DES算法代码及实验报告
DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告一、实验目的本实验的主要目的是对DES加密算法进行简单的实现,并通过实际运行案例来验证算法的正确性和可靠性。
通过该实验可以让学生进一步了解DES算法的工作原理和加密过程,并培养学生对算法实现和数据处理的能力。
二、实验原理DES(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,它是美国联邦政府采用的一种加密标准。
DES算法使用了一个共享的对称密钥(也称为密钥),用于加密和解密数据。
它采用了分组密码的方式,在进行加密和解密操作时,需要将数据分成固定长度的数据块,并使用密钥对数据进行加密和解密。
DES算法主要由四个步骤组成:初始置换(Initial Permutation),轮函数(Round Function),轮置换(Round Permutation)和最终置换(Final Permutation)。
其中初始置换和最终置换是固定的置换过程,用于改变数据的顺序和排列方式。
轮函数是DES算法的核心部分,它使用了密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。
轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。
通过多轮的迭代运算,DES算法可以通过一个给定的密钥对数据进行高强度的加密和解密操作。
三、实验步骤2.初始置换:将输入数据按照一定的规则重新排列,生成一个新的数据块。
初始置换的规则通过查表的方式给出,我们可以根据规则生成初始置换的代码。
3.轮函数:轮函数是DES算法的核心部分,它使用轮密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。
在实际的算法设计和实现中,可以使用混合逻辑电路等方式来实现轮函数。
4.轮置换:轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。
轮置换的规则也可以通过查表的方式给出。
5.最终置换:最终置换与初始置换类似,将最后一轮的结果重新排列,生成最终的加密结果。
des算法实验报告

des算法实验报告DES算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司于1975年研发并被美国国家标准局(NBS)采纳为联邦信息处理标准(FIPS)。
二、算法原理DES算法采用了分组密码的方式,将明文数据划分为固定长度的数据块(64位),并通过密钥进行加密和解密操作。
其核心是Feistel结构,每轮加密操作包括置换和替代两个步骤。
1. 置换步骤DES算法的初始置换(IP)和逆初始置换(IP-1)通过一系列的位重排操作,将输入的64位明文数据打乱,以增加加密的强度。
2. 替代步骤DES算法中使用了8个S盒(Substitution Box),每个S盒接受6位输入,并输出4位结果。
S盒的作用是将输入的6位数据映射为4位输出,通过这种非线性的映射关系,增加了算法的安全性。
3. 轮函数DES算法的加密过程包含16轮迭代,每轮迭代中都会对数据进行一系列的位重排和替代操作。
其中,轮函数是DES算法的核心部分,它通过使用子密钥对数据进行异或操作,并通过S盒替代和P盒置换操作,产生新的数据块。
三、实验步骤为了更好地理解DES算法的加密过程,我们进行了以下实验步骤:1. 输入明文和密钥我们选择了一个64位的明文数据块和一个56位的密钥作为输入。
明文数据块经过初始置换(IP)后,得到L0和R0两个32位的数据块。
2. 生成子密钥通过对密钥进行置换和循环左移操作,生成16个48位的子密钥。
3. 迭代加密对明文数据块进行16轮的迭代加密,每轮加密包括以下步骤:a. 将R(i-1)作为输入,经过扩展置换(E-box),得到48位的扩展数据。
b. 将扩展数据和子密钥Ki进行异或操作,得到48位的异或结果。
c. 将异或结果分为8个6位的数据块,分别经过8个S盒替代操作,得到32位的S盒替代结果。
d. 将S盒替代结果经过P盒置换,得到32位的轮函数输出。
des加密算法实验报告

DES加密算法实验报告1. 引言DES(Data Encryption Standard)是一种对称密码算法,于1977年被美国联邦信息处理标准(FIPS)确定为联邦标准。
DES加密算法采用分组密码的思想,将明文按照64位分为一组,经过一系列的置换、替代和迭代操作,最终输出加密后的密文。
本实验旨在通过对DES加密算法的实际操作,深入理解DES的工作原理和加密过程。
2. 实验步骤2.1. 密钥生成DES加密算法的核心在于密钥的生成。
密钥生成过程如下:1.将64位的初始密钥根据置换表进行置换,生成56位密钥。
2.将56位密钥分为两个28位的子密钥。
3.对两个子密钥进行循环左移操作,得到循环左移后的子密钥。
4.将两个循环左移后的子密钥合并,并根据压缩置换表生成48位的轮密钥。
2.2. 加密过程加密过程如下:1.将64位的明文按照初始置换表进行置换,得到置换后的明文。
2.将置换后的明文分为左右两部分L0和R0,每部分32位。
3.进行16轮迭代操作,每轮操作包括以下步骤:–将R(i-1)作为输入,经过扩展置换表扩展为48位。
–将扩展后的48位数据与轮密钥Ki进行异或操作。
–将异或结果按照S盒进行替代操作,得到替代后的32位数据。
–对替代后的32位数据进行置换,得到置换后的32位数据。
–将置换后的32位数据与L(i-1)进行异或操作,得到Ri。
–将R(i-1)赋值给L(i)。
4.将最后一轮迭代后得到的数据合并为64位数据。
5.对合并后的64位数据进行逆置换,得到加密后的64位密文。
3. 实验结果对于给定的明文和密钥,进行DES加密实验,得到加密后的密文如下:明文:0x0123456789ABCDEF 密钥:0x133457799BBCDFF1密文:0x85E813540F0AB4054. 结论本实验通过对DES加密算法的实际操作,深入理解了DES加密算法的工作原理和加密过程。
DES加密算法通过对明文的置换、替代和迭代操作,混淆了明文的结构,使得密文的产生与密钥相关。
des 加密算法实验报告

des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。
DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。
本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。
二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。
其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。
每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。
DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。
三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。
实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。
2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。
3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。
函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。
4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。
四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。
为了提高安全性,可以采用Triple-DES等加强版算法。
2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。
但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。
3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。
DES文件加密实验报告

DES文件加密实验报告一、DES算法简介DES是Data Encryption Standard(数据加密标准)的缩写。
它是由IBM公司研制的一种加密算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,二十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。
DES是一个分组加密算法,他以64位为分组对数据加密。
同时DES也是一个对称算法:加密和解密用的是同一个算法。
它的密匙长度是56位(因为每个第8 位都用作奇偶校验),密匙可以是任意的56位的数,而且可以任意时候改变。
其中有极少量的数被认为是弱密匙,但是很容易避开他们。
所以保密性依赖于密钥。
二、用C#实现DES文件加密指定文件,输入密钥来加密和解密数据。
DESCryptoServiceProvider基于对称加密算法。
Symmetricencryption 需要一个密钥和一个初始化向量(IV) 加密请。
要解密的数据,必须具有相同的密钥和IV。
使用的加密提供程序来获取encryptingobject (CreateEncryptor) 创建CryptoStream类的一个实例,现有输出文件流对象的构造函数的一部分。
要解密文件,执行以下步骤:创建一个方法,并命名该按钮DecryptFile.解密过程是类似于theencryption 进程,但是,DecryptFile过程从EncryptFile过程的两个主要区别。
而不是CreateEncryptor使用CreateDecryptor来创建CryptoStream对象,用于指定如何使用该对象。
解密的文本写入目标文件,CryptoStream对象是现在而不是目标流的来源。
三、运行环境可将DES文件加解密软件的可执行.exe文件直接在xp,win7等系统上运行。
四、实验结果1、开始界面2、打开要加密文件、输入密钥3、加密4、打开要解密文件、输入密钥5、解密五、主要算法代码public static void EncryptFile(string sInputFilename, string sOutputFilename, string sKey){FileStream fsInput = new FileStream(sInputFilename, FileMode.Open, FileAccess.Read);FileStream fsEncrypted = new FileStream(sOutputFilename, FileMode.Create, FileAccess.Write);DESCryptoServiceProvider DES = new DESCryptoServiceProvider();DES.Key = ASCIIEncoding.ASCII.GetBytes(sKey);DES.IV = ASCIIEncoding.ASCII.GetBytes(sKey);ICryptoTransform desencrypt = DES.CreateEncryptor();CryptoStream cryptostream = new CryptoStream(fsEncrypted, desencrypt, CryptoStreamMode.Write);byte[] bytearrayinput = new byte[fsInput.Length];fsInput.Read(bytearrayinput, 0, bytearrayinput.Length);cryptostream.Write(bytearrayinput, 0, bytearrayinput.Length);cryptostream.Close();fsInput.Close();fsEncrypted.Close();}public static void DecryptFile(string sInputFilename, string sOutputFilename, string sKey){try{DESCryptoServiceProvider DES = new DESCryptoServiceProvider();DES.Key = ASCIIEncoding.ASCII.GetBytes(sKey);DES.IV = ASCIIEncoding.ASCII.GetBytes(sKey);FileStream fsread = new FileStream(sInputFilename, FileMode.Open, FileAccess.Read);ICryptoTransform desdecrypt = DES.CreateDecryptor();CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read);StreamWriter fsDecrypted = new StreamWriter(sOutputFilename);fsDecrypted.Write(new StreamReader(cryptostreamDecr,Encoding.GetEncoding("GB2312")).ReadToEnd());fsDecrypted.Flush();fsDecrypted.Close();}catch (Exception e){MessageBox.Show(e.Message);}}。
des算法 实验报告

des算法实验报告DES算法实验报告引言:数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司在20世纪70年代初开发。
DES算法通过将明文分块加密,使用相同的密钥进行加密和解密操作,以保护数据的机密性和完整性。
本实验旨在深入了解DES算法的原理和应用,并通过实验验证其加密和解密的过程。
一、DES算法原理DES算法采用分组密码的方式,将明文分为64位的数据块,并使用56位的密钥进行加密。
其加密过程主要包括初始置换、16轮迭代和逆初始置换三个步骤。
1. 初始置换(Initial Permutation,IP):初始置换通过将明文按照特定的置换表进行重排,得到一个新的数据块。
这一步骤主要是为了增加密文的随机性和混淆性。
2. 16轮迭代(16 Rounds):DES算法通过16轮迭代的运算,对数据块进行加密操作。
每一轮迭代都包括四个步骤:扩展置换(Expansion Permutation,EP)、密钥混合(Key Mixing)、S盒替换(Substitution Boxes,S-Boxes)和P盒置换(Permutation,P)。
其中,S盒替换是DES算法的核心步骤,通过将输入的6位数据映射为4位输出,增加了加密的复杂性。
3. 逆初始置换(Inverse Initial Permutation,IP-1):逆初始置换是初始置换的逆运算,将经过16轮迭代加密的数据块按照逆置换表进行重排,得到最终的密文。
二、实验步骤本实验使用Python编程语言实现了DES算法的加密和解密过程,并通过实验验证了算法的正确性。
1. 密钥生成:首先,根据用户输入的密钥,通过置换表将64位密钥压缩为56位,并生成16个子密钥。
每个子密钥都是48位的,用于16轮迭代中的密钥混合操作。
2. 加密过程:用户输入明文数据块,将明文按照初始置换表进行重排,得到初始数据块。
DES加密解密实验报告

DES加密解密实验报告实验报告题目:DES加密解密实验一、实验目的1.了解DES加密算法的工作原理。
2. 学习使用Python编程语言实现DES加密算法。
3.掌握DES加密算法的应用方法。
二、实验原理DES(Data Encryption Standard)是一种用于加密的对称密钥算法,其密钥长度为64位,分为加密过程和解密过程。
1.加密过程(1)初始置换IP:将64位明文分成左右两部分,分别为L0和R0,进行初始置换IP操作。
(2)子密钥生成:按照规则生成16个子密钥,每个子密钥长度为48位。
(3)迭代加密:通过16轮迭代加密运算,得到最终的密文。
每轮迭代加密包括扩展置换、异或运算、S盒替代、P置换和交换操作。
(4)逆初始置换:将最终的密文分成左右两部分,进行逆初始置换操作,得到最终加密结果。
2.解密过程解密过程与加密过程类似,但是子密钥的使用顺序与加密过程相反。
三、实验材料与方法材料:电脑、Python编程环境、DES加密解密算法代码。
方法:1. 在Python编程环境中导入DES加密解密算法库。
2.输入明文和密钥。
3.调用DES加密函数,得到密文。
4.调用DES解密函数,得到解密结果。
5.输出密文和解密结果。
四、实验步骤1.导入DES加密解密算法库:```pythonfrom Crypto.Cipher import DES```2.输入明文和密钥:```pythonplaintext = "Hello World"key = "ThisIsKey"```3.创建DES加密对象:```pythoncipher = DES.new(key.encode(, DES.MODE_ECB) ```。
DES加密实验报告

DES加密实验报告实验目的:1.了解DES加密算法的原理和流程;2.掌握DES加密算法的编程实现方法;3.探究不同密钥长度对DES加密效果的影响。
实验设备和材料:1.计算机;2. Python编程环境。
实验步骤:1.DES加密算法原理和流程:DES(Data Encryption Standard)是一种对称加密算法,采用分组密码体制,密钥长度为56位,数据块长度为64位。
DES加密算法的流程如下:a)初始置换(IP置换):将明文分为左右两个32位的子块,并经过初始置换表IP进行置换;b)迭代加密:将初始置换结果分为左右两个子块,进行16轮迭代操作;c)轮函数:每轮迭代中,右子块与扩展置换表进行扩展置换,并与轮密钥进行异或运算,然后经过S盒替换、P置换和异或运算得到新的右子块;d)逆初始置换(IP逆置换):将最后一轮的结果进行逆初始置换,得到密文。
2.DES加密算法编程实现:首先,导入`pycrypto`库并生成合适长度的密钥;其次,定义初始置换表IP,扩展置换表E,S盒置换表S1-S8,P置换表P,以及逆初始置换表IP_inverse;然后,定义`des_encrypt`函数实现DES加密算法的逻辑:a)根据IP置换表对输入明文进行初始置换;b)将初始置换结果分为左右两个子块;c)进行16轮迭代操作,每轮迭代中更新左右子块的值;d)对最后一轮迭代结果进行逆初始置换;e)返回加密后的密文。
3.探究不同密钥长度对DES加密效果的影响:初始化明文和密钥,调用`des_encrypt`函数进行加密,并输出加密结果;分别改变密钥长度为56位、64位、128位,再次进行加密操作,并输出加密结果;比较不同密钥长度下的加密结果,进行效果分析。
实验结果:使用DES加密算法对明文进行加密,得到相应的密文。
实验结论:1.DES加密算法可以对密文进行可靠保护,提高数据的安全性;2.较长的密钥长度有助于增强DES加密算法的安全性,但同时也会增加加密和解密的运算成本;3.在实际应用中,根据需求和实际情况,选择合适的密钥长度,平衡安全性和性能的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称DES算法实验报告实验(实习)日期________得分 ______ 指导教师沈剑计算机系专业软件工程年级 11 班次3 __________姓名张渊学号 9311、实验目的理解对称加解密算法的原理和特点理解DES算法的加解密原理2、D ES算法详述DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32 位,其置换规则见下表:58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,即将输入的第58位换到第一位,第50位换到第2位,……,依此类推,最后一位是原来的第7位。
L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:设置换前的输入值为D1D2D3• D64,则经过初始置换后的结果为:L0=D550 (8)R0=D57D49 (7)经过26次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。
逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,放大换位表32,1,2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,单纯换位表16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,在f(Ri,Ki) 算法描述图中,S1,S2...S8 为选择函数,其功能是把6bit 数据变为4bit 数据。
下面给出选择函数Si(i=1,2 ........... 8) 的功能表:选择函数SiS1:14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,S2:15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,S3:10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,S4:7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14, S5:2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,S6:12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13, S7:4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,S8:13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,1.子密钥Ki(48bit) 的生成算法初始Key值为64位,但DES算法规定,其中第8、16、……64位是奇偶校验位,不参与DES运算。
故Key实际可用位数便只有56位。
即:经过缩小选择换位表1的变换后,Key的位数由64位变成了56位,此56位分为C0 D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。
依此类推,便可得到K1、K2、……、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:循环左移位数1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1以上介绍了DES算法的加密过程。
DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、……,最后一次用K0,算法本身并没有任何变化。
3、代码#include<>#include<>#include<>//IP 置换int IP[]= { 58, 50, 42, 34, 26, 18, 10, 2,60,52, 44, 36, 28, 20, 12, 4,62,54, 46, 38, 30, 22, 14, 6,64, 56, 48, 40, 32, 24, 16, 8,57, 49, 41, 33, 25, 17, 9, 1,59, 51, 43, 35, 27, 19, 11, 3,61,53, 45, 37, 29, 21, 13, 5,63,55, 47, 39, 31, 23, 15, 7}; //IP 逆置换int IP_1[64]={40, 8, 48, 16, 56, 24, 64, 32,39, 7, 47, 15, 55, 23, 63, 31,38, 6, 46, 14, 54, 22, 62, 30,37, 5, 45, 13, 53, 21, 61, 29,36, 4, 44, 12, 52, 20, 60, 28,35, 3, 43, 11, 51, 19, 59, 27,34, 2, 42, 10, 50, 18, 58, 26,33,1, 41, 9, 49, 17, 57, 25};// 扩展变换 Eint E[48]={32, 1, 2, 3, 4, 5,4, 5, 6, 7, 8, 9,8, 9, 10, 11, 12, 13,12,13, 14, 15, 16, 17,16, 17, 18, 19, 20, 21,20, 21, 22, 23, 24, 25,24, 25, 26, 27, 28, 29,28, 29, 30, 31, 32, 1};//P 置换int P[32]={16, 7, 20, 21, 29, 12, 28, 17,1,15, 23, 26, 5, 18, 31, 10,2,8, 24, 14, 32, 27, 3, 9,19, 13, 30, 6, 22, 11, 4, 25};// 置换选择 1int PC_1[56]={57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,59,51,43,35,27,19,11,3,60,52,44,36,63,55,47,39,31,23,15,7,62,54,46,38,30,22,14,6,61,53,45,37,29,21,13,5,28,20,12,4};// 置换选择 2int PC_2[48]={14, 17, 11, 24, 1, 5, 3, 28,15, 6, 21, 10, 23, 19, 12, 4,26, 8, 16, 7, 27, 20, 13, 2,41, 52, 31, 37, 47, 55, 30, 40,51, 45, 33, 48, 44, 49, 39, 56,34,53, 46, 42, 50, 36, 29, 32};//8 个s 盒int S1[4][16]={14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 15, 10, 0, 6, 13},S2[4][16]={15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,3,13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,13,8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}, S3[4][16]={10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},S4[4][16]={ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},S5[4][16]={ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},S6[4][16]={12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},S7[4][16]={ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},S8[4][16]={13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11};void L__R(int (*l)[32],int (*r)[32],int i);//void E_change(int *r_change,int (*r)[32],int a);//E void yihuo1(int *r_change,int (*kout)[48],int a);// void S_replace(int *r_change,int *s1);//Svoid P_replace(int *p,int *s1);//P 变换 voidyihuo2(int (*l)[32],int (*r)[32],int *p,inta);// void IP2(int (*l)[32],int (*r)[32],int*ip_1,int i);//IP void LS_yiwei(int (*p)[28],int i);// 密钥 L 、 S 的移位void CD_hebin(int *pc_1,int (*c)[28],int (*d)[28],int i);//C void PC_2_bianhuan(int (*kout)[48],int *pc_1,int a);//PC_2、D 变换变换 变换 异或 2 逆置换void erjinzhi(char z[8],int *q);// 二进制转换void PC_1_bianhuan(int *Key,int *pc_1);//PC_1 变换void CD(int *pc_1,int (*c)[28],int (*d)[28]);// 把明文分组为 C 、 Dvoid IP_change(int *ip,int *Data);//IP 置换把 56 位密钥分为 L 、S 两组 的扩展变换 异或 1void miwen(int *ip_1);// 得出密文void yihuo3(int *r_change,int (*kout)[48],int a);//异或 3// 定义三个数组存放明文密钥密文charmingwen[8],key_Origion[8],miwens[8];/******************************************************************************/// 二进制转换void erjinzhi(char z[8],int *q){char ch;int i,j,a=7; for(i=0;i<8;i++){ch=z[i];for(j=0;j<8;j++){*(q+a)=ch%2;ch=ch/2;a--;}a=a+16;} for(i=0;i<=63;i++){ if(i%8==0) printf( " "); printf("%d",*(q+i));} printf("\n");}/*******************************************************************************************************///IP 变换void IP_change(int *ip,int *Data){int i,j;for(i=1;i<=64;i++){ j=58-i/33+2*(((i-1)/8)%4)-8*((i-1)%8); *(ip+(i-1))=*(Data+(j-1));}/****************************************************************************** *************************/// 提取L0,R0 分组void L0_R0(int *ip,int (*l)[32], int (*r)[32]){int i;for(i=0;i<=31;i++){*(*l+i)=*(ip+i);}for(i=0;i<=31;i++){*(*r+i)=*(ip+i+32);}}/****************************************************************************** ****************************/// L(i)=R(i-1)void L__R(int (*l)[32],int (*r)[32],int i){int j;for(j=0;j<=31;j++){ *(*(l+i)+j)=*(*(r+i-1)+j);}// printf("\n");}/****************************************************************************** ****************************/// E 变换void E_change(int *r_change,int (*r)[32],int a) {int i;for(i=0;i<=47;i++){*(r_change+i)=*(*(r+a-1)+E[i]-1);}// printf("\n");}/****************************************************************************** ****************************/// PC_1 变换void PC_1_bianhuan(int *Key,int *pc_1){int i;for(i=0;i<=55;i++){*(pc_1+i)=*(Key+PC_1[i]-1);}/****************************************************************************** *******************/// 提取密钥的初始C0,D0void CD(int *pc_1,int (*c)[28],int (*d)[28]){int i;for(i=0;i<=27;i++){*(*c+i)=*(pc_1+i);*(*d+i)=*(pc_1+i+28);}}*************************************************************************************************/// 密钥生成时 C D 移位void LS_yiwei(int (*p)[28],int i){int j;if(i==1||i==2||i==9||i==16){for(j=0;j<=27;j++){if(j==27)*(*(p+i)+j)=*(*(p+i-1)+0);else*(*(p+i)+j)=*(*(p+i-1)+j+1);}}else{for(j=0;j<=27;j++){if(j==26)*(*(p+i)+j)=*(*(p+i-1)+0); else if(j==27)*(*(p+i)+j)=*(*(p+i-1)+1); else*(*(p+i)+j)=*(*(p+i-1)+j+2);}}}/****************************************************************************** *********************/// C D 合并成完整密钥void CD_hebin(int *pc_1,int (*c)[28],int (*d)[28],int i){int j;for(j=0;j<=27;j++){*(pc_1+j)=*(*(c+i)+j); *(pc_1+j+28)=*(*(d+i)+j);}}/****************************************************************************** *********************/// 提取48 位密钥K(a-1)void PC_2_bianhuan(int (*kout)[48],int *pc_1,int a){int i;for(i=0;i<=47;i++){*(*(kout+a-1)+i)=*(pc_1+PC_2[i]-1);}/****************************************************************************************************/// P 变换void P_replace(int *p,int *s1){int i;for(i=0;i<=31;i++){*(p+i)=*(s1+P[i]-1);}}/****************************************************************************************************/// r_change R(i-1) E 变换后与Ki 异或 1void yihuo1(int *r_change,int (*kout)[48],int a){int i;for(i=0;i<=47;i++){*(r_cha nge+i)A=*(*(kout+a-1)+i); U K按位异或运算符。