,并用数学模型提供的结论再来解释实际问题的一种应用过程.这个过程可以具体表示为:理解问题—简化问题—建立模型—计算求解—解释结果—修改模型—得出结论.数学建模过程结构图如图1所示.1.理解问题2.简化问题3.建立模型4.计算求解5.解释结果6.修改模型7.得出结论数学建模过程结构图图1收稿日期:2020-02-24基金项目:宁波市教育规划重点课题——基于学生视角的新高考改革的调查与思考(2018YZD002).作者简介:邵光华(1964—),男,教授,主要从事数学教育研究.数学建模素养评价模型与案例分析邵光华摘要:已有数学建模素养评价模式有三种:横向评价、纵向评价和模型创新性评价.《普通高中数学课程标准(2017年版)》将数学建模素养划分为三个水平,用“情境与问题、知识与技能、思维与表达、交流与反思”四个维度加以区分与体现.分析了数学建模素养教学与评价案例中并未按照数学建模素养划分的三个水平的四个维度进行说明而导致的理论划分与案例例说不一致的冲突.基于数学建模素养的三个水平的划分维度以及每个水平的表现,结合已有数学建模能力评价模式,重新构建了与数学建模素养划分水平具体要求与表现相一致的数学建模素养评价模型,并举案例说明,合理解决了数学建模素养科学评价问题.关键词:数学建模;素养水平;评价··3《标准》将数学建模提升为数学核心素养之一.素养是一种稳定的内在心理品质,是知识、能力、行为习惯等人格化特征的综合集中反映.数学建模素养被看成是“对现实问题进行数学抽象,用数学语言表达问题,用数学方法构建模型解决问题的素养”.具体而言,数学建模素养可以理解为以下四个方面的综合体现:建立模型解决问题时必备的数学基础知识与方法等建模知识;相关的诸如阅读理解、抽象概括、数学运算、逻辑推理、数学应用等数学能力;抽象和转化等重要建模思想;在建模过程中体现的情感、态度与价值观.二、《标准》中数学建模素养的评价指南1.数学核心素养水平划分维度《标准》将每一种数学学科核心素养都划分为三个水平,并对每一个水平通过数学学科核心素养的具体体现和体现数学学科核心素养的四个维度给予表述.这四个维度为情境与问题、知识与技能、思维与表达、交流与反思,具体说明如表1所示.表1:反映数学学科核心素养的四个维度维度情境与问题知识与技能思维与表达交流与反思说明情境主要是指现实情境、数学情境、科学情境;问题是指在情境中提出的数学问题,分为简单问题、较复杂问题、复杂问题能够帮助学生形成相应数学学科核心素养的知识与技能数学活动过程中反映的思维品质,表述的严谨性与准确性能够用数学语言直观地解释与交流数学的概念、结论、应用和思想方法,并能进行评价、总结与拓展2.《标准》中数学建模素养的评价模型《标准》通过情境与问题、知识与技能、思维与表达、交流与反思四个维度对数学建模素养的三个水平进行区分与体现.数学建模素养的评价模型如表2所示.表2:数学建模素养的评价模型维度情境与问题知识与技能思维与表达交流与反思水平一了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中的参数、结论的实际含义知道数学建模过程包括提出问题、建立模型、求解模型、检验结果、完善模型.能够在熟悉的实际情境中,模仿学过的数学建模过程解决问题对于学过的数学模型,能够举例说明数学建模的意义,体会其蕴涵的数学思想;感悟数学表达对数学建模的重要性在交流的过程中,能够借助或引用已有数学建模的结果说明问题水平二能够在熟悉的现实情境中,发现问题并转化为数学问题,知道数学问题的价值与作用能够选择合适的数学模型表达所要解决的数学问题,理解模型中参数的意义,知道如何确定参数,建立模型,求解模型;能够根据问题的实际意义检验结果,完善模型,解决问题能够在关联情境中,经历数学建模的过程,理解数学建模的意义,能够运用数学语言,表述数学建模过程中的问题以及解决问题的过程和结果,形成研究报告,展示研究成果在交流的过程中,能够用模型思想说明问题水平三能够在综合的科学情境中,运用数学思维进行分析,发现情境中的数学关系,提出数学问题能够运用数学建模的一般方法和相关知识,创造性地建立数学模型,解决问题能够理解数学建模的意义和作用,能够运用数学语言,清晰、准确地表达数学建模的过程和结果在交流的过程中,能够通过数学建模的结论和思想阐释科学规律和社会现象··4可以看出,“情境与问题”维度涉及的是数学建模问题的层次,情境由熟悉到综合,问题由简单到复杂.“知识与技能”维度涉及的是数学建模的过程与模型创新性层次,先模仿学过的模型解决问题,然后选择已知的模型解决问题,最后创造性地建立模型解决问题.“思维与表达”维度涉及的是模型评价与报告撰写水平,由要求举例说明学过的模型的意义,到要求用数学语言表述数学建模的过程,形成研究报告,再到强调学生真正理解数学建模的作用,得出问题的结论.“交流与反思”维度是对数学建模素养的本质的要求程度,由简单的借助模型结果说明问题,到能用模型思想说明问题,再到运用模型思想解决社会现实问题.从数学教育的角度来讲,数学思想是更高层次的理性认识,关于数学内容和方法的本质的认识是对数学内容和方法的本质的进一步概括.数学模型作为一种重要思想被学生理解是非常有意义的.评价模型中,“情境与问题”维度针对的是问题的难易程度与情境的复杂程度,是教师设置考查学生数学建模素养的试题的参考依据.但是,“数学模型的实际背景、熟悉的现实情境、综合的科学情境”三类情境的定义却未明确,“简单问题、复杂问题、较复杂问题”的区分标准也未提及,以及情境、问题两者有何关联,这些都可能增加教师设置测试问题的难度.“知识与技能”维度以考查学生数学建模知识与数学建模过程为主,量化评价的可操作性较弱,应该增加对该维度的量化评价细节.“思维与表达”与“知识与技能”两个维度相辅相成,“思维与表达”是对“知识与技能”的成果的呈现形式予以说明,因此评价时也采用量化评价方式.“交流与反思”维度是数学建模完成之后的交流、反思活动,考查形式可以采用生生、师生交流或组织学生公开答辩,亦可以采用具体量化评价方式.3.《标准》中用于评价的满意原则和加分原则的说明《标准》列举了“鞋号问题、包装彩绳问题、体重与脉搏问题、估计考生总数问题”四个案例用来说明如何评价数学建模素养水平,目的是想通过这些案例给学业水平考试与高考命题以指导.这些案例都是应用问题、开放性问题或探究性问题,可以同时考查学生的思维过程、实践能力和创新意识.《标准》同时指出,在具体评价数学建模素养水平层次时,除了按照前面的评价模型标准外,还需要遵循满意原则和加分原则.所谓“满意原则”就是不一定追求真正的“最优”,只要教师认可就行了,这种寻求“满意性”的系统方案的方法,虽然不如找“最优化”方案方法那么严格、精确,但是它比较灵活.而“加分原则”可以理解为针对数学建模过程的完整性、数学建模方法的创新性、模型的创新性、语言表达的准确性等方面进行加分.结合满意原则和加分原则,四个案例水平综合评价结果如表3所示.表3:四个案例的水平层次判定及评判根据案例鞋号包装彩绳体重与脉搏估计考生总数素养水平水平一水平二水平二水平一水平二水平二水平二水平三水平一水平二评价缘由得出简单模型模型创新数学建模过程完整提出猜想得出模型语言表达准确情境复杂,表达准确方法创新,模型创新体现统计思想过程表述清楚满意原则加分原则加分原则满意原则满意原则加分原则满意原则满意原则加分原则满意原则满意原则4.《标准》中数学建模素养评价模式不足的细化分析通过分析《标准》中案例的评价方式,不难发现,它是横向评价、纵向评价,以及“满意原则”和“加分原则”三个方面相结合的综合评价模式.“横向评价模式”是根据学生解决的不同水平的数学建模问题的情况来裁定其数学建模素养的层次.“纵向评价模式”是将数学建模素养分解为过程要素,具体过程为确定变量、探索关系、建立模型、计算系数、分析结论,根据学生解决问题达到过程中的哪一步来判断其数学建模素养水平.对于“满意原则”和“加分原则”,若学生已经完成数学建模过程中的某一步,根据满意原则直接判定其达到该步骤对应的数学建模素养水平;若学生未完整完成数学建模过程中的某一步,根据加分原则适当加分.例如,对于水平一的数学建模问题,··5数学建模过程完整、模型有创新,根据加分原则,评定为水平二.水平二的数学建模问题,模型合理,数学建模过程不完整,根据满意原则,评定为水平一;模型创新,过程完整,根据加分原则,评定为水平三.水平三的建模问题,提出问题,有思路,根据满意原则,评定为水平一;模型合理,数学建模过程不完整,根据满意原则,评定为水平二.综合起来,可以得出如图2所示的数学建模素养水平评价模型.数学建模素养水平评价模型数学建模素养水平水平一水平二水平三简单问题较复杂问题复杂问题图2根据该评价模型,《标准》提供的数学建模素养案例中,“鞋号问题”“彩绳包装问题”“估计考生总数问题”是数学建模素养水平一、水平二的评定案例,“体重与脉搏问题”是数学建模素养水平二、水平三的评定案例.仔细分析这些数学建模素养水平评定案例,发现似乎存在需要完善的地方.一是评定没有遵循数学建模问题与数学建模水平呈一一对应原则,案例是通过一个数学建模问题评定两个乃至三个数学建模素养水平.二是在评价数学建模素养水平的过程中未对数学建模素养的相关维度的具体表现进行表述.三是通过对数学建模素养划分为过程要素来评价.一方面,破坏了数学建模过程的整体性,难以凸显学生的数学建模素养.因为数学建模是问题解决的一部分,学生用数学建模的思想与方法去解决问题的根本点是是否真正解决了问题,解决问题的过程与问题的结果同等重要,而得出结果则需要经历完整的数学建模过程.因此,根据数学建模过程要素评定不合理.另一方面,忽略高中生认知水平的差异性.例如,数学建模素养达到水平一的学生未能完成关于水平二的问题的任何数学建模步骤,按照过程要素评价方式,将评定该学生的数学建模素养不能达到数学建模素养水平一.事实上,按照过程要素得出的评价结果与学生真实的素养水平会大相径庭.三、基于四个维度的数学建模素养评价模型的构建鉴于《标准》中关于数学建模素养评价的操作不甚明晰,下面,笔者重新构建更具操作性的评定设计方案,并通过案例给予说明.1.数学建模核心素养评价应该坚持两个原则针对《标准》中数学建模素养水平评价方案的不足,我们提出评价学生数学建模素养水平应该遵循的两个基本原则.原则1:基于数学建模情境与问题维度.为方便教师编制对应的数学建模素养水平测试题,数学建模问题与数学建模素养水平需要呈一一对应关系.事实上,能够通过数学建模解决的实际问题的难度水平在一定意义上能够显示一个人的数学建模素养水平的高低.基于此,我们提出数学建模素养水平与数学建模问题的难度应该呈一一对应关系.简单问题对应数学建模素养水平一,较复杂问题对应数学建模素养水平二,复杂问题对应数学建模素养水平三.简单问题包括一般的应用题,以及数量关系较明显的实际问题.该类问题较易入手,容易找到量与量之间的··6关系,结果也比较简单,不需要过多的分析、整理.较复杂问题主要指从社会生产、生活的实际中来的问题,背景较为复杂,不容易切入,较难下手,需要经过分析与判断做出适当假设,量与量之间的关系也较容易发现,得到的结果并不要求精确,但是需要做出一定的分析、说明,进行简单评价.复杂问题指从实际生活中来而且未经数学化的问题,解决它不仅需要相应的数学知识,还需要了解非数学领域的知识,这类问题难以切入,不容易发现其中的量与量之间的关系,在求解中除了应用数学知识外,还需要运用计算机进行模拟、试算、检验,并需要对模型进行分析与评价,结果要求是最优解,没有标准答案,需要以科技论文呈现.原则2:数学建模素养水平评价需要体现情境与问题、知识与技能、思维与表达、交流与反思四个维度.《标准》中给出的这四个维度能够切实综合反映学生的数学建模素养水平,为了更准确地反映水平层次,需要将这四个维度量化.2.基于四个维度的数学建模核心素养评价模型的方案设计结合每个水平的具体表现,我们将这四个维度划分为相应的子维度,记分法则参照文献[11]中的“数学建模能力评价量表”.由此设计并构建了数学建模核心素养评定方案,如表4所示.可以规定,获得相应数学建模素养水平问题总分的60%,就可以认定学生达到了该水平.表4:基于四个维度的数学建模素养评价方案维度情境与问题知识与技能思维与表达交流与反思子维度提出问题做出假设定义变量、参数使用的数学方法问题结果模型分析与评价写作与组织结果报告理想情况简洁、确切地表明该模型的问题是什么.(3分)主要的假设确切、合理且易于理解.(3分)合理列出重要的参数和变量,并做出相关解释.(3分)呈现了合理的数学方法和数学结果,提供了合理的解释.(4分)清晰地提出解决方案,还包含有用的可视化辅助(表格、图形),并进行解释.(4分)提供了解决方案的可行性和可靠性.例如,与其他解决方案相比,本模型怎样?(3分)论文格式很好,可顺利地阅读,选择最佳可视化辅助且易于理解.(5分或4分)语言表达流畅,易于理解,针对听众的疑问给予合理解释.(5分或4分)符合要求问题的陈述很容易识别,但是不够精确.(2分)指出主要假设,但是缺乏合理性或可读性.(2分)合理列出重要参数和变量,没有确切的解释.(2分)陈述了数学方法,但是难以令人理解.(3分或2分)陈述了答案,但是解决方案的各个方面难以理解或不完整.(3分或2分)分析缺乏适当的维度.例如,忽略了所述结果的明显后果.(2分)格式符合要求,行文流畅,缺乏可视化辅助说明,不易理解.(3分或2分)语言表达流畅,未对听众的疑问给予合理解释.(3分或2分)需要改进问题的陈述难以理解或被隐藏在原文中.(1分)给出假设并说明其合理性,但是与问题不贴切.(1分)设置了部分变量、参数.(1分)陈述了数学方法,但是包含可以解决的数学错误.(1分)给出了答案,但是没有给出适当的图形、恰当的单位等.(1分)提供了一些分析,但是没有任何从整体出发看问题的意识.(1分)论文格式符合要求,行文不流畅.(1分)用自然语言流畅表达,但是听众难以理解.(1分)未完成没有给出问题陈述.(0分)没有假设,或缺乏假设的理由.(0分)没有确定变量或参数.(0分)没有提出模型,或提出的模型包含重大错误.(0分)未提供解决方案.(0分)文章中不包含任何的模型分析或评估.(0分)论文格式不符合要求.(0分)无法用自然语言流畅表述模型.(0分)··7四、基于四个维度数学建模核心素养评价模型的案例分析有关数学建模素养水平评价的问题编制或选取与“情境与问题”“知识与技能”两个维度的要求密切相关.下面我们主要根据这两个维度进行分析说明.说明的形式是先解析《标准》的要求,再解释本文选择的问题为何符合要求.1.数学建模核心素养水平一案例分析情境与问题维度要求:教师可以将教材中涉及的数学模型作为原材,选取适时的背景编制问题.可以为一般的应用问题或数量关系较明显的实际问题.知识与技能维度要求:问题需要设置参数或条件假设.水平一的问题是已经适度数学化的问题,学生经历从学过的数学模型中选取合适的模型,求解模型、检验模型、完善模型.情境:人社部拿出延迟退休方案,采取渐进式延迟退休年龄政策,采取小步慢走,渐进到位.男性延迟退休年龄的具体方案如表5所示.表5:男性延迟退休年龄方案出生年份退休年龄出生年份退休年龄出生年份退休年龄196160.00196861.75197563.50196260.25196962.00197663.75196360.50197062.25197764.00196460.75197162.50197864.25196561.00197262.75197964.50196661.25197363.00198064.75196761.50197463.25198165.00问题:男性的退休年龄随出生年份逐步调整的计算模型是什么?在情境与问题层面,该情境是学生熟悉的情境,问题是已经数学化的问题.从表格里的数据可知,调整过程中男性的出生年份与退休年龄均成等差数列,等差数列模型是学生学过的数学模型.在知识与技能层面,学生只需要通过模仿等差数列模型,设置模型相关参数,建立男性的退休年龄随出生年份逐步调整的计算模型,经历建立模型的过程.具体建模过程如下.由表5中的数据不难看出,数据呈等差数列特征.假设调整过程中的男性的出生年份为数列{}y n,退休年龄为数列{}a n,模型分别设为y n=y0+nd1,a n=a0+nd2.在2021年年龄为60岁的男性出生年份y0=1961,d1=1;目前的退休年龄a0=60,d2=0.25;从表5中可知,数列的长度n为从开始调整年龄到预定的退休年龄65岁的年龄跨度是20年,且作为连接男性出生年份与退休年龄数学关系的桥梁,即an-a0d2=y n-y0d1,再结合a0,d2,y0,d1的值,得到男性的退休年龄随出生年份逐步调整的计算模型an=60+0.25()y n-1961.2.数学建模核心素养水平二案例分析情境与问题维度要求:这种问题从社会的生产、生活实际中来,不容易切入,难以下手,需要学生将现实问题数学化,知道问题的价值与作用.知识与技能维度要求:该类问题需要经过分析与判断,量与量之间的关系容易被发现;可以跨学科寻找与解决此问题类似的模型;仍然需要在数学建模之前,做出适当假设,且理解设置参数的意义;得到的结果不一定精确,需要进行一定的分析、说明,简单评价,解决问题.情境:一辆小汽车在普通路面上行驶,得九组关于车速、反应距离、刹车距离的数据,如表6所示.反应距离即驾驶员做出反应动作到刹车制动开始起作用汽车行驶的距离.刹车距离即从刹车制动开始起作用到汽车完全停止这段时间内汽车行驶的距离.表6:车速与反应距离、刹车距离对应数据表车速/km·h-1324048566472808895反应距离/m6.78.510.111.913.415.216.818.620.1刹车距离/m6.18.512.31621.928.23645.355.5问题:对于这辆小汽车与这位驾驶员,分别建立反应距离关于车速的函数模型、刹车距离关于车速的函数模型.··8在情境与问题层面,该情境是学生熟悉的现实情境,是跨学科的问题,需要学生将问题数学化.将汽车运动问题转化为具体的路程与速度问题.在知识与技能层面,该问题是物理学科的匀速与减速问题,在物理学科中有类似的模型.通过观察数据并分析量与量之间的关系,学生选择路程与速度模型:匀速运动模型s=vt,匀减速运动模型s=v 22a.学生需要经历模型参数的假设,并且对结果进行分析.(1)假设驾驶员的反应时间为t,反应距离为s1,刹车距离为s2,车速为v.选取匀速运动模型s1=vt,计算驾驶员做出反应动作到刹车制动开始起作用汽车行驶的时间.将九组车速与反应距离的数据代入匀速运动模型,通过计算发现九组反应时间t非常接近,t的均值tˉ=0.7584,t的方差为2.0927×10-5,驾驶员的反应时间可以设定为定值0.7584,对于这辆小汽车与这位驾驶员,反应距离关于车速的函数模型为s1= 0.7584t.(2)假设这辆小汽车的减速度为a,选取匀减速运动模型s2=v22a.将九组车速与刹车距离数据代入匀减速运动模型,通过计算发现九个12a的值非常接近,12a的均值是0.072,12a的方差是1.7617×10-5,12a可以设定为定值0.072.对于这辆小汽车与这位驾驶员,刹车距离关于车速的函数模型s2=0.072v2.3.数学建模核心素养水平三案例分析情境与问题维度要求:情境是综合的科学情境,问题是现实生活中未经过数学化的问题.难以切入问题,不容易发现量与量之间的关系.知识与技能维度要求:这类问题没有能运用或者模仿的模型.学生在理解题意,将现实问题数学化的基础上,运用学习过的数学知识创造性地建立数学模型.在求解步骤中除了数学知识,还需要运用计算机进行模拟、试算、检验,解决问题.情境:储药柜的结构类似于书橱,从上到下有若干层横向隔板.每一层称为一个储药槽,每个储药槽内用竖向隔板隔开,形成若干个存放药盒的储药格,一个储药槽内只能摆放同一种药品,如图3所示.图3问题:为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送的过程中不会出现并排重叠、侧翻或水平旋转.表7给出了20种药盒的尺寸规格,给出能够存放这些药盒且满足上述要求的储药格宽度类型最少的设计方案.表7:药盒规格表药盒编号长度/mm宽度/mm厚度/mm药盒编号长度/mm宽度/mm厚度/mm112076241195553321257220121086218312576211395553349171151413476205125722115955533612085201685464671173726171257533878652018116761691175656191001001010744740201317738在情境与问题层面:问题从实际生活中来,未经过数学化处理,难以切入问题,不容易发现量与量之间的关系,是综合情境复杂问题.在数学建模过程中,实际问题抽象为数学问题,需要借助于几何直观.模型求解运用不等式,通过解不等式寻找储药格宽度与存储药盒厚度的关系,划分药盒的厚度间隔.在知识层面上,学生遇到的困难大.在知识与技能层面,该问题无已知的模型可以直接运用,需要学生有数学建模素养水平三的能力,建立模型,解决问题.问题数学化分析如下.(1)药盒在储药槽内推送的过程中不会出现并排重叠,即药槽的宽度小于药盒宽度的两倍.··9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):论文题目:学科评价模型(A)组别:本科生参赛队员信息(必填):答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):评阅情况(学校评阅专家填写):学校评阅1.学校评阅2.学校评阅3.评阅情况(省赛评阅专家填写):省赛评阅1.省赛评阅2.省赛评阅3.学科评价模型摘要本学科评价模型采用了指标体系法,其所具有的客观公正性使之成为目前大学学科评价的主流方法。
学科评价一方面取决于指标体系本身设计是否科学,另一方面则取决于原始数据和指标的可比性。
由于本题目并没有给出具体的哪13个学科,而不同学科之间在某些方面存在着不同程度上的差异性。
所以,我们采用层次分析法分配权重以及灰色多层次分析法处理数据,从而使评价结果更加客观公正。
学科评价应分类别、分层次进行,不同的类别和层次适用于不同的情形。
比如科研教学并重型高校的学科评价模型与科研型或者教学型高校的学科评价模型会有所区别。
同时,在学科评价体系中,指标分级是必要的,我们将题目所给的指标分为三级。
通过模型的建立及求解,我们得出了各学科各指标的评价结果,以及各学科的综合实力评价结果,并对结果进行横向分析和纵向分析,为大学学科评估及资源优化提供了较为合理的依据。
关键词层次分析法,权重, 灰色多层次分析法,关联度一 问题的重述学科的水平、地位是高等学校的一个重要指标,而学科间水平的评价对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。
因此,如何给出合理的学科评价体系或模型一直是学科发展研究的热点问题。
现有某大学(科研与教学并重型高校)的13个学科在一段时期的调查数据,包括各种建设成效数据和前期投入的数据。
1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。
2、模型分析,给出建立模型的适用性、合理性分析。
3、假设数据来自于某科研型或教学型高校,请给出相应的学科评价模型。
二 合理的假设1、假设各学科所属领域以及学科特点的差异不对本评估体系产生影响2、假设某些权威杂志对特定的学科没有偏重3、假设国家和社会对各学科没有任何偏重4、假设各学科培养出的人才素质没有差异5、假设专家对学科各指标相对重要性的评判合理、客观、全面。
三 符号的说明ijk C :各级指标ik C :(i=1,2,3····n;k=1,2,····m)第i 个参评学科中第k 个指标的原始数据*k C :最优指标集S :综合分析评价值 A :目标向量ij D :表示i D 对j D 的相对重要性数值 ij P :判断矩阵)3,2,1,m 3,2,1(n j i:特征向量max:最大特征值CR :判断矩阵的随机一致性比率 CI :判断矩阵的一般一致性指标 RI :平均随机一致性指标i W :各个分向量的权重系数*W :第三指标权重分配矩阵ik x :规化处理值(i=1,2,3····n;k=1,2,····m)X :无量纲化处理后的指标矩阵k x :无量纲化处理后的最优指标:分辨率ik :关联系数 E :关联系数阵i :关联度R :关联程度加权平均值矩阵四 问题分析和模型建立对学科进行评价,其目的不是单纯着眼于奖惩,而是要优化学科结构,使其更好地顺应学科发展规律,为优化教育资源提供参考。
对学科实施评价也是提高学科管理效益、促进学科建设水平的重要手段。
既有助于高校在学科建设中发现问题、解决问题,也有助于各同类学科间的竞争,实现学科间的优胜劣汰。
因此,对学科进行评价要努力做到科学、公正、客观和全面。
我们利用题目所给出的数据,通过所建立的模型进行求解,将最终结果以图表形式给出。
此问题难点在于我们如何使用相同的尺度来评判不同的学科。
为了使分析结果更加合理准确,我们给予不同评价数据相应的权重,并对数据进行无量纲化处理。
在此,我们分别使用了层次分析法和灰色多层次综合分析法分别确定权重系数和关联度。
对于相对重要性数值,我们参考了相关文献,并咨询了相关专家,以使判断矩阵更加客观可信。
下面是我们在计算过程中要用到的公式:ni i i W 1C S ①1,1i ni ij i j C RW② Tik ik W E R ③()ik m n E ④ξik =ikk kiik k ikk kiik k x x x x x x x x max max max max min min ki⑤X i (j)=ji C j C )( 其中C j =1n 1 n0)(j C i ,m j 3,2,1 ⑥层次分析法:首先将每个学科的各个三级指标如一级学科、二级学科数目等放到一个大的系统中,然后将这个系统中存在互相影响的多种因素进行归类,形成了一个多层的分析结构模型。
最后运用数学方法,计算出各层次中各个指标所占的权重,来辅助评价。
层次分析法确定权重主要分为以下步骤:构造判断矩阵、求判断矩阵的最大特征值、一致性检验。
我们在使用权重过程中,详细计算了一级指标,二级指标,三级指标的权重值,使模型的计算更加准确、可靠。
其中一致性检验非常重要,因为当同时比较的事物较多时,分析评价结果就会出现较大的思维一致性偏差[1]。
利用1~9比率标准可以降低这种偏差。
(1)构造判断矩阵[2]。
以A 为目标,ij D (i,j=1,2,3……n):表示i D 对j D 的相对重要性数值。
由ij D 组成判断矩阵P 。
11121212212n n n nn D D D D D P D D DL L M M M L (2)计算最大特征值。
根据判断矩阵,求出最大特征值max 所对应的特征向量ω。
P ω=max ω所求特征向量经归一化处理即为各评价因素的权重分配。
(3)一致性检验。
我们需要对以上权重分配的合理性进行检验。
检验公式为:CR=CI/RI 。
灰色多层次综合分析法[3]:要对各个方案进行综合评判, 首先必须制定评判标准, 而标准的制定, 要确保其合理可行。
最优指标集是进行各方案比较的基准, 因此我们选择各指标中的最优值作为最优指标集。
(1)设ik C (i=1,2……n;k=1,2,……m)为第i 个参评学科中第k 个指标的原始数据,原始数据以矩阵表示为:(ik C )m ×n 即V 为n 行m 列矩阵;k C 设为第k 个指标在各参评学科中的最优值。
于是{k C 0}={01C ,02C ,30C ……m C 0}作为该系统最优指标集。
(2)由于各评价指标的含义和目的各不相同,因而指标值通常具有不同的量纲和数量级,为了进行比较,须对最优指标集和各方案指标集按下式进行无量纲化处理[4](均值化像法),以减少随机因素的干扰:k ik ikC C X 0 其中 ni ikk C n C 011,k=1,2,3…m 。
(3)计算综合评价的关联度根据灰色多层次系统理论,定义比较数列i V 对参考数列ik V 在指标ik V 上的关联系数[5]为 ξik =ik min min max max max max k ik k iki kk ik k ikikx x x x x x x x (m k n i 2,1;2,1, 为分辨系数)式中的关联系数ik 若看成是分辨系数 的函数,则它是随 的增加而单调增加的,即 越大,关联系数ik 也越大。
但从公式⑤中可以看出,制约ik 大小的主要因素应是k ik x x ,若 取大,k ik x x 对ik 的作用就越小。
所以应用时应综合考虑以上两方面的情况来确定 的取值。
一般取 =0.5。
本模型的重要目标之一是得出最终的学科综合实力评价结果,所以有必要将学科综合实力各个指标的关联系数集中为一个值,也就是求其加权平均值作为关联程度的数量表示。
记关联度为:mk ik ik i W 1显然i 值越大,说明性应得学科综合实力评价结果就越好。
五 模型的求解一、首先我们要对W(权重系数)进行计算,其步骤如下:1. 数据分层处理[6]。
表(4)2.1)即:ij P =151811115313151111853. 求特征向量 。
根据方根法求解,继续以学科建设为例 ● 计算判断矩阵P 的每一行元素的乘积 *4*3*2*1,,,P P P P ● 计算乘积的N (矩阵阶数)次方根4*44*34*24*1,,,P P P P M对由M(,做归一化处理[7], 即41/()i i i i M M M ,所以M =(0.4667,0.0943,0.3652,0.0738)就是在该组检验中的权重系数。
4. 一致性分配。
以上得到的权重分配是否合理,还需要对判断矩阵进行一致性检验。
检验使用公式:RICICR ,其中CR 为判断矩阵的随机一致性比率;CI 为判断矩阵的一般一致性指标。
它由下式给出:)1/()(max n n CI 。
RI 为判5. 当判断矩阵P 的1.0 CR 时或max=n ,0 CI 时,认为P 具有满意的一致性,否6. 7. 按照上述方法连续计算出其他权重系数,结果如表(4)所示B3 长江学者特聘教授 B4 国家杰出青年基金获得者 B5 国家教学名师奖获得者 B6国家有突出贡献的中青年专家B7国家“973”项目首席科学家 B8教育部新世纪(原跨世纪)优秀人才 二、使用灰色多层次分析法处理我们所得到的各学科统计数据评价步骤。
单层次综合评价。
第一步,以科研实力指标中科研成果奖指标的原始数据为例分析构建原始数据矩阵ik C ,C T 22=25162218352112821233221551170213160603250120224020154 选取最优指标集 5,316,5*22C 。
即每组中最大数值作为最优指标。
将最优指标集作为参考数据列,而将321,,(C i i i ik C C C )(133,2,1 i )作为被比较数据列,根据公式⑤和⑥把矩阵C T 22化为评判矩阵E T22=72.057.066.00.601.000.650.53.49065.068.05.406.606.500.420.620.470.330.360.731.00.33044.03.308.306.302.4034.039.046.00.340.460.460.7234.046.04.309.300.012.70科研成果指标中的3个三级指标权重 19,0.08..73,00W 22 ,则科研成果奖综合评价矩阵:R 22=T2222W E = 39.0,45.0,48.0,36.0,49.0,53.0,76.0,35.0,48.0,37.0,40.0,85.0,65.0第二步,由附表中数据,用同样方法可得科研经费指标综合评价矩阵和科研成果综合评价矩阵如下:R 21= 0.44,0.440.44,0.44,0.49,0.46,70.87,0.45,0.56,0.40,0.54,0.65.80,,R 23= 9,0.30,0.49,0.31.407,0.49,0.45,0.42,0.49,0.30.4000.49.400.90,,,,多层次综合评价科研实力有3项指标:科研经费指标、所获科研成果奖指标和科研成果指标。