AES加密算法实验报告
aes实验报告

aes实验报告AES实验报告引言:AES(Advanced Encryption Standard)是一种对称加密算法,被广泛应用于保护敏感数据的安全传输和存储。
本实验旨在探究AES算法的原理和应用,并通过实验验证其加密和解密的效果。
一、AES算法的原理AES算法是一种分组密码算法,将明文分成固定长度的数据块,并通过一系列的加密和解密操作来保护数据的机密性。
AES算法的核心是轮函数,它通过一系列的轮变换来对数据进行加密和解密。
二、实验准备1. 实验环境搭建:在计算机上安装支持AES算法的编程环境,如Python或Java。
2. 实验材料准备:准备一些测试用的明文和密钥,以及相应的加密和解密结果。
三、AES算法的加密过程1. 密钥扩展:AES算法需要对输入的密钥进行扩展,生成一系列的轮密钥。
这些轮密钥用于后续的加密和解密操作。
2. 初始轮:将明文与第一轮密钥进行异或运算。
3. 轮变换:AES算法中的轮变换包括字节代换、行移位、列混淆和轮密钥加。
这些变换操作按照一定的顺序进行,每一轮都会产生一个新的加密结果。
4. 最终轮:在最后一轮中,省略列混淆操作,并将结果与最后一轮密钥进行异或运算。
四、实验步骤1. 选择一组明文和密钥作为输入数据。
2. 使用AES算法对明文进行加密,得到密文。
3. 使用相同的密钥对密文进行解密,得到还原的明文。
4. 比较还原的明文与原始明文是否一致,验证AES算法的正确性。
五、实验结果与分析在实验中,我们选择了一组明文和密钥进行加密和解密操作。
经过实验,我们成功地得到了相应的密文和还原的明文,并与原始明文进行了比较。
结果显示,还原的明文与原始明文完全一致,证明了AES算法的正确性和可靠性。
六、AES算法的应用AES算法在现代密码学中被广泛应用于数据的加密和解密过程。
它可以用于保护敏感数据的安全传输和存储,如网络通信、文件加密和数据库加密等领域。
AES算法具有高度的安全性和可靠性,被认为是目前最强大的对称加密算法之一。
现代密码学实验报告(DES-AES-RSA)

2.AES算法的基本原理和特点。
答:AES加密数据块分组长度必须为128比特,密钥长度可以是128比特、192比特、256比特中的任意一个(如果数据块及密钥长度不足时,会补齐)。AES加密有很多轮的重复和变换。大致步骤如下:1、密钥扩展(KeyExpansion),2、初始轮(Initial Round),3、重复轮(Rounds),每一轮又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey,4、最终轮(Final Round),最终轮没有MixColumns。
//s7
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
//s6
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
static void s_func(bool out[32],const bool in[48]);
//s盒代替
//变换
static void transform(bool *out, bool *in, const char *table, int len);
AES加密算法实验报告

实验报告学号:姓名:专业:班级:第 10 周static void SubBytes(unsigned char p[16]);static void inSubBytes(unsigned char p[16]);static void ShiftRows(unsigned char e[]);static void inShiftRows(unsigned char e[]);static void MatrixToByte(unsigned char e[]);static void inMatrixToByte(unsigned char e[]);static unsigned char FFmul(unsigned char a, unsigned char b);static void KeyAdding(unsigned char state[16], unsigned char k[][4]);static void KeyExpansion(unsigned char* key, unsigned char w[][4][4]);~plaintext();private:};#include""using namespace std;static unsigned char sBox[] = {};/定义加密S盒/unsigned char insBox[256] ={};//定义解密S盒plaintext::plaintext(){}void plaintext::createplaintext(unsigned char a[])//创建明文{int i = 0;unsigned int p[16];for (int j = 0; j<200; j++){if (a[j] == 0){break;}}for (; i<16; i++){p[i] = a[i];a[i] = a[i + 16];}}void plaintext::SubBytes(unsigned char p[16])//字节变换函数{unsigned char b[16];for (int i = 0; i<16; i++){b[i] = sBox[(int)p[i]];}}void plaintext::inSubBytes(unsigned char p[16])//逆字节变换函数{unsigned char b[16];for (int i = 0; i<16; i++){b[i] = insBox[(int)p[i]];}}void plaintext::ShiftRows(unsigned char e[])//行移位变换函数{unsigned char t[4];for (int i = 1; i<4; i++){for (int x = 0; x<4; x++)t[x] = e[x + i * 4];for (int y = 0; y<4; y++)e[(y + 4 - i) % 4 + i * 4] = t[y];}}void plaintext::inShiftRows(unsigned char e[])//逆行移位变换函数{unsigned char t[4];for (int i = 1; i<4; i++){for (int x = 0; x<4; x++)t[x] = e[x + i * 4];for (int y = 0; y<4; y++)e[(y + i) % 4 + i * 4] = t[y];}}void plaintext::MatrixToByte(unsigned char e[])//列混合变换函数{unsigned char t[4];int r, c;for (c = 0; c< 4; c++){for (r = 0; r<4; r++){t[r] = e[r * 4 + c];}for (r = 0; r<4; r++){e[r * 4 + c] = FFmul(0x02, t[r])^ FFmul(0x03, t[(r + 1) % 4])^ FFmul(0x01, t[(r + 2) % 4])^ FFmul(0x01, t[(r + 3) % 4]);}}}void plaintext::inMatrixToByte(unsigned char e[])//逆列混合变换函数{unsigned char t[4];int r, c;for (c = 0; c< 4; c++){for (r = 0; r<4; r++){t[r] = e[r * 4 + c];}for (r = 0; r<4; r++){e[r * 4 + c] = FFmul(0x0e, t[r])^ FFmul(0x0b, t[(r + 1) % 4])^ FFmul(0x0d, t[(r + 2) % 4])^ FFmul(0x09, t[(r + 3) % 4]);}}}unsigned char plaintext::FFmul(unsigned char a, unsigned char b){unsigned char bw[4];unsigned char res = 0;int i;bw[0] = b;for (i = 1; i<4; i++){bw[i] = bw[i - 1] << 1;if (bw[i - 1] & 0x80){bw[i] ^= 0x1b;}}for (i = 0; i<4; i++){if ((a >> i) & 0x01){res ^= bw[i];}}return res;}void plaintext::KeyAdding(unsigned char state[16], unsigned char k[][4])//轮密钥加{int r, c;for (c = 0; c<4; c++){for (r = 0; r<4; r++){state[r + c * 4] ^= k[r][c];}}}void plaintext::KeyExpansion(unsigned char* key, unsigned char w[][4][4])//密钥扩展{int i, j, r, c;unsigned char rc[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };for (r = 0; r<4; r++){for (c = 0; c<4; c++){w[0][r][c] = key[r + c * 4];}}for (i = 1; i <= 10; i++){for (j = 0; j<4; j++){unsigned char t[4];for (r = 0; r<4; r++){t[r] = j ? w[i][r][j - 1] : w[i - 1][r][3];}if (j == 0){unsigned char temp = t[0];for (r = 0; r<3; r++){t[r] = sBox[t[(r + 1) % 4]];}t[3] = sBox[temp];t[0] ^= rc[i - 1];}for (r = 0; r<4; r++){w[i][r][j] = w[i - 1][r][j] ^ t[r];}}}}plaintext::~plaintext(){}#include<iostream>#include<>#include<>//使用文件选取功能#include""using namespace std;unsigned char w[11][4][4] = { 0 };int len = 0;//图片每行需要加密的长度void Cipher();//加密图片void inCipher();//解密图片void Cipher(unsigned char a[]){unsigned char b[16];for (int i = 0; i < (len / 16); i++){for (int j = 0; j<16; j++)b[j] = a[j + i * 16];plaintext::KeyAdding(b, w[0]);for (int n = 1; n <= 10; n++){plaintext::SubBytes(b);plaintext::ShiftRows(b);if (n != 10)plaintext::MatrixToByte(b);plaintext::KeyAdding(b, w[n]);}for (int m = 0; m<16; m++)a[m + i * 16] = b[m];}}void inCipher(unsigned char a[]){unsigned char b[16];for (int i = 0; i < (len / 16) ; i++){for (int j = 0; j<16; j++){b[j] = a[j + i * 16];}plaintext::KeyAdding(b, w[10]);for (int n = 9; n >= 0; n--){plaintext::inShiftRows(b);plaintext::inSubBytes(b);plaintext::KeyAdding(b, w[n]);if (n)plaintext::inMatrixToByte(b);}for (int m = 0; m<16; m++)a[m + i * 16] = b[m];}}bool ImageCopy(const CImage &srcImage, CImage &destImage) {int i, j;//循环变量if ())return FALSE;//源图像参数BYTE* srcPtr = (BYTE*)();int srcBitsCount = ();int srcWidth = ();int srcHeight = ();int srcPitch = ();//销毁原有图像if (!()){();}//创建新图像if (srcBitsCount == 32) //支持alpha通道{(srcWidth, srcHeight, srcBitsCount, 1);}else{(srcWidth, srcHeight, srcBitsCount, 0);}BYTE *destPtr = (BYTE*)();int destPitch = ();len=abs(srcPitch);for (int i = 0; i<srcHeight; i++)Cipher(srcPtr + i*srcPitch);//复制图像数据for (i = 0; i<srcHeight; i++){memcpy(destPtr + i*destPitch, srcPtr + i*srcPitch, abs(srcPitch));}return TRUE;}bool inImageCopy(const CImage &srcImage, CImage &destImage){int i, j;//循环变量if ())return FALSE;//源图像参数BYTE* srcPtr = (BYTE*)();int srcBitsCount = ();int srcWidth = ();int srcHeight = ();int srcPitch = ();//销毁原有图像if (!()){();}//创建新图像if (srcBitsCount == 32) //支持alpha通道{(srcWidth, srcHeight, srcBitsCount, 1);}else{(srcWidth, srcHeight, srcBitsCount, 0);}BYTE *destPtr = (BYTE*)();int destPitch = ();len = abs(srcPitch);for (int i = 0; i<srcHeight; i++)inCipher(srcPtr + i*srcPitch);//复制图像数据for (i = 0; i<srcHeight; i++){memcpy(destPtr + i*destPitch, srcPtr + i*srcPitch, abs(srcPitch));}return TRUE;}int main(){unsigned char key[16] = {//固定密钥0x77, 0x59, 0xc5, 0xa4,0x55, 0x90, 0xa4, 0xa3,0xb2, 0xcc, 0x01, 0xa9,0xcb, 0xac, 0x77, 0x23 };plaintext::KeyExpansion(key, w);TCHAR szBuffer[MAX_PATH] = { 0 };//使用文件选取功能OPENFILENAME ofn = { 0 };= sizeof(ofn);// = m_hWnd;= _T("");//要选择的文件后缀= _T("D:\\");//默认的文件路径= szBuffer;//存放文件的缓冲区= sizeof(szBuffer) / sizeof(*szBuffer);= 0;= OFN_PATHMUSTEXIST | OFN_FILEMUSTEXIST | OFN_EXPLORER;//标志如果是多选要加上OFN_ALLOWMULTISELECTBOOL bSel = GetOpenFileName(&ofn);CImage image, image2, image3;//读取图片(szBuffer);。
AES加密解密实验报告

AES加密解密实验报告实验目的:了解和学习AES加密算法的原理和实现过程,掌握AES加密解密的方法。
实验原理:AES(Advanced Encryption Standard)高级加密标准,是一种对称加密算法,使用相同的密钥进行加密和解密。
AES加密算法使用数学运算和逻辑操作混合的方式,通过多轮迭代和替代、逆替代、置换等步骤,对数据进行加密和解密操作。
实验材料和方法:材料:计算机、Python编程环境。
方法:通过Python编程环境调用AES库函数,进行AES加密解密实验。
实验步骤:1. 导入AES库函数:在Python编程环境中,导入AES的库函数。
```pythonfrom Crypto.Cipher import AESfrom Crypto.Random import get_random_bytes```2. 生成随机密钥:使用get_random_bytes(函数生成一个长度为16字节的随机密钥。
```pythonkey = get_random_bytes(16)```3. 实例化AES加密对象:使用AES.new(函数,传入随机密钥和加密模式“AES.MODE_ECB”创建AES加密对象。
```pythoncipher = AES.new(key, AES.MODE_ECB)```4. 加密数据:使用encrypt(函数,传入要加密的数据进行加密操作。
```pythonmessage = "This is a secret message.".encodeciphertext = cipher.encrypt(message)```5. 解密数据:使用decrypt(函数,传入密文进行解密操作。
```pythonplaintext = cipher.decrypt(ciphertext)```6. 打印加密和解密结果:使用print(函数,打印加密前后和解密后的数据。
现代密码算法实验报告(3篇)

第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。
二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。
其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。
选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
计算e关于φ(n)的模逆元d。
公开密钥为(e,n),私有密钥为(d,n)。
加密过程为C=Me mod n,解密过程为M=Cd mod n。
2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。
AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。
每个轮包括字节替换、行移位、列混淆和轮密钥加。
3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。
DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。
四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。
2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。
AES加密算法实践

AES加密算法实践AES(Advanced Encryption Standard)是一种常用的对称加密算法,广泛应用于各种信息安全领域。
本文将介绍AES加密算法的原理,以及如何在实践中使用AES进行数据加密和解密。
一、AES加密算法简介1.1 原理概述AES加密算法是基于Rijndael算法设计的,它采用128位的分组长度和128、192或256位的密钥长度,通过多轮的替代、置换和混合运算实现对数据的加密。
AES算法具有高度的安全性和良好的性能,成为了现代加密领域的事实标准。
1.2 加密和解密过程AES加密算法涉及两个关键过程:加密和解密。
加密过程将明文进行分组并经过多轮的操作得到加密后的密文;解密过程则是将密文逆转操作得到原始的明文。
二、AES加密算法实践步骤为了演示AES加密算法的实践应用,我们将以Python编程语言为例,介绍使用AES算法进行数据加密和解密的步骤。
2.1 安装所需库首先,确保计算机上已经安装了Python编程环境。
然后,通过pip安装pycryptodome库,它提供了AES算法的实现。
2.2 密钥生成在使用AES进行加密和解密之前,需要生成一个密钥。
密钥的长度可以是128、192或256位,根据实际需求确定。
2.3 数据分组将待加密的数据按照128位进行分组。
如果数据长度不足128位,需要进行填充。
2.4 加密过程使用生成的密钥对数据进行加密。
AES算法采用多轮的替代、置换和混合运算来实现加密过程。
2.5 解密过程使用相同的密钥对加密后的数据进行解密。
解密过程是加密过程的逆向操作,通过逆转多轮的替代、置换和混合运算来还原原始数据。
三、AES加密算法应用场景AES加密算法在信息安全领域有广泛的应用,下面将介绍一些常见的应用场景。
3.1 数据传输安全在网络通信和数据传输过程中,使用AES加密算法可以保证数据的机密性,防止敏感信息被窃取或篡改。
3.2 存储数据加密对于需要长期存储的敏感数据,可以使用AES加密算法对其进行加密,从而确保在数据泄露的情况下,被获取的数据无法被解读。
实验13.2AES对称加密实验

实验13.2AES对称加密实验1.实验目的随着Internet网的广泛应用,信息安全问题日益突出,以数据加密技术为核心的信息安全技术也得到了极大的发展。
最常用的对称密码算法是数据加密标准(DES)算法,但是由于DES密钥长度较短,已经不适合当今分布式开放网络对数据加密安全性的要求。
目前,一种新的基于Rijndael算法对称高级数据加密标准AES取代了数据加密标准DES。
通过本次实验加深对称加密算法机制的认识,进一步了解AES加密算法相关内容,可以读源码并试着调试一下程序,这会有助于加深对编程的认识。
2.实验原理美国国家标准和技术研究所(NIST)经过三轮候选算法筛选,从众多的分组密码中选中Rijndael算法作为高级加密标准(AES)。
Rijndael密码是一个迭代型分组密码,其分组长度和密码长度都是可变的,分组长度和密码长度可以独立的指定为128比特,192比特或者256比特。
AES的加密算法的数据处理单位是字节,128位的比特信息被分成16个字节,按顺序复制到一个4*4的矩阵中,称为状态(state),AES的所有变换都是基于状态矩阵的变换。
用Nr表示对一个数据分组加密的轮数。
在轮函数的每一轮迭代中,包括四步变换,分别是字节代换运算(ByteSub())、行变换(ShiftRows())、列混合(MixColumns())以及轮密钥的添加变换AddRoundKey(),其作用就是通过重复简单的非线形变换、混合函数变换,将字节代换运算产生的非线性扩散,达到充分的混合,在每轮迭代中引入不同的密钥,从而实现加密的有效性。
3.实验工具AES 加密算法演示程序:用来演示AES对字符串以及文件的加密及解密的过程。
(该程序来源于互联网,基于Delphi开发)4.实验环境Windows XP操作系统,1G以上CPU,256以上内存,单机操作。
(也可网络操作,进行加密和解密。
)5.实验步骤运行AES加密算法演示程序 ,出现如图:2、各部分作用如下图:图1字符串加/解密过程演示a)先输入加密密钥,密钥的不同将会直接影响加密的结果。
AES算法实验报告

实验报告姓名:XXXXXXX学号:XXXXXXXXXX班级:XXXXXXXXX日期:2013/12/*题目:AES算法实验一、实验环境1.硬件配置:处理器:Inter(R)Core(TM)*******************(4CPUs),~2.4GHz内存:2048MB RAM2.使用软件:(1) 操作系统:win7 旗舰版(2) 软件工具:Microsoft Visual c++ 6.0二、实验涉及的相关概念或基本原理AES 是一个新的可以用于保护电子数据的加密算法。
明确地说,AES 是一个迭代的、对称密钥分组的密码,它可以使用128、192 和 256 位密钥,并且用 128 位(16字节)分组加密和解密数据。
与公共密钥密码使用密钥对不同,对称密钥密码使用相同的密钥加密和解密数据。
通过分组密码返回的加密数据的位数与输入数据相同。
迭代加密使用一个循环结构,在该循环中重复置换(permutations )和替换(substitutions)输入数据。
Figure 1 显示了 AES 用192位密钥对一个16位字节数据块进行加密和解密的情形。
对称密码算法根据对明文消息加密方式的不同可分为两大类 ,即分组密码和流密码。
分组密码将消息分为固定长度的分组 ,输出的密文分组通常与输入的明文分组长度相同。
AES 算法属于分组密码算法 ,它的输入分组、输出分组以及加/ 解密过程中的中间分组都是 128比特。
密钥的长度 K为 128,192或 256 比特。
用 Nk=4,6,8 代表密钥串的字数 ( 1 字 =32 比特) ,在本文编制的程序中由用户选定。
用 Nr 表示对一个数据分组加密的轮数 ( 加密轮数与密钥长度的关系见表 1) 。
每一轮都需要一个和输入分组具有同样长度 ( 128 比特) 的扩展密钥Ke的参与。
由于外部输入的加密密钥 K 长度有限 ,所以在 AES 中要用一个密钥扩展程序 ( KeyExpansion) 把外部密钥 K 扩展成更长的比特串 ,以生成各轮的加密密钥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:姓名:专业: 班级: 第10周
课程 名称
密码学与网络安全
实验课时
2
实验 项目
AES加密算法
实验时间
实验 目的
完成AES加密算法,实现图片加密与解密,并将加密后的结果以图片格式保存。
实验 环境
PC机,Windows7操作系统,Visual C++
简介
美国国家标准技术研究所在2001年发布了高级加密标准(AES。AES是— 个对称加密算法,旨在取代DES成为广泛使用的标准。
a[i] =a[i+16];
}
}
void plaintext::SubBytes( unsigned char p[16]) //字节变换函数{
unsigned char b[16];
for ( int i = 0; i<16; i++)
{
b[i] = sBox[( int ) p[i]];
} void plaintext::inSubBytes( unsigned char p[16]) //逆字节变换函数{
class pla in ntext();
static void createplaintext(unsigned char a[]);
static void SubBytes( unsigned char p[16]);
static void inSubBytes( unsigned char p[16]);
un sig ned
char b[16];
for ( int
i = 0; i<16; i++)
{
b[i] = insBox[( int ) p[i]];
}
}
void plaintext::ShiftRows( unsigned char e[]) //行移位变换函数
{
unsigned char t[4];
static
unsigned char FFmul( unsigned char a,
unsigned char b);
static
void KeyAdding( unsigned char state[16],
unsigned char k[][4]);
static
void KeyExpansion( unsigned char* key,
static void ShiftRows( unsigned char e[]);
static void inShiftRows( unsigned char e[]);
static void MatrixToByte(unsigned char e[]);
static void inMatrixToByte(unsigned char e[]);
三、加密算法流程
AES加密算法流程如下
字节代替:用一个S盒完成分组的字节到字节的代替;
行移位:进行一次行上的置换;
列混合:利用有限域GF(28)上的运算特性的一个代替;
轮密钥加:当前分组和扩展密钥的一部分进行按位异或。
四、代码实现
#in elude vstri ng>
#in elude <iostream>
{
unsigned char t[4];
for ( int i = 1; i<4; i++)
{
for (int x = 0; x<4; x++)
t[x] = e[x+i * 4];
for (int y = 0; y<4; y++)
e[(y+i)%4+i * 4] = t[y];
}
}
void plaintext::MatrixToByte( unsigned char e[]) //列混合变换函数
unsigned char w[][4][4]);
~plai ntext();
private:
};
#in elude ""
using namespacestd;
staticunsigned char sBox[] ={
};/定义加密S盒/
unsigned char insBox[256] ={};
//定义解密S盒
for (int i = 1; i<4; i++)
{
for (int x = 0; x<4; x++)
t[x] = e[x+i * 4];
for (int y = 0; y<4; y++)
e[(y+4-i)%4+i * 4] = t[y];
}
}
void plaintext::inShiftRows(unsigned char e[]) //逆行移位变换函数
pla in text::plai ntext()
{
}
void pla in text::createpla in text(un sig ned char a[]) //仓U建明文
int i = 0;
unsigned int p[16];
for (int j = 0; j<200; j++)
{
p[i] =a[i];
AES中的所有运算都是在8为的字节上运行的。特别饿,加减乘除算术都是 在有限域GF(28)上运行的。
二、程序特点
本次试验中要求对图片进行加密与解密,并将加密结果以图片格式进行保 存。因此为了实现对图片的调度及保存,使用头文件进行对图片的操作,实现 对图片的像素读取,图片的保存。
在程序运行读取需要加密的图片时, 需要进行图片的选取,本次实验中使用 在弹窗中选取文件的方式,使用头文件来实现在文件夹中选择需要的文件的选 取。
{
unsigned char t[4];
int r, c;
for (c = 0; c< 4; c++)