DES算法实验报告
DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告一、实验目的本实验的主要目的是对DES加密算法进行简单的实现,并通过实际运行案例来验证算法的正确性和可靠性。
通过该实验可以让学生进一步了解DES算法的工作原理和加密过程,并培养学生对算法实现和数据处理的能力。
二、实验原理DES(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,它是美国联邦政府采用的一种加密标准。
DES算法使用了一个共享的对称密钥(也称为密钥),用于加密和解密数据。
它采用了分组密码的方式,在进行加密和解密操作时,需要将数据分成固定长度的数据块,并使用密钥对数据进行加密和解密。
DES算法主要由四个步骤组成:初始置换(Initial Permutation),轮函数(Round Function),轮置换(Round Permutation)和最终置换(Final Permutation)。
其中初始置换和最终置换是固定的置换过程,用于改变数据的顺序和排列方式。
轮函数是DES算法的核心部分,它使用了密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。
轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。
通过多轮的迭代运算,DES算法可以通过一个给定的密钥对数据进行高强度的加密和解密操作。
三、实验步骤2.初始置换:将输入数据按照一定的规则重新排列,生成一个新的数据块。
初始置换的规则通过查表的方式给出,我们可以根据规则生成初始置换的代码。
3.轮函数:轮函数是DES算法的核心部分,它使用轮密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。
在实际的算法设计和实现中,可以使用混合逻辑电路等方式来实现轮函数。
4.轮置换:轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。
轮置换的规则也可以通过查表的方式给出。
5.最终置换:最终置换与初始置换类似,将最后一轮的结果重新排列,生成最终的加密结果。
des算法实验报告

des算法实验报告DES算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司于1975年研发并被美国国家标准局(NBS)采纳为联邦信息处理标准(FIPS)。
二、算法原理DES算法采用了分组密码的方式,将明文数据划分为固定长度的数据块(64位),并通过密钥进行加密和解密操作。
其核心是Feistel结构,每轮加密操作包括置换和替代两个步骤。
1. 置换步骤DES算法的初始置换(IP)和逆初始置换(IP-1)通过一系列的位重排操作,将输入的64位明文数据打乱,以增加加密的强度。
2. 替代步骤DES算法中使用了8个S盒(Substitution Box),每个S盒接受6位输入,并输出4位结果。
S盒的作用是将输入的6位数据映射为4位输出,通过这种非线性的映射关系,增加了算法的安全性。
3. 轮函数DES算法的加密过程包含16轮迭代,每轮迭代中都会对数据进行一系列的位重排和替代操作。
其中,轮函数是DES算法的核心部分,它通过使用子密钥对数据进行异或操作,并通过S盒替代和P盒置换操作,产生新的数据块。
三、实验步骤为了更好地理解DES算法的加密过程,我们进行了以下实验步骤:1. 输入明文和密钥我们选择了一个64位的明文数据块和一个56位的密钥作为输入。
明文数据块经过初始置换(IP)后,得到L0和R0两个32位的数据块。
2. 生成子密钥通过对密钥进行置换和循环左移操作,生成16个48位的子密钥。
3. 迭代加密对明文数据块进行16轮的迭代加密,每轮加密包括以下步骤:a. 将R(i-1)作为输入,经过扩展置换(E-box),得到48位的扩展数据。
b. 将扩展数据和子密钥Ki进行异或操作,得到48位的异或结果。
c. 将异或结果分为8个6位的数据块,分别经过8个S盒替代操作,得到32位的S盒替代结果。
d. 将S盒替代结果经过P盒置换,得到32位的轮函数输出。
des加密算法实验报告

DES加密算法实验报告1. 引言DES(Data Encryption Standard)是一种对称密码算法,于1977年被美国联邦信息处理标准(FIPS)确定为联邦标准。
DES加密算法采用分组密码的思想,将明文按照64位分为一组,经过一系列的置换、替代和迭代操作,最终输出加密后的密文。
本实验旨在通过对DES加密算法的实际操作,深入理解DES的工作原理和加密过程。
2. 实验步骤2.1. 密钥生成DES加密算法的核心在于密钥的生成。
密钥生成过程如下:1.将64位的初始密钥根据置换表进行置换,生成56位密钥。
2.将56位密钥分为两个28位的子密钥。
3.对两个子密钥进行循环左移操作,得到循环左移后的子密钥。
4.将两个循环左移后的子密钥合并,并根据压缩置换表生成48位的轮密钥。
2.2. 加密过程加密过程如下:1.将64位的明文按照初始置换表进行置换,得到置换后的明文。
2.将置换后的明文分为左右两部分L0和R0,每部分32位。
3.进行16轮迭代操作,每轮操作包括以下步骤:–将R(i-1)作为输入,经过扩展置换表扩展为48位。
–将扩展后的48位数据与轮密钥Ki进行异或操作。
–将异或结果按照S盒进行替代操作,得到替代后的32位数据。
–对替代后的32位数据进行置换,得到置换后的32位数据。
–将置换后的32位数据与L(i-1)进行异或操作,得到Ri。
–将R(i-1)赋值给L(i)。
4.将最后一轮迭代后得到的数据合并为64位数据。
5.对合并后的64位数据进行逆置换,得到加密后的64位密文。
3. 实验结果对于给定的明文和密钥,进行DES加密实验,得到加密后的密文如下:明文:0x0123456789ABCDEF 密钥:0x133457799BBCDFF1密文:0x85E813540F0AB4054. 结论本实验通过对DES加密算法的实际操作,深入理解了DES加密算法的工作原理和加密过程。
DES加密算法通过对明文的置换、替代和迭代操作,混淆了明文的结构,使得密文的产生与密钥相关。
【精品】DES算法实验报告

【精品】DES算法实验报告一、理论部分DES算法是一种对称加密算法,也是目前广泛应用的加密算法之一。
DES算法使用的是分组加密的思想,将明文数据分成一定长度的数据块,按照一定的算法进行加密,得到密文数据。
DES算法中的关键是密钥,只有持有正确密钥的人才能解密。
DES算法的密钥长度为64位,但由于存在弱密钥的问题,使用时需要特别注意。
DES算法的加密过程包括以下几个步骤:1、密钥的生成和处理:DES算法的密钥长度为64位,但由于存在弱密钥的问题,使用时需要使用程序进行特殊处理,以确保生成的密钥不为弱密钥。
2、初始置换(IP):将明文数据按照一定的规则进行置换,得到置换后的数据。
3、分组:将置换后的明文数据分成左半部分和右半部分。
4、轮函数(f函数):将右半部分进行扩展置换、异或运算、S盒代替、置换等操作,得到一个新的右半部分。
5、轮秘钥生成:生成本轮加密所需要的秘钥。
6、异或运算:将左半部分和右半部分进行异或运算,得到一个新的左半部分。
7、左右交换:将左右部分进行交换。
以上步骤循环执行16次,直到得到最终的密文数据。
二、实验部分本次实验使用C语言实现了DES算法的加密和解密过程。
具体实现过程包括以下几个部分:1、密钥的生成:使用DES算法生成64位密钥,其中包括了对弱密钥的处理。
2、置换:使用DES算法中的IP置换和IP逆置换进行数据置换。
3、轮函数:使用DES算法中的f函数进行一轮加密操作。
5、加密:循环执行16轮加密操作,得到密文数据。
以上实现过程全部基于DES算法的规范。
三、结果分析1、速度慢:由于DES算法采用的是分组加密的思想,需要执行多次操作才能得到最终结果。
因此本次实验的加密和解密速度相对较慢。
2、代码简单:本次实验的代码相对简单,只需要用到一些基本数据结构和算法即可实现DES算法的加密和解密过程。
但需要注意的是,由于DES算法本身的复杂性,代码实现中需要注意细节和边界问题。
四、总结本次实验使用C语言实现了DES算法的加密和解密过程,通过实验得到了一些结果。
des 加密算法实验报告

des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。
DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。
本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。
二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。
其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。
每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。
DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。
三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。
实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。
2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。
3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。
函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。
4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。
四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。
为了提高安全性,可以采用Triple-DES等加强版算法。
2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。
但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。
3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。
des算法 实验报告

des算法实验报告DES算法实验报告引言:数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司在20世纪70年代初开发。
DES算法通过将明文分块加密,使用相同的密钥进行加密和解密操作,以保护数据的机密性和完整性。
本实验旨在深入了解DES算法的原理和应用,并通过实验验证其加密和解密的过程。
一、DES算法原理DES算法采用分组密码的方式,将明文分为64位的数据块,并使用56位的密钥进行加密。
其加密过程主要包括初始置换、16轮迭代和逆初始置换三个步骤。
1. 初始置换(Initial Permutation,IP):初始置换通过将明文按照特定的置换表进行重排,得到一个新的数据块。
这一步骤主要是为了增加密文的随机性和混淆性。
2. 16轮迭代(16 Rounds):DES算法通过16轮迭代的运算,对数据块进行加密操作。
每一轮迭代都包括四个步骤:扩展置换(Expansion Permutation,EP)、密钥混合(Key Mixing)、S盒替换(Substitution Boxes,S-Boxes)和P盒置换(Permutation,P)。
其中,S盒替换是DES算法的核心步骤,通过将输入的6位数据映射为4位输出,增加了加密的复杂性。
3. 逆初始置换(Inverse Initial Permutation,IP-1):逆初始置换是初始置换的逆运算,将经过16轮迭代加密的数据块按照逆置换表进行重排,得到最终的密文。
二、实验步骤本实验使用Python编程语言实现了DES算法的加密和解密过程,并通过实验验证了算法的正确性。
1. 密钥生成:首先,根据用户输入的密钥,通过置换表将64位密钥压缩为56位,并生成16个子密钥。
每个子密钥都是48位的,用于16轮迭代中的密钥混合操作。
2. 加密过程:用户输入明文数据块,将明文按照初始置换表进行重排,得到初始数据块。
DES加密解密实验报告
DES加密解密实验报告实验报告题目:DES加密解密实验一、实验目的1.了解DES加密算法的工作原理。
2. 学习使用Python编程语言实现DES加密算法。
3.掌握DES加密算法的应用方法。
二、实验原理DES(Data Encryption Standard)是一种用于加密的对称密钥算法,其密钥长度为64位,分为加密过程和解密过程。
1.加密过程(1)初始置换IP:将64位明文分成左右两部分,分别为L0和R0,进行初始置换IP操作。
(2)子密钥生成:按照规则生成16个子密钥,每个子密钥长度为48位。
(3)迭代加密:通过16轮迭代加密运算,得到最终的密文。
每轮迭代加密包括扩展置换、异或运算、S盒替代、P置换和交换操作。
(4)逆初始置换:将最终的密文分成左右两部分,进行逆初始置换操作,得到最终加密结果。
2.解密过程解密过程与加密过程类似,但是子密钥的使用顺序与加密过程相反。
三、实验材料与方法材料:电脑、Python编程环境、DES加密解密算法代码。
方法:1. 在Python编程环境中导入DES加密解密算法库。
2.输入明文和密钥。
3.调用DES加密函数,得到密文。
4.调用DES解密函数,得到解密结果。
5.输出密文和解密结果。
四、实验步骤1.导入DES加密解密算法库:```pythonfrom Crypto.Cipher import DES```2.输入明文和密钥:```pythonplaintext = "Hello World"key = "ThisIsKey"```3.创建DES加密对象:```pythoncipher = DES.new(key.encode(, DES.MODE_ECB) ```。
DES分组加密实验报告
DES分组密码实验报告一、DES算法的实现1.DES简介DES算法工作:如Mode为加密,则用Key 去把数据Data进行加密,生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。
在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。
这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。
2. DES算法详述(1)DES加密标准DES是对二元数字分组加密的分组密码算法,分组长度为64比特。
每64位明文加密成64位密文,没有数据压缩和扩展,密钥长度为56比特,若输入64比特,则第8,16,24,32,40,48,56,64为奇偶校验位,所以,实际密钥只有56位。
DES算法完全公开,其保密性完全依赖密钥。
DES的加密过程可表示为:DES(m)= IP-1T16·T15…T2·T1·IP(m).右图面是完全16轮DES算法框图:图1 完全16轮DES算法1 初始置换IP初始置换是将输入的64位明文分为8个数组,每一组包括8位,按1至64编号。
IP的置换规则如下表:2 IP-1是IP的逆置换由于第1位经过初始置换后,已处于第40位。
逆置换就是再将第40位换回到第1位。
逆置换规则如下表所示:初始置换IP及其逆置换IP-1并没有密码学意义,因为置换前后的一一对应关系是已知的。
它们的作用在于打乱原来输入明文的ASCⅡ码字划分的关系,并将原来明文的第m8,m16,m24,m32,m40,m48,m56,m64位(校验位)变成IP的输出的一个字节。
3. DES算法的迭代过程图中Li-1和Ri-1分别是第i-1次迭代结果的左右两部分,各32比特。
DES_加密解密算法的C++实现--实验报告
DES_加密解密算法的C++实现--实验报告1实验⼀1、实验题⽬利⽤C/C++编程实现DES加密算法或MD5加密算法。
我选择的是⽤C++语⾔实现DES的加密算法。
2、实验⽬的通过编码实现DES算法或MD5算法,深⼊掌握算法的加密原理,理解其实际应⽤价值,同时要求⽤C/C++语⾔实现该算法,让我们从底层开始熟悉该算法的实现过程3、实验环境操作系统:WIN7旗舰版开发⼯具:Visual Studio 2010旗舰版开发语⾔:C++4、实验原理DES加密流程2如上图所⽰为DES的加密流程,其中主要包含初始置换,压缩换位1,压缩换位2,扩展置换,S盒置换,异或运算、终结置换等过程。
初始置换是按照初始置换表将64位明⽂重新排列次序扩展置换是将原32为数据扩展为48位数据,它主要由三个⽬的:1、产⽣与⼦密钥相同的长度2、提供更长的结果,使其在加密过程中可以被压缩3、产⽣雪崩效应,使得输⼊的⼀位将影响两个替换S盒置换是DES算法中最核⼼的内容,在DES中,只有S盒置换是⾮线性的,它⽐DES 中其他任何⼀步都提供更好的安全性终结置换与初始置换相对应,它们都不影响DES的安全性,主要⽬的是为了更容易将明⽂与密⽂数据⼀字节⼤⼩放⼊DES的f 算法中DES解密流程与加密流程基本相同,只不过在进⾏16轮迭代元算时,将⼦密钥⽣成的K的次序倒过来进⾏迭代运算5、实验过程记录在对DES算法有了清晰的认识后,编码过程中我将其分为⼏个关键部分分别进⾏编码,最后将整个过程按顺序执⾏,即可完成DES的加密,代码的主要⼏个函数如下:代码// : 定义控制台应⽤程序的⼊⼝点。
//#include "" #include "" #include #include #include using namespace std;//置换矩阵int IP_EX[64]= { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 5 6, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13,5, 63, 55, 47, 39, 31, 23, 15, 7};int IP_ANTEX[64]= { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37 , 5, 45, 13, 53,21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28 , 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 41, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 };//扩展矩阵int EXTEND[48]= {32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 1, 2};//S盒int S[8][4][16]= { { {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7}, {0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8}, {4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0}, {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}}, { {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10}, {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, {13, 8, 1 0, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9} }, { {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8}, {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1}, {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7}, {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12} }, { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15}, {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9}, {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4}, {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14} }, { {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9}, {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6}, {4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14}, {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3} },{ {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11}, {10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 1 3, 14, 0, 11, 3, 8}, {9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6}, {4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}}, { {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1}, {13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6}, {1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2}, {6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}}, { {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 1 4, 5, 0, 12, 7}, {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2}, {7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8}, {2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}}};int DIREX[32]= { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 };//左移移位表int MOVELEFT[16]= { 1,1,2,2,2,2,2,2, 1,2,2,2,2,2,2,1};//压缩换位表2int CutEX[48]= { 14, 17, 11, 24, 1, 5,3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32};typedef char ElemType;ElemType subsec[16][48];//Byte转bitint ByteToBit(ElemType ch,ElemType bit[8]) {for(int index = 7;index >= 0;index--) {bit[index] = (ch>>index)&1; //cout<<(int)bit[index]; }return 0; }//bit转Byteint BitToByte(ElemType bit[8],ElemType &ch) { ElemType tempch=0; Ele mType tempbit[8]; for(int i=0;i<8;i++) {tempbit[i]=bit[i];}tempbit[7]=0;for(int index = 7;index >=0;index--){tempch=tempch|(tempbit[index]<<(index)); } ch=tempch;//cout<<(char)tempch<return 0;}//按64位分⼀组void Get64Bit(ElemType ch[8],ElemType bit[64]) { ElemType temp[8]; i nt count=0; for(int i=0;i<8;i++) { ByteToBit(ch[i],temp); for (int j=0;j<8;j++) { bit[count*8+j]=temp[7-j];}count++;}}//初始置换void InitialEX(ElemType Inorder[64],ElemType Disorder[64]) { for(int i= 0;i<64;i++) { Disorder[i]=Inorder[IP_EX[i]-1]; }}//逆置换void AntiEx(ElemType Disorder[64]) { ElemType temp[64]; for(int i=0; i<64;i++) {temp[i]=Disorder[i];}for(int i=0;i<64;i++) { Disorder[i]=temp[IP_ANTEX[i]-1];}}//扩展置换void ExpandEX(ElemType RightMsg[32],ElemType ExpandMsg[48]) {for(int i=0;i<48;i++) { ExpandMsg[i]=RightMsg[EXTEND[i]-1];}}//16轮加密迭代void MoveLeft(ElemType C[28],ElemType D[28],ElemType L0[32],ElemType R0[32 ]) { ElemType Secret[48]; //⼦密钥ElemType Result[48]; //每轮异或结果ElemType Sout[32];//每轮S盒输出ElemType DirOut[32]; //直接置换输出ElemType RResult[32]; ElemType LResult[32]; ElemType ExpandMsg[48];ElemType temp[32]; for(int i=0;i<32;i++) { LResult[i]=L0[i];RResult[i]=R0[i];}for(int i=0;i<16;i++) { if(MOVELEFT[i]==1) { for(int j= 0;j<27;j++) { C[i]=C[i+1];}C[27]=0;} else { for(int j=0;j<26;j++) {C[i]=C[i+2]; }C[26]=0; C[27]=0;}ExpandEX(RResult,ExpandMsg); GetCD48(C,D,Secret);for(int j=0;j<48;j++){subsec[15-i][j]=Secret[j]; //获取界⾯的⼦密钥}XOR(ExpandMsg,Secret,Result); //S盒置换getSOut(Result,Sout); //直接置换DirExchange(Sout,DirOut); //与L进⾏异或XORLR(DirOut,LResult,temp); for(int i=0;i<32;i++) { LResu lt[i]=RResult[i];}for(int i=0;i<32;i++) {RResult[i]=temp[i]; }for(int i=0;i<32;i++) { L0[i]=LResult[i]; R0[i]=RResult [i];}}/*cout<<"zuo"<}}cout<<"右边"<{cout<}}*/LResult[j]=RResult[j];}for(int j=0;j<32;j++) { RResult[j]=temp[j]; }。
DES算法实验报告
DES算法实验报告DES (Data Encryption Standard)算法是一种对称密钥加密算法,由IBM于1970s年代开发。
它是加密领域的经典算法之一,被广泛应用于安全通信和数据保护领域。
本实验报告将介绍DES算法的原理、实现和安全性分析。
一、DES算法原理1.初始置换(IP置换):将输入的64位明文进行初始置换,得到一个新的64位数据块。
2.加密轮函数:DES算法共有16轮加密,每轮加密包括3个步骤:扩展置换、密钥混合、S盒置换。
扩展置换:将32位数据扩展为48位,并与轮密钥进行异或运算。
密钥混合:将异或运算结果分为8组,每组6位,并根据S盒表进行置换。
S盒置换:将6位数据分为两部分,分别代表行和列,通过查表得到一个4位结果,并合并为32位数据。
3. Feistel网络:DES算法采用了Feistel网络结构,将32位数据块分为左右两部分,并对右半部分进行加密处理。
4.置换:将加密后的左右两部分置换位置。
5.逆初始置换:将置换后的数据进行逆初始置换,得到加密后的64位密文。
二、DES算法实现本实验使用Python编程语言实现了DES算法的加密和解密功能。
以下是加密和解密的具体实现过程:加密过程:1.初始化密钥:使用一个64位的密钥,通过PC-1表进行置换,生成56位的初始密钥。
2.生成子密钥:根据初始密钥,通过16次的循环左移和PC-2表进行置换,生成16个48位的子密钥。
3.初始置换:对输入的明文进行初始置换,生成64位的数据块。
4.加密轮函数:对初始置换的数据块进行16轮的加密操作,包括扩展置换、密钥混合和S盒置换。
5.逆初始置换:对加密后的数据块进行逆初始置换,生成加密后的64位密文。
解密过程:1.初始化密钥:使用相同的密钥,通过PC-1表进行置换,生成56位的初始密钥。
2.生成子密钥:根据初始密钥,通过16次的循环左移和PC-2表进行置换,生成16个48位的子密钥。
3.初始置换:对输入的密文进行初始置换,生成64位的数据块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DES算法实验报告
姓名:学号:班级:
一、实验环境
1.硬件配置:处理器(英特尔Pentium双核*************内存:2G)
2.使用软件:
⑴操作系统:Windows XP 专业版32位SP3(DirectX 9.0C)
⑵软件工具:Microsoft Visual C++ 6.0
二、实验涉及的相关概念或基本原理
1、加密原理
DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。
这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。
使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。
DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。
三、实验内容
1、关键代码
⑴子密钥产生
⑵F函数以及加密16轮迭代
2、DES加密算法的描述及流程图
⑴子密钥产生
在DES算法中,每一轮迭代都要使用一个子密钥,子密钥是从用户输入的初始密钥产生的。
K是长度为64位的比特串,其中56位是密钥,8位是奇偶校验位,分布在8,16,24,32,40,48,56,64比特位上,可在8位中检查单个错误。
在密钥编排计算中只用56位,不包括这8位。
子密钥生成大致分为:置换选择1(PC-1)、循环左移、置换选择2(PC-2)等变换,分别产生16个子密钥。
DES解密算法与加密算法是相同的,只是子密钥的使用次序相反。
⑵DES加密算法
DES密码算法采用Feistel密码的S-P网络结构,其特点是:加密和解密使用同一算法、
同一密钥、同一结构。
区别是:16轮加密子密钥顺序为K1,K2,…,K16,解密子密钥顺序为
K16,K15,…,K1。
其中密钥长度为64位,在具体算法中,只使用56位(另外8位为奇偶校验位)的密钥输入对64位的明文进行加解密运算,获取64位密文。
整个过程由三个阶段来完成:初始置换、乘积变换和逆初始置换。
大致过程:设
m=m1m2…m64为64位输入明文,DES算法先执行初始置换IP对m的64位进行换位处理;然后通过子密钥K1~K16对明文进行16轮乘积变换,即进行16次迭代处理;最后经过逆初始置换的处理,得到64位密文c=c1c2…c64输出。
16轮迭代目的是使明文增加混乱性和扩散性,避免输出密文残留统计规律,使破译者无法反向推算出密钥。
第一步:变换明文。
对给定的64位的明文x.,首先通过一个置换IP表来重新排列x.,从而构造出64位的x0, x0=IP(x)=L0R0,其中L0表示x0的前32位,R0表示x0的后32位。
第二步:按照规则迭代。
规则为:Li=Ri-1;Ri=Li⊕f(Ri-1, Ki) (i=1,2,3, (16)
经过第1步变换已经得到L0和R0的值,其中符号⊕表示数学运算“异或”,f表示一种置换,由s盒置换构成,Ki是一些由密钥编排函数产生的比特块。
第三步:对L16R16利用IP-1作逆置换。
⑶流程图
图1 DES算法一轮迭代的过程
DES加密算法的描述
3、实验结果
加密结果解密结果
图2 DES 加解密结果
四、实验总结分析
通过这次实验,我发现DES算法虽然并不复杂,但是真正实现起来,自己编程上还存在诸多不足,很多细微的知识点很容易就遗忘了,比如对与数组的应用也不是很扎实,数组下标和替换表之间存在1个位的偏差,如若没有理清逻辑关系,很容易出错,导致返工。
通过这次DES加解密算法的实验,我对DES的原理有了更深刻的认识,对初始变换,F函数的扩展变换,S盒,P盒的混乱扩散效应有了更深的体会,经历了代码的编写后,我对DES 的16轮迭代的具体步骤,以及子密钥的产生更清晰明了,果然通过理论联系实际,才可以把零碎的知识点巩固加深。