高中数学必修同步测试卷全套打印

合集下载

人教版高中数学必修第二册8.1——8.3同步测试滚动训练(含答案)

人教版高中数学必修第二册8.1——8.3同步测试滚动训练(含答案)

人教版高中数学必修第二册8.1——8.3同步测试滚动训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.下列说法中正确的是()A.三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个几何体的正视图和侧视图都是矩形,则该几何体是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台2.图G5-1中的几何体有()图G5-1A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球3.将选项中所示的三角形绕直线l旋转一周,可以得到图G5-2所示的几何体的是()图G5-2ABCD图G5-34.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶3B.1∶9C.1∶33D.1∶(33-1)5.某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S1,其内切球的表面积为S2,且S1=λS2,则λ=()A.1B.23C.43D.326.在如图G5-4所示的多面体ABCDB1C1D1中,四边形ABCD,四边形BCC1B1,四边形CDD1C1都是边长为6的正方形,则该多面体的体积为()图G5-4A.72B.144C.180D.2167.将一个体积为36π的金属球切割加工成一个底面积为8π的圆柱,则当圆柱的体积最大时,其侧面积为()A.82πB.83πC.62πD.93π8.若圆锥的体积与球的体积相等,且圆锥的底面半径与球的直径相等,则圆锥的侧面积与球的表面积之比为()A.5∶2B.5∶4C.1∶2D.3∶4二、填空题(本大题共4小题,每小题5分,共20分)9.将一个等腰直角三角形绕其斜边所在直线旋转一周所得几何体的体积为V1,绕其一直角边所在直线旋转一周所得几何体的体积为V2,则 1 2=.10.关于斜二测画法,有如下说法:①在画直观图时,由于选轴的不同,所得的直观图可能不同;②等腰三角形的直观图仍然是等腰三角形;③梯形的直观图仍然是梯形;④正三角形的直观图一定为等腰三角形.其中正确说法的序号是.11.在正四棱锥V-ABCD中,底面ABCD的面积为16,一条侧棱的长为211,则该棱锥的高为.12.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且 1 2=94,则 1 2的值是.三、解答题(本大题共3小题,共40分)13.(10分)如图G5-5,该几何体上半部分是母线长为5,底面半径为3的圆锥,下半部分是下底面半径为2,母线长为2的圆台,计算该几何体的表面积和体积.图G5-514.(15分)已知一个圆锥的底面半径为2,母线长为4.(1)求圆锥的侧面展开图的扇形的圆心角;(2)若圆锥中内接一个高为3的圆柱,求圆柱的表面积.15.(15分)如图G5-6,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,且AB=BC=2,A1A=2.(1)求该直三棱柱的表面积;(2)若把两个这样的直三棱柱拼成一个大棱柱,求大棱柱表面积的最小值.图G5-6参考答案与解析1.D[解析]对于选项A,三棱柱的每个侧面都是平行四边形,但是全部展开以后,那些平行四边形未必可以构成一个“大”平行四边形,故A错误.对于选项B,水平放置的正方形的直观图是平行四边形,不可能是梯形,故B错误.对于选项C,一个几何体的正视图和侧视图都是矩形,则该几何体不一定是长方体,也可能是圆柱,故C错误.对于选项D,根据圆台的定义可知D正确.故选D.2.B[解析]由图可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故选B.3.B4.D[解析]由题意得,截得的小锥体与原来大锥体的体积之比为1∶33,故锥体被截面所分成的两部分的体积之比为1∶(33-1),故选D.5.D[解析]由已知可得,该柱体为底面直径与高相等的圆柱,设底面圆的半径为r,则高为2r,则S1=2πr2+2πr·(2r)=6πr2.易知该圆柱内切球的半径为r,则S2=4πr2,则λ= 1 2=6π 24π 2=32,故选D.6.C[解析]如图,把该多面体补成正方体ABCD-A1B1C1D1,则该多面体的体积V=正方体 쪨૕ - 1쪨1૕1 1- 三棱锥 - 1쪨1 1=63-13×12×63=180.故选C.7.A[解析]设球的半径为R,则由题意知43πR3=36π,解得R=3.当圆柱的体积最大时,圆柱轴截面对角线的长等于球的直径.设圆柱的底面半径为r,则πr2=8π,解得r=22,所以圆柱的高h=2 2- 2=29−8=2,所以圆柱的侧面积S=2πr·h=2π×22×2=82π,故选A.8.A[解析]设圆锥的底面半径为r,圆锥的高为h,则球的半径为 2,由题知13πr2h=43π· 23,解得h= 2,∴圆锥的母线长为 2+ 2=,∴圆锥的侧面积S1=12×2πr2,又球的表面积S2=4π 22=πr2,∴ 1 2=A.9[解析]设等腰直角三角形的斜边长为2,则直角边长为2,则V1=2π3,V21 2=10.①③[解析]由斜二测画法规则可知,正三角形、等腰三角形的直观图不一定是等腰三角形,故②④错误,易知①③正确.11.6[解析]如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V-ABCD的高.∵底面ABCD的面积为16,∴AO=22,又VA=211,∴VO= 2- 2=44−8=6,∴正四棱锥V-ABCD的高为6.12.32[解析]由题意可得甲、乙两个圆柱的底面半径分别为r1r2的高分别为h1= 1 1,h2= 2 2,因为它们的侧面积相等,所以2πr1h1=2πr2h2· 1 1=· 2 2,整理得 1 2==32.13.解:圆锥的侧面积S1=π×3×5=15π,圆台的侧面积S2=π×(3+2)×2=10π,π×22=4π,圆台的下底面面积S底=所以该几何体的表面积S=S1+S2+S底=15π+10π+4π=29π.根据题意得,圆锥的高为4,圆台的高为3,则圆锥的体积V1=13×π×32×4=12π,圆台的体积V2=13×π×3×(32+2×3+22),所以该几何体的体积V=V1+V2=12π.14.解:(1)所求圆心角为2×π×24=4π4=π.(2)由题可知,圆锥的高为23,因为圆柱的高为3,所以圆柱的底面半径为1,则圆柱的表面积S=2×π×12+2×π×1×3=(2+23)π.15.解:(1)该直三棱柱底面的面积为12×2×2=1,侧面积为2×(2+2+2)=42+4,故其表面积S=6+42.(2)设两个这样的直三棱柱拼成一个大棱柱时重合的面的面积为S1,则大棱柱的表面积为2S-2S1,所以当重合的面的面积最大时,大棱柱的表面积最小.因为侧面AA1C1C的面积最大,所以大棱柱表面积的最小值为2S-2四边形 1૕1૕=4+82.。

高中数学必修2全册课时同步测试卷及答案

高中数学必修2全册课时同步测试卷及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是() A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8. 如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

人教版高中数学必修2同步章节训练题及答案全册汇编

人教版高中数学必修2同步章节训练题及答案全册汇编

高中数学必修2全册同步练习题目录1-1-1 棱柱、棱锥、棱台的结构特征1-1-2 圆柱、圆锥、圆台、球的结构特征、简单组合体的结构特征1-2-1、2 中心投影与平行投影空间几何体的三视图1-2-3 空间几何体的直观图1-3-1-1 柱体、锥体、台体的表面积1-3-1-2 柱体、锥体、台体的体积1-3-2 球的体积和表面积高中数学第一章综合素能检测2-1-1 平面2-1-2 空间中直线与直线之间的位置关系2-1-3、4 空间中直线与平面之间的位置关系平面与平面之间的位置关系2-2-1 直线与平面平行的判定2-2-2 平面与平面平行的判定2-2-3 直线与平面平行的性质2-2-4 平面与平面平行的性质2-3-1 直线与平面垂直的判定2-3-2 平面与平面垂直的判定2-3-3 直线与平面垂直的性质2-3-4 平面与平面垂直的性质高中数学第二章综合素能检测3-1-1 倾斜角与斜率3-1-2 两条直线平行与垂直的判定3-2-1 直线的点斜式方程3-2-2 直线的两点式方程3-2-3 直线方程的一般式3-3-1 两条直线的交点坐标3-3-2 两点间的距离公式3-3-3、4 点到直线的距离两条平行直线间的距离高中数学第三章综合检测4-1-1 圆的标准方程4-1-2 圆的一般方程4-2-1 直线与圆的位置关系4-2-2 圆与圆的位置关系4-2-3 直线与圆的方程的应用4-3-1、2 空间直角坐标系空间两点间的距离公式高中数学第四章综合检测一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行[答案] D2.下列几何体中,不属于多面体的是()A.立方体B.三棱柱C.长方体D.球[答案] D3.如图所示的几何体是()A.五棱锥B.五棱台C.五棱柱D.五面体[答案] C4.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形[答案] D5.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个.() A.3B.4C.5D.6[答案] C[解析]由于顶角之和小于360°,故选C.6.下面描述中,不是棱锥的几何结构特征的为()A.三棱锥有四个面是三角形B.棱锥都是有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱交于一点[答案] B7.下列图形经过折叠不能围成一个棱柱的是()[答案] B8.(2012-2013·嘉兴高一检测)如下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] B[解析]在图(2)、(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)、(3)完全一样,而(1)、(4)则不同[解题提示]让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.二、填空题9.图(1)中的几何体叫做________,AA1、BB1等叫它的________,A、B、C1等叫它的________.[答案]棱柱侧棱顶点10.图(2)中的几何体叫做________,P A、PB叫它的________,平面PBC、PCD叫做它的________,平面ABCD叫它的________.[答案]棱锥侧棱侧面底面11.图(3)中的几何体叫做________,它是由棱锥________被平行于底面ABCD的平面________截得的.AA′,BB′叫它的__________,平面BCC′B′、平面DAA′D′叫它的________.[答案]棱台O-ABCD A′B′C′D′侧棱侧面12.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③水面EFGH始终为矩形.其中正确的命题序号是________.[答案]①③[解析]根据棱柱的定义及结构特征来判断.在棱柱中因为有水的部分和无水的部分始终有两个面平行,而其余各面易证是平行四边形,故①正确;而随着倾斜程度的不同,水面EFGH的面积是会改变的,但仍为矩形故②错误;③正确.三、解答题13.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.[解析](1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确,五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.14.如右图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解析]这个几何体是由两个同底面的四棱锥组合而成的正八面体.有8个面,都是全等的正三角形;有6个顶点;有12条棱.15.已知正方体ABCD-A1B1C1D1,图(1)中截去的是什么几何体?图(2)中截去一部分,其中HG∥AD∥EF,剩下的几何体是什么?若再用一个完全相同的正方体放在第一个正方体的左边,它们变成了一个什么几何体?[解析]三棱锥五棱柱A1B1BEH-D1C1CFG长方体16.一个几何体的表面展开平面图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?[解析](1)该几何体是四棱台;(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.一、选择题1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面[答案] C[解析]由圆锥的概念知,直角三角形绕它的一条直角边所在直线旋转一周所围成的几何体是圆锥.强调一定要绕着它的一条直角边,即旋转轴为直角三角形的一条直角边所在的直线,因而C错.2.正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥[答案] D3.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心[答案] D[解析]圆锥的母线长与底面直径的大小不确定,则A项不正确;圆柱的母线与轴平行,则B项不正确;圆台的母线与轴相交,则C项不正确;很明显D项正确.4.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体[答案] B[解析]圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.5.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为()A.10 B.20C.40 D.15[答案] B[解析]圆柱的轴截面是矩形,其一边为圆柱的母线,另一边为圆柱的底面圆的直径.因而,轴截面的面积为5×4=20.6.在空间,到定点的距离等于定长的所有点的集合是()A.球B.正方体C.圆D.球面[答案] D7.(2012-2013·南京模拟)经过旋转可以得到图1中几何体的是图2中的()[答案] A[解析]观察图中几何体的形状,掌握其结构特征,其上部为一个圆锥,下部是一个与圆锥同底的圆台,圆锥可由一直角三角形以过一直角边的直线为轴旋转一周得到,圆台可由一直角梯形绕过垂直于两底的腰的直线为轴旋转而成,通过上述判断再对选项中的平面图形适当分割,只有A适合.故正确答案为A.8.图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是()A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(5)[答案] D[解析]圆锥除过轴的截面外,其它截面截圆锥得到的都不是三角形.二、填空题9.图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.[答案]球球心半径直径10.图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.[答案] 圆柱 母线 底面11.图③中的几何体叫做________,SB 为叫它的________. [答案] 圆锥 母线12.图④中的几何体叫做________,AA ′叫它的________,⊙O ′及其内部叫它的________,⊙O 及其内部叫它的________,它还可以看作直角梯形OAA ′O ′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.[答案] 圆台 母线 上底面 下底面 垂直于两底的腰OO ′ 三、解答题13.说出下列7种几何体的名称.[解析]a是圆柱,b是圆锥,c是球,d、e是棱柱,f是圆台,g 是棱锥.14.说出如图所示几何体的主要结构特征.[解析](1)是一个六棱柱中挖去一个圆柱;(2)是一个圆台与一个圆柱的组合体;(3)是两个四棱锥构成的组合体.15.如图所示,几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.[解析]先出画几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:16.如图所示,在长方体ABCD-A′B′C′D′中,AB=2 cm,AD=4 cm,AA′=3 cm.求在长方体表面上连接A、C′两点的诸曲线的长度的最小值.[解析]将长方体的表面展开为平面图,这就将原问题转化为平面问题.本题所求必在下图所示的三个图中,从而,连接AC′的诸曲线中长度最小的为41 cm(如图乙所示).一、选择题1.一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱[答案] C2.已知某空间几何体的三视图如图所示,则此几何体为()A.圆台B.四棱锥C.四棱柱D.四棱台[答案] D3.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2) B.(2)(3)C.(3)(4) D.(1)(4)[答案] D4.(2012-2013·安徽淮南高三模拟)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④[答案] D[解析]①正方体,三视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三视图各不相同;④圆台,正视图和侧视图相同.[点评]熟悉常见几何体的三视图特征,对于画几何体的直观图是基本的要求.下图是最基本的常见几何体的三视图.[答案] C[解析]结合俯视图的定义,仔细观察,易得答案C.6.一个几何体的三视图如图,则组成该组合体的简单几何体为()A.圆柱与圆台B.四棱柱与四棱台C.圆柱与四棱台D.四棱柱与圆台[答案] B[解析]该几何体形状如图.上部是一个四棱柱,下部是一个四棱台.7.如图所示几何体的正视图和侧视图都正确的是()[答案] B8.(2011·新课标全国高考)在一个几何体的三视图中,主视图和俯视图如右图所示,则相应的侧视图可以为()[答案] D[解析]此几何体为一个半圆锥和一个半三棱锥的组合体,只有D项符合题意.二、填空题9.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是________.[答案]②④⑤[解析]三角形的投影是线段成三角形;直线的投影是点或直线;平行四边形的投影是线段或平行四边形;四面体的投影是三角形或四边形;球的投影是圆.10.由若干个小正方体组成的几何体的三视图如下图,则组成这个组合体的小正方体的个数是________.[答案] 5[解析]由三视图可作出直观图,由直观图易知共有5个小正方体.11.(2012~2013·烟台高一检测)已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有________.[答案]①②③④12.(2012-2013·湖南高三“十二校联考”)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用________个这样的几何体可以拼成一个棱长为4的正方体.[答案] 3[解析]该几何体是四棱锥,其底面是边长为4的正方形,高等于4,如图(1)所示的四棱锥A-A1B1C1D1,如图(2)所示,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A -DD1C1C可以拼成一个棱长为4的正方体.三、解答题13.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.[解析]所给四棱锥的三视图如下图.[点评](1)画三视图时,务必做到正视图与侧视图的高度一致(即所谓的高平齐)、正视图与俯视图的长度一致(即所谓的“长对正”)、侧视图与俯视图的宽度一致(即所谓的“宽相等”).(2)习惯上将侧视图放在正视图的右侧,将俯视图放在正视图的下方.[拓展提高]1.三视图中各种数据的对应关系:(1)正视图中AB的长对应原四棱锥底面多边形的左右方向的长度,AC、BC的长则不对应侧棱的长,它们对应四棱锥的顶点到底面左、右两边的距离.(2)侧视图中,EF的长度对应原四棱锥底面的前后长度,GE、GF的长度则是四棱锥顶点与底面前后两边的距离.(3)俯视图中HIJK的大小与四棱锥底面的大小形状完全一致,而OK,OI,OJ,OH的大小,则为四棱锥的顶点在底面上的投影到底面各顶点的距离.2.误区警示:正视图、侧视图中三角形的腰长有的学生会误认为是棱锥的侧棱长,实则不然.弄清一些数据的对应关系,是后面进行相关计算的前提.14.依所给实物图的形状,画出所给组合体的三视图.[解析]图中所给几何体是一个圆柱和一个正六棱柱的组合体,在中心以中心轴为轴线挖去一个小圆柱,故其三视图如下:15.说出下列三视图表示的几何体:[解析]16.根据下列图中所给出的一个物体的三视图,试画出它的形状.[答案]所对应的空间几何体的图形为:一、选择题1.如果平面图形中的两条线段平行且相等,那么在它的直观图中对应的这两条线段()A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等[答案] A2.给出以下关于斜二测直观图的结论,其中正确的个数是()①角的水平放置的直观图一定是角.②相等的角在直观图中仍相等.③相等的线段在直观图中仍然相等.④若两条线段平行,则在直观图中对应的两条线段仍然平行.A.0 B.1C.2 D.3[答案] C[解析]由斜二测画法规则可知,直观图保持线段的平行性,∴④对,①对;而线段的长度,角的大小在直观图中都会发生改变,∴②③错.3.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上说法正确的是()A.①B.①②C.③④D.①②③④[答案] B[解析]根据画法规则,平行性保持不变,与y轴平行的线段长度减半.4.如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是()[答案] A[解析]由几何体直观图画法及立体图形中虚线的使用可知A正确.5.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC[答案] D[解析]△ABC是直角三角形,且∠ABC=90°,则AC>AB,AC >AD,AC>BC.6.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,若按的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为() A.4 cm,1 cm, 2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.2 cm,0.5 cm,1 cm,0.8 cm[答案] C[解析]由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm和1.6 cm,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm,2 cm,1.6 cm.7.如图为一平面图形的直观图,则此平面图形可能是选项中的()[答案] C[解析]由直观图一边在x′轴上,一边与y′轴平行,知原图为直角梯形.8.在下列选项中,利用斜二测画法,边长为1的正三角形ABC的直观图不是全等三角形的一组是( )[答案] C[解析] C 中前者画成斜二测直观图时,底AB 不变,原来高h 变为h 2,后者画成斜二测直观图时,高不变,边AB 变为原来的12.二、填空题9.斜二测画法中,位于平面直角坐标系中的点M (4,4)在直观图中的对应点是M ′,则点M ′的坐标为________,点M ′的找法是________.[答案] M ′(4,2) 在坐标系x ′O ′y ′中,过点(4,0)和y ′轴平行的直线与过点(0,2)和x ′轴平行的直线的交点即是点M ′.[解析] 在x ′轴的正方向上取点M 1,使O 1M 1=4,在y ′轴上取点M 2,使O ′M 2=2,过M 1和M 2分别作平行于y ′轴和x ′轴的直线,则交点就是M ′.10.如右图,水平放置的△ABC 的斜二测直观图是图中的△A ′B ′C ′,已知A ′C ′=6,B ′C ′=4,则AB 边的实际长度是________.[答案] 10[解析] 由斜二测画法,可知△ABC 是直角三角形,且∠BCA =90°,AC =6,BC =4×2=8,则AB =AC 2+BC 2=10.11.如图,是△AOB 用斜二测画法画出的直观图,则△AOB 的面积是________.[答案] 16[解析] 由图易知△AOB 中,底边OB =4, 又∵底边OB 的高为8, ∴面积S =12×4×8=16.12.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是________?[答案]8[解析]原图形为OABC为平行四边形,OA=1,AB=OA2+OB2=3,∴四边形OABC周长为8.三、解答题13.用斜二测画法画出下列图形的直观图(不写画法).[解析]14.如图所示,四边形ABCD 是一个梯形,CD ∥AB ,CD =AO =1,三角形AOD 为等腰直角三角形,O 为AB 的中点,试求梯形ABCD 水平放置的直观图的面积.[解析] 在梯形ABCD 中,AB =2,高OD =1,由于梯形ABCD 水平放置的直观图仍为梯形,且上底CD 和下底AB 的长度都不变,如图所示,在直观图中,O ′D ′=12OD ,梯形的高D ′E ′=24,于是梯形A ′B ′C ′D ′的面积为12×(1+2)×24=328.15.已知几何体的三视图如下,用斜二测画法,画出它的直观图(直接画出图形,尺寸不作要求).[解析]如图.16.如图所示,直角梯形ABCD中,AD∥BC,且AD>BC,该梯形绕边AD所在直线EF旋转一周得一几何体,画出该几何体的直观图和三视图.[分析]该几何体是一个圆锥和一个圆柱拼接成的简单组合体.[解析]直观图如图a所示,三视图如图b所示.一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍 D .2倍[答案] D[解析] 由已知得l =2r ,S 侧S 底=πrl πr 2=lr =2,故选D.2.长方体的高为1,底面积为2,垂直于底的对角面的面积是5,则长方体的侧面积等于( )A .27B .4 3C .6D .3[答案] C[解析] 设长方体的长、宽、高分别为a 、b 、c , 则c =1,ab =2,a 2+b 2·c =5, ∴a =2,b =1,故S 侧=2(ac +bc )=6.3.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π[答案] A[解析] 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,∴S 全=2πr 2+2πr ·h =2πr 2(1+2π)又S 侧=h 2=4π2r 2,∴S 全S 侧=1+2π2π.[点评] 圆柱的侧面展开图是一个矩形,矩形两边长分别为圆柱底面周长和高;圆锥侧面展开图是一个扇形,半径为圆锥的母线,弧长为圆锥底面周长;圆台侧面展开图是一个扇环,其两段弧长为圆台两底周长,扇形两半径的差为圆台的母线长,对于柱、锥、台的有关问题,有时要通过侧面展开图来求解.4.将一个棱长为a 的正方体,切成27个全等的小正方体,则表面积增加了( )A .6a 2B .12a 2C .18a 2D .24a 2[答案] B[解析] 原来正方体表面积为S 1=6a 2,切割成27个全等的小正方体后,每个小正方体的棱长为13a ,其表面积为6×⎝ ⎛⎭⎪⎫13a 2=23a 2,总表面积S 2=27×23a 2=18a 2,∴增加了S 2-S 1=12a 2.5.如图所示,圆台的上、下底半径和高的比为,母线长为10,则圆台的侧面积为( )A .81πB .100πC .14πD .169π[答案] B[解析] 圆台的轴截面如图,设上底半径为r ,则下底半径为4r ,高为4r .因为母线长为10,所以在轴截面等腰梯形中,有102=(4r )2+(4r -r )2.解得r =2.所以S 圆台侧=π(r +4r )·10=100π,故选B.6.如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的全面积为( )A.3π2 B .2π C .πD .4π[答案] A[解析] 由三视图可知,该几何体是底半径为12,高为1的圆柱,故其全面积S =2π×⎝ ⎛⎭⎪⎫122+2π×12×1=3π2.7.(2012-2013·安徽合肥一模)如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π[答案] B[解析] 该几何体是两底面半径分别为1、2,母线长为4的圆台,则其侧面积是π(1+2)×4=12π.8.(2011·海南、宁夏高考)一个棱锥的三视图如图所示,则该棱锥的全面积(单位:cm 2)为( )A .48+12 2B .48+24 2C .36+12 2D .36+24 2[答案] A[解析] 由三视图可得:底面为等腰直角三角形,腰长为6,面积为18;垂直于底面的面为等腰三角形,面积为12×62×4=122;其余两个面为全等的三角形,每个三角形的面积都为12×6×5=15.所以全面积为48+12 2.二、填空题9.已知圆柱OO ′的母线l =4 cm ,全面积为42π cm 2,则圆柱OO ′的底面半径r = ________cm.[答案] 3[解析] 圆柱OO ′的侧面积为2πrl =8πr (cm 2),两底面积为2×πr 2=2πr 2(cm 2),∴2πr 2+8πr =42π, 解得r =3或r =-7(舍去),∴圆柱的底面半径为3 cm.10.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.[答案] 24+2 3[解析] 该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(12×2×3)+3×(4×2)=24+2 3.11.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,则该组合体的表面积等于________.[答案] (410+28)π[解析] 挖去的圆锥的母线长为62+22=210,则圆锥的侧面积等于410π.圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面积为π×22=4π,所以组合体的表面积为410π+24π+4π=(410+28)π.12.下图中,有两个相同的直三棱柱,高为2a ,底面三角形的三边长分别为3a 、4a 、5a (a >0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中表面积最小的是一个四棱柱,则a 的取值范围是________.[答案] 0<a <153[解析] 底面积为6a 2,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:S 1=2×6a 2+2(10+8+6)=12a 2+48, S 2=24a 2+2(10+8)=24a 2+36, S 3=24a 2+2(10+6)=24a 2+32. 拼成四棱柱时只有一种情况:表面积为(8+6)×2+4×6a 2=24a 2+28.由题意得24a 2+28<12a 2+48,解得0<a <153. 三、解答题13.已知各棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S -ABCD ,如图所示,求它的表面积.[分析] 求各侧面的面积→ 求侧面积→求底面积→求表面积[解析] ∵四棱锥S -ABCD 的各棱长均为5, 各侧面都是全等的正三角形, 设E 为AB 的中点, 则SE ⊥AB ,∴S 侧=4S △SAB =4×12×5×532=253, S 底=52=25,∴S 表面积=S 侧+S 底=253+25=25(3+1). 14.正四棱台两底面边长分别为a 和b (a <b ).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.[解析] (1)如图,设O 1、O 分别为上、下底面的中心,过C 1作C 1E ⊥AC 于E ,过E 作EF ⊥BC ,连接C 1F ,则C 1F 为正四棱台的斜高.由题意知∠C 1CO =45°,CE =CO -EO =CO -C 1O 1=22(b -a ), 在Rt △C 1CE 中,C 1E =CE =22(b -a ), 又EF =CE ·sin45°=12(b -a ), ∴C 1F =C 1E 2+EF 2 =[22(b -a )]2+[12(b -a )]2=32(b -a ).∴S 侧=12(4a +4b )×32(b -a )=3(b 2-a 2). (2)由S 侧=a 2+b 2,∴12(4a +4b )·h 斜=a 2+b 2, ∴h 斜=a 2+b 22(a +b ).又EF =b -a 2,∴h =h 2斜-EF 2=aba +b.15.(2012-2013·嘉兴高一检测)如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解析] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,∴AE AO =EB OC ,即323=r 2,∴r =1S 底=2πr 2=2π,S 侧=2πr ·h =23π. ∴S =S 底+S 侧=2π+23π=(2+23)π.16.已知某几何体的三视图如图,求该几何体的表面积.(单位:cm)[解析] 几何体的直观图如图.这是底面边长为4,高为2的同底的正四棱柱与正四棱锥的组合体,易求棱锥的斜高h ′=22,其表面积S =42+4×4×2+⎝ ⎛⎭⎪⎫12×4×22×4=48+16 2 cm 2.一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( ) A .6 3 B .3 6 C .11 D .12[答案] A[解析] 设长方体长、宽、高分别为a 、b 、c ,则ab =2,ac =6,bc =9,相乘得(abc )2=108,∴V =abc =6 3.2.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为( )A .32 3B .28 3C .24 3D .20 3 [答案] B[解析] 上底面积S 1=6×34×22=63, 下底面积S 2=6×34×42=243, 体积V =13(S 1+S 2+S 1S 2)·h=13(63+243+63·243)×2=28 3.3.(2012~2013学年枣庄模拟)一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )。

人教版高中数学必修第二册8.4——8.5同步测试滚动训练(含答案)

人教版高中数学必修第二册8.4——8.5同步测试滚动训练(含答案)

人教版高中数学必修第二册8.4——8.5同步测试滚动训练(时间:45分钟分值:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.空间中,如果两个角的两条边分别对应平行,那么这两个角()A.相等B.互补C.相等或互补D.不能确定2.下列条件中能推出平面α与平面β平行的是()A.平面α内有无数条直线与β平行B.平面α内的任意一条直线都与β平行C.直线m∥α,m∥β,且直线m不在α内,也不在β内D.直线m⊂α,直线l⊂β,且m∥β,l∥α3.给出下列四个条件:①空间中的三个点;②一条直线和一个点;③两条平行的直线;④两条垂直的直线.其中能确定一个平面的是()A.①②③④B.①③C.③④D.③4.已知m,n,l1,l2表示直线,α,β表示平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l25.如图G6-1所示,P,Q,R,S分别是所在棱的中点,则这四个点不共面的是()ABCD图G6-16.如图G6-2所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,则下列结论中正确的是()图G6-2A.MN∥APB.MN∥BD1C.MN∥平面BB1D1DD.MN∥平面BDP7.如图G6-3,在长方体ABCD-A1B1C1D1中,AA1=6,AB=3,AD=8,点M是棱AD的中点,点N在棱AA1上,且满足AN=2NA1,P是侧面ADD1A1内一动点(含边界),若C1P∥平面CMN,则线段C1P 长度的取值范围是()图G6-3A.[3,17]B.[4,5]C.[3,5]D.[17,5]8.在三棱台ABC-A1B1C1中,点D在A1B1上,且AA1∥BD,点M是△A1B1C1内(含边界)的一个动点,且平面BDM∥平面A1C1CA,则动点M的轨迹是()A.平面B.直线C.线段,但只含1个端点D.圆二、填空题(本大题共4小题,每小题5分,共20分)9.空间三个平面之间的交线条数为n,则n的可能值为.10.过平面外一点作与该平面平行的平面有个;过平面外一点作该平面的平行直线有条.11.如图G6-4,在正方体ABCD-A1B1C1D1中,M,N,P,Q,R,S分别是AB,BC,C1D1,C1C,A1B1,BB1的中点,给出下列说法:①PQ与RS共面;②MN与RS共面;③PQ与MN共面.其中正确说法的序号是.图G6-412.在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是DD1和AB的中点,若平面B1EF交AD 于点P,则PE=.三、解答题(本大题共3小题,共40分)13.(10分)正方体ABCD-A1B1C1D1如图G6-5所示.(1)若E,F分别为AA1,CC1的中点,画出过点D1,E,F的截面;(2)若M,N,P分别为A1B1,BB1,B1C1上的点(均不与B1重合),求证:△MNP是锐角三角形.图G6-514.(15分)如图G6-6所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形,AB∥CD,CD=2AB,P,Q分别是CC1,C1D1的中点,求证:平面AD1C∥平面BPQ.图G6-615.(15分)如图G6-7所示,四边形EFGH为四面体ABCD的一个截面,且该截面为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.图G6-7参考答案与解析1.C[解析]由等角定理知选C.2.B[解析]平面α内有无数条直线与β平行,则α与β相交或平行,故A不满足题意;平面α内的任意一条直线都与β平行,则平面α内一定有两条相交直线与平面β平行,则由面面平行的判定定理得α∥β,故B满足题意;直线m∥α,m∥β,且直线m不在α内,也不在β内,则α与β相交或平行,故C不满足题意;直线m⊂α,直线l⊂β,且m∥β,l∥α,则α与β相交或平行,故D不满足题意.故选B.3.D[解析]对于①,当这三个点共线时,经过这三个点的平面有无数个,故①不满足题意.对于②,当此点在此直线上时,有无数个平面经过这条直线和这个点,故②不满足题意.对于③,根据推论3可知两条平行直线唯一确定一个平面,故③满足题意.对于④,当这两条直线是异面直线时,这两条直线不同在任何一个平面内,不能确定一个平面,故④不满足题意.故选D.4.D[解析]由题意得,m,n是平面α内的两条直线,l1,l2是平面β内的两条相交直线,要使α∥β,一个平面内有两条相交直线和另一个平面平行即可,故选D.5.D[解析]对于选项A,连接PS,QR,易证PS∥QR,∴P,S,R,Q四点共面;对于选项B,过P,S,R,Q可作一个正六边形,∴P,S,R,Q四点共面;对于选项C,连接PQ,RS,易证PQ∥RS,∴P,Q,R,S四点共面.故选D.6.C[解析]易知MN与AP是异面直线,故A中结论不正确.易知MN与BD1是异面直线,故B中结论不正确.连接AC,与BD交于点O,则O为BD的中点,连接OD1,ON.在正方体ABCD-A1B1C1D1中,∵M,N分别是C1D1,BC的中点,∴ON∥CD∥D1M,ON=12CD=D1M,∴四边形MNOD1为平行四边形,∴MN∥OD1.∵MN⊄平面BB1D1D,OD1⊂平面BB1D1D,∴MN∥平面BB1D1D,故C中结论正确.由选项C知MN∥平面BB1D1D,而平面BB1D1D和平面BDP相交,∴MN与平面BDP不平行,故D中结论不正确.故选C.7.D[解析]取A1D1的中点E,在DD1上取点F,使D1F=2DF,连接EF,C1E,C1F,则易知平面CMN ∥平面C1EF.∵P是侧面ADD1A1内一动点(含边界),C1P∥平面CMN,∴P∈线段EF,∵C1E= 1 12+ 1 2=5,C1F= 1 12+ 1 2=5,∴当P与EF的中点重合时,线段C1P的长度取得最小值,当P与点E或点F重合时,线段C1P的长度取得最大值.取EF的中点O,连接C1O,则由题意知EF=42,C1O= 1 2- 2=25−(22)2=17,∴线段C1P长度的取值范围是[17,5].故选D .8.C [解析]如图所示,在平面A 1B 1C 1内,过D 作DN ∥A 1C 1,交B 1C 1于点N ,连接BN.∵AA 1∥BD ,AA 1⊂平面A 1C 1CA ,BD ⊄平面A 1C 1CA ,∴BD ∥平面A 1C 1CA.∵DN ∥A 1C 1,DN ⊄平面A 1C 1CA ,A 1C 1⊂平面A 1C 1CA ,∴DN ∥平面A 1C 1CA.∵BD ∩DN=D ,∴平面BDN ∥平面A 1C 1CA.∵点M 是△A 1B 1C 1内(含边界)的一个动点,且平面BDM ∥平面A 1C 1CA ,∴M 的轨迹是线段DN ,且M 与D 不重合,即动点M 的轨迹是线段,但只含1个端点.故选C .9.0,1,2,3[解析]三个平面可以互相平行,可以交于同一条直线,可以两个平面平行且被第三个平面所截,也可以两两相交,故答案为0,1,2,3.10.1无数[解析]过平面外一点作与该平面平行的平面,这样的平面有且只有1个.在符合题意的平面上过这个点的直线有无数条,这些直线都与原平面平行.11.①③[解析]连接PR ,QS ,因为P ,Q ,R ,S 分别是C 1D 1,C 1C ,A 1B 1,B 1B 的中点,所以PR B 1C 1,QS B 1C 1,所以PRQS ,所以四边形PRSQ 是平行四边形,故①正确;连接QN ,C 1B ,PM ,则由题意得QN 12C 1B PM ,所以PQ 与MN 共面,故③正确;因为MN 与RS 既不平行也不相交,故②错误.12[解析]过点C 1作C 1G ∥B 1F ,交CD 于点G ,过点E 作HQ ∥C 1G ,交CD 的延长线于点H ,交C 1D 1于点Q ,连接B 1Q ,HF 交AD 于点P ,则HQ ∥B 1F ,所以Q ,H ,F ,B 1四点共面.由正方体的棱长为1,易知CG=BF=12.设D 1Q=x ,由题知HD=D 1Q ,因为C 1Q ∥HG ,HQ ∥C 1G ,所以四边形HQC 1G 为平行四边形,所以HG=QC 1,即x+12=1-x ,解得x=1.由题可知△PDH ∽△PAF ,所以= =2,则PD=13.在Rt △PED 中,可得PE= 2+ 2=13.解:(1)过点D 1,E ,F 的截面如图所示.(2)证明:设MB 1=a ,NB 1=b ,PB 1=c ,则MN 2=a 2+b 2,NP 2=b 2+c 2,MP 2=c 2+a 2,所以在△MNP 中,cos M= 2+ 2- 22 · =2 22 · >0.同理可得cos N>0,cos P>0.故△MNP的三个内角均为锐角,即△MNP是锐角三角形.14.证明:在直四棱柱ABCD-A1B1C1D1中,易知C1D1∥CD,C1D1=CD.∵AB∥CD,∴AB∥C1D1,即D1Q∥AB.∵Q为C1D1的中点,∴D1Q=12C1D1=12CD=AB,∴四边形D1QBA为平行四边形,∴AD1∥BQ,又AD1⊂平面AD1C,BQ⊄平面AD1C,∴BQ∥平面AD1C.∵P,Q分别为CC1,C1D1的中点,∴PQ∥CD1,又PQ⊄平面AD1C,CD1⊂平面AD1C,∴PQ∥平面AD1C.∵BQ∩PQ=Q,∴平面AD1C∥平面BPQ.15.解:(1)证明:∵四边形EFGH为平行四边形,∴EF∥HG,又HG⊂平面ABD,EF⊄平面ABD,∴EF∥平面ABD.∵EF⊂平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,又AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.(2)设EF=x(0<x<4),∵四边形EFGH为平行四边形,∴ = 4,则 6= = - =1- 4,∴FG=6-32x,∴四边形EFGH的周长l=2x+6-32x=12-x,又0<x<4,∴8<l<12,即四边形EFGH周长的取值范围是(8,12).。

高中数学必修四同步练习及答案(新课标人教A版)

高中数学必修四同步练习及答案(新课标人教A版)

高之老阳三干创作中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ................................................................................................................ 0 1.2任意角的三角函数 ............................................................................................................ 2 1.3三角函数的诱导公式 ........................................................................................................ 4 1.4三角函数的图像与性质 . (6)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ................................. 9 第一章 三角函数基础过关测试卷 ...................................................................................... 11 第一章三角函数单元能力测试卷 ........................................................................................ 132.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 16 2.2向量减法运算与数乘运算 .............................................................................................. 18 2.3平面向量的基本定理及坐标暗示 .................................................................................. 20 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 22 第二章平面向量基础过关测试卷 ........................................................................................ 24 第二章平面向量单元能力测试卷 ........................................................................................ 263.1两角和与差的正弦、余弦和正切公式 .......................................................................... 29 3.2简单的三角恒等变换 ...................................................................................................... 31 第三章三角恒等变换单元能力测试卷 ................................................................................ 33 人教A 版必修4练习答案1.1任意角和弧度制 .............................................................................................................. 36 1.2任意角的三角函数 .......................................................................................................... 36 1.3三角函数的诱导公式 ...................................................................................................... 37 1.4三角函数的图像与性质 .. (37)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ............................... 38 第一章三角函数基础过关测试卷 ........................................................................................ 39 第一章三角函数单元能力测试卷 ........................................................................................ 39 2.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 40 2.2向量减法运算与数乘运算 .............................................................................................. 40 2.3平面向量的基本定理及坐标暗示 .................................................................................. 40 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 41 第二章平面向量基础过关测试卷 ........................................................................................ 42 第二章平面向量单元能力测试卷 ........................................................................................ 42 3.1两角和与差的正弦、余弦和正切公式 .......................................................................... 43 3.2简单的三角恒等变换 ...................................................................................................... 43 第三章三角恒等变换单元能力测试卷 .. (44)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( ) A.,398 - 38 B.,398 - 142 C.,398 - 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 ( )A.,36{ -54} B.,126{ -144} C.,126{ -,36 -,54144}D.,126{ -54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则 ( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于 180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55 C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( ) A.()Z k k k ∈+,)12(,2ππ B.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23- C.m 32 D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa + C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0B.1C.1- D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形二、填空题(每题5分,共20分) 9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为. 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( )52 B 25 C π2 D π53.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 10 D.7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象 ( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图. 16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值.(1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y , 1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.23 3.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( )A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( )A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 8.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,而且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-= C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( )A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( ) A 5 B 6 C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域:(1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际布景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b +( ) A.0 B.3 C.22+ D.225.58==的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是 ( ) A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =+ ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==__________. 12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( ) A.2a b - B.2b a - C.b a - D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可暗示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________,两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 暗示DE 、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标暗示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是暗示平面内所有向量的一组基底,下列四组向量中,不克不及作为一组基底的是( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+纷歧定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与 CD 交于点F ,若,,b BD a AC == 则AF 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求yx ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅③2a =④()()c b a c b a ⋅⋅=⋅⋅b a ⋅≤A.0B.1C.2D.33.对于非零向量b a ,,下列命题中正确的是( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥D.b a c b c a =⇒⋅=⋅4.下列四个命题,真命题的是( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ;D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量b a ,a ,1==与b 的夹角为 120,则=⋅+⋅b a a a( ) A.21B.21- C.23D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为( ) A.2 B.2± C.1 D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ()A.4πB.3πC.43πD.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________.12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====-b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b 的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1( 4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ 6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;A C OD③零向量不克不及作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分) 12.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35- B.-59 C.53- D.95- 4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( )A. 60B. 60-C. 120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π 9.若b a b a ⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3-10.已知a =(2,3),b =(4-,7),则a 在b 上的投影值为 ( ) A.13 B.513 C.565 D.65N A B D M C 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分) 13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b 的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a c μλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________.三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=, 求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标;2)求证:EF ∥AB .19.24==b a a b 夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)b a 23+. 20.已知)2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a 3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23 D.21-3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4- 9.函数56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=, (1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan的值. 16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A.23 B.23- C.21 D.21-2.下列各式中,最小的是 ( ) A.40cos 22B.6cos 6sin 2 C.37sin 50cos 37cos 50sin - D.41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A.2πB.πC.π2D.π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A.21B.23C.21- D.3- 5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( )A.97-B.31- C.31 D.976.若函数x x y tan 2sin =,则该函数有 ( ) A.最小值0,无最大值B.最大值2,无最小值C.最小值0,最大值2D.最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A.2cosαB.2sinα C.2cos α- D.2sin α- 8.若()x x f 2sin tan =,则()=-1f ( ) A.1B.1- C.21D.21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45D.431+ 2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( ) 4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )。

最新人教版高中数学必修一课时同步辅导与测试题(全册 共169页 附解析)

最新人教版高中数学必修一课时同步辅导与测试题(全册 共169页 附解析)

最新人教版高中数学必修一课时同步辅导与测试题(全册共169页附解析)目录第1章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集章末知识整合第一章末过关检测卷(一)第2章函数2.1 函数的概念2.1.1 函数的概念和图象2.1.2 函数的表示方法2.2 函数的简单性质2.2.1 函数的单调性2.2.2 函数的奇偶性2.3 映射的概念章末知识整合第二章末过关检测卷(二)第3章指数函数、对数函数和幂函数3.1 指数函数3.1.1 分数指数幂3.1.2 指数函数3.2 对数函数3.2.1 对数3.2.2 对数函数3.3 幂函数3.4 函数的应用3.4.1 函数与方程第1课时函数的零点第2课时用二分法求方程的近似解3.4 函数的应用3.4.2 函数模型及其应用章末知识整合第三章末过关检测卷(三)模块测试题第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、第四象限内的点集解析:集合M为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a =-1或a =2.当a =-1时,A ={2,2,4},不满足互异性;当a =2时,A ={2,4,-1}.所以a =-3或a =2.答案:C8.下列各组集合中,表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B级能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B ={x |0≤x <2或x =5}.答案:{x |0≤x <2或x =5}8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则实数a 的值为________.解析:由A ⊇B ,得a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.设全集U =R ,集合A ={x |x ≥0},B ={y |y ≥1},则∁U A 与∁U B 的包含关系是________.解析:因为∁U A ={x |x <0},∁U B ={y |y <1}={x |x <1},所以∁U A ∁U B .答案:∁U A ∁U B10.集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若BA ,则实数a 的取值范围是________.解析:分B =∅和B ≠∅两种情况.答案:{a |a ≤1}11.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________. 解析:因为∅{x |x 2-x +a =0},所以方程x 2-x +a =0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若BA ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.解:由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A .(2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B ={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B =________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A ={x |x >1}.答案:{x |1<x ≤5}9.设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},则a 的取值范围为________.解析:如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.答案:{a |1<a ≤3}10.已知方程x 2-px +15=0与x 2-5x +q =0的解分别为M 和S ,且M ∩S ={3},则p q=________. 解析:因为M ∩S ={3},所以3既是方程x 2-px +15=0的根,又是x 2-5x +q =0的根,从而求出p =8,q =6.则p q =43. 答案:4311.满足条件{1,3}∪A ={1,3,5}的所有集合A 的个数是________.解析:A 可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <2。

高中数学人教A版必修第二册精英同步试题测试:8.1基本立体图形Word版含答案

高中数学人教A版必修第二册精英同步试题测试:8.1基本立体图形Word版含答案

高中数学必修第二册精英同步测试卷:8.1基本立体图形(含解析)1、有下面三组定义:①有两个面平行,其余各面都是四边形,且相邻四边形的公共边都互相平行的几何体叫棱柱;②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数是()A.0 B.1 C.2 D.32、下列命题中,正确的命题是( )A.存在两条异面直线同时平行于同一个平面B.若一个平面内两条直线与另一个平面平行,则这两个平面平行C.底面是矩形的四棱柱是长方体D.棱台的侧面都是等腰梯形3、由命题“周长为定值的长方形中,正方形的面积取得最大”可猜想:在表面积为定值的长方体中()A.正方体的体积取得最大B.正方体的体积取得最小C.正方体的各棱长之和取得最大D.正方体的各棱长之和取得最小4、以下命题中真命题的序号是( )①若棱柱被一平面所截,则分成的两部分不一定是棱柱;②有两个面平行,其余各面都是梯形的几何体叫棱台;③用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台;④有两个面平行,其余各面都是平行四边形的几何体叫棱柱.A. ③④B.①④C. ①②④D. ①5、如图所示,观察四个几何体,其中判断正确的是( )A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱6、某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上( )A.快、新、乐B.乐、新、快C.新、乐、快D.乐、快、新7、如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A.①②B.①③C.①④D.①⑤8、如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为( )A.B.C.D.9、如图所示的几何体是台体的是( )A.B.C.D.10、给出下列命题:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是( )A.①②B.②③C.①③D.②④11、给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是__________(填序号).12、以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②没有公共点的直线是异面直线;③经过一条直线及这条直线外一点有且只有一个平面;④有两个面互相平行,其余各面都是梯形的多面体是棱台;⑤空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补其中正确命题有__________.13、下列说法正确的是__________.①三棱柱有三个侧面、三条侧棱和三个顶点;②四面体有四个面、六条棱和四个顶点;③用一个平面去截棱锥,底面与截面间的部分叫棱台;④棱柱的各条侧棱可以不相等.14、下图中的几何体叫做__________(填“棱柱”“棱锥”或“棱台”) PA 、PB 等是它的__________,PBC 、PCD 等是它的__________,ABCD 是它的__________.15、下图中的几何体叫做__________(填“棱柱”“棱锥”或“棱台”), 1AA 、1BB 等是它的__________,A 、B 、1C 等是它的__________.答案以及解析1答案及解析:答案:B解析:由棱柱的定义可知只有①正确,②中截面必须平行于底面,③中其余各三角形应有一个公共顶点,所以②③都不正确.故选B.2答案及解析:答案:A解析:由空间几何体的概念可知,存在两条异面直线同时平行于同一个平面,A正确;由面面平行的判定定理可知,若一个平面内两条相交直线与另一个平面平行,则这两个平面平行,所以B不正确;底面是矩形的直四棱柱是长方体,所以C不正确;正棱台的侧面都是等腰梯形,所以D不正确,故选A3答案及解析:答案:A解析:4答案及解析:答案:D解析:解:①若棱柱被一平面所截,则分成的两部分不一定是棱柱;正确,当平面与棱柱的所有平面不平行时,截出的两个几何体不是棱柱.②有两个面平行,其余各面都是梯形的几何体叫棱台;不正确,不满足棱台的定义.③用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台;不正确,当平面与底面平行时,底面和截面之间的部分组成的几何体叫圆台.④有两个面平行,其余各面都是平行四边形的几何体叫棱柱.不正确,不满足棱柱的定义.如下图:故选D.5答案及解析:答案:C解析:6答案及解析:答案:A解析:7答案及解析:答案:D解析:选D.一个圆柱挖去一个圆锥,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.8答案及解析:答案:C解析:截面图形应为图C所示的圆环面.9答案及解析:答案:D解析:A、B、C都不是台体.因为A和C都不是由棱锥截得的,故A和C不是台体.B虽然是由棱锥截得的,但截面和底面不平行,故不是台体.D是一个台体,因为它是用平行于圆锥SO底面的平面截圆锥SO而得.10答案及解析:答案:D解析:①所取的两点与圆柱的轴的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线的定义不符.③所取两点连线的延长线不一定与轴交于一点,不符合圆台母线的定义.②④符合圆锥、圆柱母线的定义及性质.故选D.11答案及解析:答案:②④解析:由旋转体的形成与几何特征可知①③错误,②④正确.12答案及解析:答案:③⑤解析:13答案及解析:答案:②解析:三棱柱有六个顶点,所以①错;截面与底面不一定平行,所以③错;棱柱的各条侧棱长相等,所以④错;四面体即三棱锥,有四个面,六条棱和四个顶点,所以②对14答案及解析:答案:棱锥; 侧棱; 侧面; 底面解析:15答案及解析:答案:棱柱; 侧棱; 顶点解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体1.1 空间几何体的结构一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、44.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4 B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3 C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4 D.AB=A1B1,BC=B1C1,CA=C1A15.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形7.图1是由图2中的哪个平面图旋转而得到的()二、填空题8如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为______.9在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_____.10高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是______.11图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是_ ___.(注:把你认为正确的命题的序号都填上)三、解答题12请给以下各图分类.13画一个三棱锥和一个四棱台.14多面体至少有几个面?这个多面体是怎样的几何体?15合下图,说说它们分别是怎样的多面体?16察以下几何体的变化,通过比较,说出他们的特征.17一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长____.1.3 柱体、锥体、台体的表面积一、选择题1.正四棱柱的对角线长是9cm,全面积是144cm2,则满足这些条件的正四棱柱的个数是()A.0个B.1个C.2个D.无数个2.三棱柱ABC—A1B1C1中,AB=AC,且侧面A1ABB1与侧面A1ACC l的面积相等,则∠BB1C1等于()A.45°B.60°C.90°D.120°3.边长为5cm的正方形EFGH是圆柱的轴截面,则从正点沿圆柱的侧面到相对顶点G的最短距离是()A.10cm B.52cmC .512+πcm D .4252+πcm4.中心角为43π,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶8 5.正六棱台的上、下底面的边长分别为a 、b (a <b ),侧面和底面所成的二面角为60°,则它的侧面积是( ) A .33(b 2-a 2) B .23(b 2-a 2)C .3(b 2-a 2)D .23(b 2-a 2)6.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为( ) A .1∶2∶3 B .1∶3∶5 C .1∶2∶4 D .1∶3∶97.若圆台的上、下底面半径的比为3∶5,则它的中截面分圆台上、下两部分面积之比为( ) A .3∶5 B .9∶25C .5∶41D .7∶98.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A .ππ221+B .ππ421+C .ππ21+D .ππ241+9.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94C .41D .3110.一个斜三棱柱,底面是边长为5的正三角形,侧棱长为4,侧棱与底面三角形两边所成的角都是60°,则这个斜三棱柱的侧面积是( )A .40B .)31(20+C .)31(30+D .303 二、填空题11.长方体的高为h ,底面面积是M ,过不相邻两侧棱的截面面积是N ,则长方体的侧面积是______. 12.正四棱台上、下底面的边长为b 、a (a >b )且侧面积等于两底面面积之和,则棱台的高是______. 13.圆锥的高是10 cm ,侧面展开图是半圆,此圆锥的侧面积是_____;轴截面等腰三角形的顶角为______.14.圆台的母线长是3 cm ,侧面展开后所得扇环的圆心角为180°,侧面积为10πcm 2,则圆台的高为_____;上下底面半径为_______. 三、解答题15.已知正三棱台的侧面和下底面所成的二面角为60°,棱台下底面的边长为a ,侧面积为S ,求棱台上底面的边长.16.圆锥的底面半径为5 cm ,高为12 cm ,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱全面积有最大值?最大值是多少?17.圆锥底面半径为r ,母线长是底面半径的3倍,在底面圆周上有一点A ,求一个动点P 自A 出发在侧面上绕一周到A 点的最短路程.1.3 柱体、锥体与台体的体积一、选择题1.若正方体的全面积增为原来的2倍,那么它的体积增为原来的( )A .2倍B .4倍C .2倍D .22倍2.一个长、宽、高分别为a 、b 、c 长方体的体积是8cm 2,它的全面积是32 cm 2,且满足b 2=ac ,那么这个长方体棱长的和是( )A 、28cmB .32 cmC .36 cmD .40 cm3.正六棱台的两底面的边长分别为a 和2a ,高为a ,则它的体积为( )A .32321a B .3233a C .337a D .3237a4.若球的体积与其表面积的数值相等,则球的半径为( )A .1B .3C .2D .215.一个球的外切正方体的全面积的数值等于6cm 2,则此球的体积为( )A .334cm πB .386cm πC .361cm π D .366cm π6.正六棱锥的底面边长为a ,体积为323a ,那么侧棱与底面所成的角为( )A .6πB .4πC .3πD .125π7.正四棱锥的底面面积为Q ,侧面积为S ,则它的体积为( )A 、S Q 31B .)(2122Q S Q -C 、)(2122Q S S -D 、)(6122Q S Q -8.棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是( ) A .1∶7 B .2∶7 C .7∶19 D .3∶169.正方体、等边圆柱与球它们的体积相等,它们的表面积分别为S 1、S 2、S 3,下面关系中成立的是( ) A .S 3>S 2>S 1 B .S 1>S 3>S 2 C .S 1>S 2>S 3 D .S 2>S l >S 310.沿棱长为1的正方体的交于一点的三条棱的中点作一个截面,截得一个三棱锥,那么截得的三棱锥的体积与剩下部分的体积之比是( )A .1∶5B .1∶23C .1∶11D .1∶47 二、填空题11.底面边长和侧棱长都是a 的正三棱锥的体积是_______.12.将4×6的矩形铁皮作为圆柱的侧面卷成一个圆柱,则圆柱的最大体积是_______. 13.半径为1的球的内接正方体的体积是________;外切正方体的体积是_______.14.已知正三棱台上、下底面边长分别为2、4,且侧棱与底面所成角是45°,那么这个正三棱台的体积等于_______. 三、解答题15.三棱锥的五条棱长都是5,另一条棱长是6,求它的体积.16.两底面边长分别是15cm 和10cm 的正三棱台,它的侧面积等于两底面积的和,求它的体积.17.一个圆锥形容器和一个圆柱形容器,它们的轴截面尺寸如图所示,两容器内所盛液体的体积正好相等,且液面高度h 正好相同,求h .18.如图所示,已知正方体ABCD —A 1B 1C l D l 的棱长为a ,E 为棱AD 的中点,求点A 1到平面BED 1的距离.1.4 球的体积和表面积一、选择题1.若球的大圆面积扩大为原来的4倍,则球的表面积比原来增加( ) A .2倍 B .3倍 C .4倍 D ,8倍2.若球的大圆周长是C ,则这个球的表面积是( )A .π42cB .π42cC .π2c D .2πc 23.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是( )A .916πB .38πC .4πD .964π4、球的大圆面积增大为原来的4倍,那么球的体积增大为原来的( ) A .4倍 B .8倍 C .16倍 D .32倍5.三个球的半径之比为1∶2∶3,那么最大球的体积是其余两个球的体积和的( ) A 、1倍 B .2倍 C .3倍 D .4倍6.棱长为1的正方体内有一个球与正方体的12条棱都相切,则球的体积为( )A .4πB .4πC .π32 D .42π7.圆柱形烧杯内壁半径为5cm ,两个直径都是5 cm 的铜球都浸没于烧杯的水中,若取出这两个铜球,则烧杯内的水面将下降( )A 、35cmB .310cmC .340cmD .65cm8.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积为( )A 、916π B .38π C .4π D .964π9.长方体一个顶点上的三条棱的长度分别为3、4、5,且它的8个顶点都在同一球面上,这个球的表面积为( )A .202πB .252πC .50πD .200π 10.等体积的球与正方体,其表面积的大小关系为( ) A .S 球>S 正方体 B .S 球=S 正方体 C .S 球<S 正方体 D .大小关系不确定 二、填空题11.已知三个球的表面积之比为1∶4∶9,若它们的体积依次为V 1、V 2、V 3,则V 1+V 2=_____V 3.12.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为l ,则球的体积为_________.13.将一个玻璃球放人底面面积为64πcm 2的圆柱状容器中,容器水面升高34cm ,则玻璃球的半径为__________.14.将一个半径为R 的木球削成一个尽可能大的正方体,则此正方体的体积为______.15.表面积为Q 的多面体的每个面都外切于半径为R 的一个球,则多面体与球的体积之比为______. 16.国际乒乓球比赛已将“小球”改为“大球”,“小球”的外径为38 mm ,“大球”的外径为40 mm ,则“小球”与“大球”的表面积之比为__________. 三、解答题17.已知正三棱柱的底面边长为1,侧棱长为2,则这样的三棱柱内能否放进一个体积为16的小球?18.用刀切一个近似球体的西瓜,切下的较小部分的圆面直径为30 cm ,高度为5 cm ,该西瓜体积大约有多大?19.三棱锥A -BCD 的两条棱AB =CD =6,其余各棱长均为5,求三棱锥的内切球的体积.20.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.第一章 空间几何体 单元测试1一、选择题1.下图是由哪个平面图形旋转得到的( )A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为( )A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:93.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后 ,剩下的几何体的体积是( )A.23 B. 76 C. 45 D. 564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积 分别为1V 和2V ,则12:V V =( )A. 1:3B. 1:1C. 2:1D. 3:15.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:96.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cm π C. 224cm π,236cm π D. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。

相关文档
最新文档